
Ruzica Piskac
Philipp Rümmer (Eds.)

 123

LN
CS

 1
12

94

10th International Conference, VSTTE 2018
Oxford, UK, July 18–19, 2018
Revised Selected Papers

Verified Software
Theories, Tools, and Experiments

Lecture Notes in Computer Science 11294

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Ruzica Piskac • Philipp Rümmer (Eds.)

Verified Software

Theories, Tools, and Experiments

10th International Conference, VSTTE 2018
Oxford, UK, July 18–19, 2018
Revised Selected Papers

123

Editors
Ruzica Piskac
Yale University
New Haven, CT, USA

Philipp Rümmer
Uppsala University
Uppsala, Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-03591-4 ISBN 978-3-030-03592-1 (eBook)
https://doi.org/10.1007/978-3-030-03592-1

Library of Congress Control Number: 2018960421

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-2733-7098
https://doi.org/10.1007/978-3-030-03592-1

Preface

This volume contains the proceedings of the 10th International Working Conference on
Verified Software: Theories, Tools, and Experiments (VSTTE 2018), held during July
18–19, 2018, as part of the Federated Logic Conference (FLoC) in Oxford, UK, and
affiliated with the 30th International Conference on Computer-Aided Verification
(CAV).

The goal of the VSTTE conference series is to advance the state of the art in the
science and technology of software verification, through the interaction of theory
development, tool evolution, and experimental validation. We solicited contributions
describing significant advances in the production of verified software, i.e., software that
has been proven to meet its functional specifications. Submissions of theoretical,
practical, and experimental contributions were equally encouraged, including those that
focus on specific problems or problem domains. We were especially interested in
submissions describing large-scale verification efforts that involve collaboration, theory
unification, tool integration, and formalized domain knowledge. We also welcomed
papers describing novel experiments and case studies evaluating verification techniques
and technologies. The topics of interest included education, requirements modeling,
specification languages, specification/verification/certification case studies, formal
calculi, software design methods, automatic code generation, refinement methodolo-
gies, compositional analysis, verification tools (e.g., static analysis, dynamic analysis,
model checking, theorem proving, satisfiability), tool integration, benchmarks, chal-
lenges, and integrated verification environments.

The inaugural VSTTE conference was held at ETH Zurich in October 2005, and the
following editions took place in Toronto (2008 and 2016), Edinburgh (2010),
Philadelphia (2012), Atherton (2013), Vienna (2014), San Francisco (2015), and
Heidelberg (2017).

This year there were 24 submissions. Each submission was reviewed by at least
three Program Committee members. The committee decided to accept 19 papers for
presentation at the conference. The program also included three invited talks, given by
Cesare Tinelli (University of Iowa, USA), Stuart Matthews (Altran UK), and Rayna
Dimitrova (University of Leicester, UK).

We would like to thank the invited speakers and the authors for their excellent
contributions to the program this year, the Program Committee and external reviewers
for diligently reviewing the submissions, and the organizers of FLoC and CAV 2018
for their help in organizing this event. We also thank Natarajan Shankar for his tireless
stewardship of the VSTTE conference series over the years.

The VSTTE 2018 conference and the present volume were prepared with the help of
EasyChair.

August 2018 Ruzica Piskac
Philipp Rümmer

Organization

Program Committee

June Andronick CSIRO—Data61 and UNSW, Australia
Martin Brain University of Oxford, UK
Michael Butler University of Southampton, UK
Supratik Chakraborty IIT Bombay, India
Roderick Chapman Protean Code Limited, UK
Cristina David University of Cambridge, UK
Dino Distefano Facebook and Queen Mary University of London, UK
Mike Dodds University of York, UK
Patrice Godefroid Microsoft Research, USA
Arie Gurfinkel University of Waterloo, Canada
Liana Hadarean Synopsys, USA
Bart Jacobs KU Leuven, Belgium
Swen Jacobs CISPA and Saarland University, Germany
Cezary Kaliszyk University of Innsbruck, Austria
Andy King University of Kent, UK
Tim King Google, USA
Vladimir Klebanov SAP, Germany
Akash Lal Microsoft Research, India
Nuno Lopes Microsoft Research, UK
Alexander Malkis Technical University of Munich, Germany
Yannick Moy AdaCore, France
Gennaro Parlato University of Southampton, UK
Andrei Paskevich Université Paris-Sud, LRI, France
Ruzica Piskac Yale University, USA
Markus Rabe University of California, Berkeley, USA
Philipp Rümmer Uppsala University, Sweden
Peter Schrammel University of Sussex, UK
Natarajan Shankar SRI International, USA
Tachio Terauchi Waseda University, Japan
Mattias Ulbrich Karlsruhe Institute of Technology, Germany
Philipp Wendler LMU Munich, Germany
Thomas Wies New York University, USA
Greta Yorsh Queen Mary University of London, UK
Aleksandar Zeljić Uppsala University, Sweden
Damien Zufferey MPI-SWS, Germany

Additional Reviewers

Amani, Sidney
Ekici, Burak
Kirsten, Michael
Lewis, Corey

Margheri, Andrea
Paul, Lucas
Wang, Qingxiang
Winkler, Sarah

VIII Organization

Abstracts of Invited Talks

Contract-based Compositional Verification
of Infinite-State Reactive Systems

Cesare Tinelli

Department of Computer Science, The University of Iowa, USA
cesare-tinelli@uiowa.edu

Abstract. Model-based software development is a leading methodology for the
construction of safety- and mission-critical embedded systems. Formal models
of such systems can be validated, via formal verification or testing, against
system-level requirements and modified as needed before the actual system is
built. In many cases, source code can be even produced automatically from the
model once the system designer is satisfied with it. As embedded systems
become increasingly large and sophisticated, the size and complexity of models
grows correspondingly, making the verification of top-level requirements
harder, especially in the case of infinite-state systems. We argue that, as with
conventional software, contracts are an effective mechanism to establish
boundaries between components in a system model, and can be used to aid the
verification of system-level properties by using compositional reasoning tech-
niques. Component-level contracts also enable formal analyses that provide
more accurate feedback to identify sources of errors or the parts of a system that
contribute to the satisfaction of a given requirement. This talk discusses our
experience in designing an assume-guarantee-based contract language on top
of the Lustre modeling language and leveraging it to extend the Kind 2 model
checker with contract-based compositional reasoning techniques.

Verified Software: Theories, Tools, …
and Engineering

Stuart Matthews

Altran Technologies, SA
stuart.matthews@altran.com

Abstract. Continual innovation of software verification theories and tools is
essential in order to meet the challenges of ever-more complex software-
intensive systems. But achieving impact ultimately requires an understanding
of the engineering context in which the tools will be deployed. Based on our
tried-and-trusted methods of high-integrity software development at Altran, I
will identify key features of the industrial landscape in which software verifi-
cation tools have to operate, and some of the pitfalls that can stop them being
adopted, including regulation, qualification, scalability, cost justification, and
the overall tool ecosystem. Within this context I will present Altran’s own
on-going research and development activities in verified software technologies.
The talk will conclude by drawing some key lessons that can be applied to avoid
the traps and pitfalls that tools encounter on their journey to succesful
deployment.

Synthesis of Surveillance Strategies
for Mobile Sensors

Rayna Dimitrova

Department of Informatics, University of Leicester, UK
rd307@leicester.ac.uk

Abstract. The increasing application of formal methods to the design of
autonomous systems often requires extending the existing specification and
modeling formalisms, and addressing new challenges for formal verification and
synthesis. In this talk, I will focus on the application of reactive synthesis to the
problem of automatically deriving strategies for autonomous mobile sensors
conducting surveillance, that is, maintaining knowledge of the location of a
moving, possibly adversarial target. By extending linear temporal logic with
atomic surveillance predicates, complex temporal surveillance objectives can be
formally specified in a way that allows for seamless combination with other task
specifications. I will discuss two key challenges for applying state-of-the-art
methods for reactive synthesis to temporal surveillance specifications. First,
naively keeping track of the knowledge of the surveillance agent leads to a
state-space explosion. Second, while sensor networks with a large number of
dynamic sensors can achieve better coverage, synthesizing coordinated
surveillance strategies is challenging computationally. I will outline how
abstraction, refinement, and compositional synthesis techniques can be used to
address these challenges.

The talk is based on joint work with Suda Bharadwaj and Ufuk Topcu.

Contents

A Tree-Based Approach to Data Flow Proofs . 1
Jochen Hoenicke, Alexander Nutz, and Andreas Podelski

Executable Counterexamples in Software Model Checking 17
Jeffrey Gennari, Arie Gurfinkel, Temesghen Kahsai, Jorge A. Navas,
and Edward J. Schwartz

Extending VIAP to Handle Array Programs . 38
Pritom Rajkhowa and Fangzhen Lin

Lattice-Based Refinement in Bounded Model Checking 50
Karine Even-Mendoza, Sepideh Asadi, Antti E. J. Hyvärinen,
Hana Chockler, and Natasha Sharygina

Verified Certificate Checking for Counting Votes . 69
Milad K. Ghale, Dirk Pattinson, Ramana Kumar, and Michael Norrish

Program Verification in the Presence of I/O: Semantics, Verified Library
Routines, and Verified Applications. 88

Hugo Férée, Johannes Åman Pohjola, Ramana Kumar, Scott Owens,
Magnus O. Myreen, and Son Ho

TWAM: A Certifying Abstract Machine for Logic Programs 112
Rose Bohrer and Karl Crary

A Java Bytecode Formalisation. 135
Patryk Czarnik, Jacek Chrząszcz, and Aleksy Schubert

Formalising Executable Specifications of Low-Level Systems. 155
Paolo Torrini, David Nowak, Narjes Jomaa, and Mohamed Sami Cherif

A Formalization of the ABNF Notation and a Verified Parser
of ABNF Grammars . 177

Alessandro Coglio

Constructing Independently Verifiable Privacy-Compliant Type Systems
for Message Passing Between Black-Box Components. 196

Robin Adams and Sibylle Schupp

SideTrail: Verifying Time-Balancing of Cryptosystems 215
Konstantinos Athanasiou, Byron Cook, Michael Emmi,
Colm MacCarthaigh, Daniel Schwartz-Narbonne, and Serdar Tasiran

Towards Verification of Ethereum Smart Contracts: A Formalization
of Core of Solidity . 229

Jakub Zakrzewski

Relational Equivalence Proofs Between Imperative
and MapReduce Algorithms . 248

Bernhard Beckert, Timo Bingmann, Moritz Kiefer, Peter Sanders,
Mattias Ulbrich, and Alexander Weigl

Practical Methods for Reasoning About Java 8’s Functional
Programming Features . 267

David R. Cok and Serdar Tasiran

Verification of Binarized Neural Networks via Inter-neuron Factoring
(Short Paper) . 279

Chih-Hong Cheng, Georg Nührenberg, Chung-Hao Huang,
and Harald Ruess

The Map Equality Domain . 291
Daniel Dietsch, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz,
and Andreas Podelski

Loop Detection by Logically Constrained Term Rewriting 309
Naoki Nishida and Sarah Winkler

Store Buffer Reduction in the Presence of Mixed-Size Accesses
and Misalignment . 322

Jonas Oberhauser

Author Index . 345

XVI Contents

A Tree-Based Approach to Data Flow
Proofs

Jochen Hoenicke, Alexander Nutz(B), and Andreas Podelski

University of Freiburg, Freiburg im Breisgau, Germany
{hoenicke,nutz,podelski}@cs.uni-freiburg.de

Abstract. In this paper, we investigate the theoretical foundation for
the cost/precision trade-off of data flow graphs for verification. We show
that one can use the theory of tree automata in order to characterize
the loss of precision inherent in the abstraction of a program by a data
flow graph. We also show that one can transfer a result of Oh et al. and
characterize the power of the proof system of data flow proofs (through
a restriction on the assertion language in Floyd-Hoare proofs).

1 Introduction

Data flow proofs are safe inductive annotations of the data flow graph of a
program. In this paper we explore the potential and the limitations of data flow
proofs for program verification on a theoretical level.

Farzan and Kincaid recently showed that data flow proofs can be used effec-
tively for software verification [5]. Oh et al. showed that a static program analysis
can often be computed significantly faster on the data flow graph than on the
control flow graph [13,14].

Compared to proofs that annotate the control flow graph (Floyd proofs1),
data flow proofs have the advantage of being sparse [13,14]. Temporal sparseness
means the data flow graph abstracts away from the linear ordering of statements
in the control flow graph and only retains a partial order. Spatial sparseness elim-
inates the need to “carry over” information about a variable from where it is
assigned to where it is used over many locations where that information is irrele-
vant. Additionally, in verification data flow proofs exhibit projective sparseness.
Data flow graphs are often not connected, thus one may discard all components
that are not connected to the property.

The other side of the medal is that data flow proofs are limited in proving
power because the data flow graph loses some information that is present in the
control flow graph.

We formalize the notion of a “data flow” and use tree languages to denote
sets of data flows. We observe that the tree language induced by taking all the

1 Note the subtle difference between Floyd-style proofs [8] and Hoare-style proofs [10]:
The former are annotations of the control flow graph while the latter are annotations
of the program’s source code.

c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 1–16, 2018.
https://doi.org/10.1007/978-3-030-03592-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_1

2 J. Hoenicke et al.

traces of the control flow graph and converting them to data flow trees is non-
regular even for very simple examples. However, we show that the path-closure
of this non-regular language is always regular, and that it is indeed equal to the
language of data flow trees obtained from simply unwinding the data flow graph.
We gain the insight that the loss of proving power of data flow proofs compared
to Floyd proofs is a consequence of this overapproximation.

Based on these tree languages, we can extend existing language based refine-
ment schemes using tree interpolation to obtain a CEGAR-style algorithm that
computes a data flow proof from a data flow graph of a program with some
property.

We also characterize the proving power of data flow proofs semantically by
comparing them to Floyd proofs. We arrive at the result that the proving power
of data flow proofs precisely equals that of Floyd proofs that are based on the
Cartesian abstraction of the given program.

Our contributions are the following:

– We introduce data flow trees as a means to formally compare the data flow
denotations of the control flow graph and the data flow graph.

– We show that the step from the data flow trees of the control flow graph to
the data flow trees of the data flow graph corresponds precisely to the step
from some tree language to its path-closure.

– We characterize the proving power of data flow proofs (a consequence of
the loss of precision through the path-closure) by showing that it equals the
proving power of Floyd proofs over the Cartesian abstraction of a program.

– We show how to construct a set of constrained Horn clauses from a data
flow graph whose models correspond to data flow proofs for the underlying
program.

2 Example

We present an example program that illustrates a particular trait of the abstrac-
tion introduced by the data flow graph. Note that the example is not chosen to
show efficiency of data flow proofs; for example it does not exploit the fact that
the data flow graph is inherently parallel because the program is sequential.

The example depicted in Fig. 1 illustrates the abstraction of the program
introduced by the data flow graph. In the top-left corner the program P is
depicted as a control flow graph. P initializes its variables x and y to 0. Then it
runs a loop an arbitrary number of times and increments both variables in each
iteration. Finally it checks a property that at the end of the loop the sum of
x and y is non-negative. This is expressed by an assume statement that guards
the error location �err . Thus, the error location is reachable if and only if the
property can be violated. In the bottom-left corner the set Traces(P) of error
traces of P is given as a regular expression. This is the language of the control
flow graph P if it is interpreted as a finite automaton with the accepting state
�err where the alphabet consists of the statements. The program P is correct

A Tree-Based Approach to Data Flow Proofs 3

Fig. 1. Program P as a control flow graph, the traces of P as a regular expression, and
the data flow graph of P , called P#.

Fig. 2. The set of data flow trees where each element is the data flow graph of a trace
in Traces(P) (left-hand side, with n ∈ N), and the set of data flow trees induced by
P# (right-hand side, with m, n ∈ N).

if all of its traces are infeasible, i.e., cannot be executed because of a blocking
assume statement.

The right part of Fig. 1 depicts the data flow graph P# of P . For each state-
ment of the control flow graph P there is a corresponding node in the data flow
graph P#. The edges are labelled by variables. An edge (s1, x, s2) in the data
flow graph is added if the statement s1 defines the value of a variable x, s2 uses
the variable x, and there is a path s1 ... s2 in the control flow graph, such that x
is not defined by another statement between s1 and s2.

It is possible to convert each trace into a data flow graph by interpreting
it as a control flow graph that only executes this single trace. This data flow
graph is acyclic. Thus it forms a DAG. By copying nodes with multiple outgoing
edges a data flow tree for each trace is induced. For the traces of P the set of
corresponding data flow trees is sketched on the left-hand side of Fig. 2. The
square brackets with superscript n denote that x++ (resp. y++) can be taken n
times respectively, i.e., the tree has height n + 2 and each inner node is an x++

(resp. y++) node. All edges are labelled with x (resp. y). Since the number of
occurrences of x++ and y++ in any trace of P is the same, the two branches
must have the same height.

4 J. Hoenicke et al.

Fig. 3. The set DFT(P#) is path-closed. This means that if the two data flow trees
on the left are contained, so are the two data flow trees on the right.

The data flow graph P# also induces a set of data flow trees. These can be
seen as the trees accepted by a tree automaton similar to P#. These are given
on the right-hand side of Fig. 2. The data flow graph cannot ensure that the
statements x++ and y++ are taken the same number of times. Thus, we use m
and n to denote that the number of repetitions of these statements may differ
in each branch.

In fact, the set DFT(Traces(P)) is not a regular tree language, since a finite
tree automaton cannot ensure that the two branches are of the same height. On
the other hand, DFT(P#) is a regular tree language recognized by a deterministic
root-frontier (also called top-down) tree automaton. The language class accepted
by root-frontier tree automata are the path-closed languages. In Fig. 3 we illus-
trate the consequences of path-closure to the tree language DFT(Traces(P)).
Given this intuition, we can observe that DFT(P#) equals the path closure of
DFT(Traces(P)) in this example. We will show in Sect. 4 that this is the case
for all programs.

However, even though the abstraction introduced by P# is very coarse, we
can still prove P correct on it. This is because the property also holds for all
the data flow trees obtained from P#. It does not depend on x++ and y++ to
be executed the same number of times. One might wonder if there is an easy
syntactic way to see if there is a data flow proof. However, this is not the case as
the following example shows. If one changes the error guard to assume x-y<0 ,
the program is still correct (the error state in the control flow graph is not
reachable) but it is unprovable using the data flow graph. This is because the
property does not hold for the trees in DFT(P#) where m �= n.

As we will see in Sect. 5, being provable in the data flow graph abstraction
coincides precisely with the fact that P has a Cartesian Floyd proof, i.e., it
suffices to only reason about each variable independently. In this example, the
Cartesian assertion x ≥ 0 ∧ y ≥ 0 is a safe inductive loop invariant for P .

A Tree-Based Approach to Data Flow Proofs 5

3 Preliminaries

In this section we fix our notation for trees and tree languages and present the
notion of path-closure and afterwards we fix our notation for programs and Floyd
proofs.

3.1 Path-Closed Tree Languages

Trees. We use standard notation for trees, following Comon et al. [2]. A ranked
alphabet (A, r) consists of an alphabet A for the node labels and a rank function
r : A → N that determine the number of children for each node. An index set
I is some finite set. Let Post be a prefix-closed set of positions Post ⊆ I∗.
Then we define a tree t as a mapping from positions to alphabet symbols, i.e.,
t : Post → A, such that the rank of the alphabet symbol at each position equals
the number of children at that position.

Intuitively, a position identifies a node in the tree by identifying the path
from the root to that node through a sequence of directions. The empty word ε
denotes the root position. The child of position p at the index i is denoted by
childt(i, p)

def
= pi. Similarly, we use parentt(pi) = p to denote the parent position

of pi.
For a ∈ A with rank r(a) = n and trees t1, ... , tn we denote by a(t1, ... , tn)

the tree with root a and children t1, ... , tn. Given two trees t1, t2, and a position
p ∈ Post1 , we define the tree substitution t1[p ← t2] as the tree that is obtained
by substituting the subtree at p in t1 by the tree t2.

Path-Closed Tree Languages. The following definition of path-closedness follows
the one made by Martens et al. [11]. A tree language L is path-closed if for every
t ∈ L and for every position p ∈ Post it is the case that if t[p ← a(t1, ... , tn)] ∈ L
and t[p ← a(s1, ... , sn)] ∈ L, then t[p ← a(t1, ... , si, ... , tn)] ∈ L for each i ∈
{1, ... , n}. This is illustrated in Fig. 4. The path-closed languages are precisely
the ones recognizable by deterministic top-down (root-to-leaf) tree automata.

Note the precondition that the tree t is equal in the two trees can be weakened
to the precondition that the nodes on the path from the root to the parent of
the tree that we exchange are labelled with identical symbols.

The path-closure of a tree language L is the smallest path-closed superset of
L, i.e.,

path-closure(L)
def
=

⋂
{L′ | L′ ⊇ L ∧ L′ is path-closed}

A path-closed tree language L is uniquely defined by the set of its tree paths,
i.e., the set of all paths (with directions) from any leaf in any tree to the root.

tree-paths(L)
def
= {(p1, a1) ... (pn, an) | ∃t ∈L.p1 is a leaf of t ∧ pn = ε

∧ ∀i < n.pi+1 = parent(pi)
∧ ∀i ≤ n.t(pi) = ai}

6 J. Hoenicke et al.

∈ L
t

a

s1 si sn.

∈ L
t

a

t1 ti tn.

=⇒ ∈ L
t

a

s1 ti sn.

Fig. 4. Illustration of path-closure, taken from [11]: If the left and the middle tree
are in the tree language L, then, for L to be path-closed, the right tree must also be
contained.

3.2 Programs, Specifications, Floyd Proofs

We fix a set of program variables Var . We use names like x, y, x1, ... for program
variables. We use first-order logical formulas over the program variables. We
use names like ϕ,ψ, ϕ1, ... for logical formulas. By
 (resp. ⊥) we denote the
formula that is always true (resp. false). Given a formula ϕ, we denote the set of
program variables occurring in ϕ as vars(ϕ). For representing state changes we

use formulas over Var and Var ′ def
= {x′ | x ∈ Var}, where x′ captures the value

of the program variable after the state change.
We denote program statements by σ, σ1, · · · ∈ Σ. Assignment statements are

of the form x := e where x is a program variable and e is an expression over
the program variables. Assume statements are of the form assume ϕ where ϕ
is a logical formula over the program variables.

We use statement formulas over primed and unprimed program variables to
describe the semantics of a statement. The function sf : Σ → Formulas assigns
a statement formula to a statement as follows.

sf(x := e)
def
= x′ = e ∧

∧

y∈Var\{x}
y′ = y

sf(assume ϕ)
def
= ϕ ∧

∧

y∈Var

y′ = y

Program with Specification P . We define programs by their control flow graph.
A program P = (Σ,Loc, �0, �err , δ) consists of

– a finite set of statements Σ,
– a finite set of program locations Loc,
– an initial location �0 ∈ Loc,
– an error location �err ∈ Loc,
– and a transition relation δ ⊆ Loc × Σ × Loc.

A program is correct if every sequence of statements leading from the initial
location to the error location is infeasible.

A Tree-Based Approach to Data Flow Proofs 7

For simplicity, we assume that each statement σ ∈ Σ occurs only once in the
program. Thus we can define a source and a target function for a statement as

src(σ)
def
= � tgt(σ)

def
= �′ where (�, σ, �′) ∈ δ

P can be viewed as a finite automaton over the alphabet Σ. Then the language
of the automaton P is the set of all sequences of statements that start in �0 and
end in �err and that respect the control flow. We call this set the traces of P
and denote it by Traces(P). We make the following assumptions on the form of
P that do not restrict expressivity but avoid some corner cases. This will allow
for a simpler presentation later in the paper.

– There is only one statement in P that leads to the error location �err ; we call
this statement the error guard σerr.

– The program starts with an assume statement that initializes every variable
to a nondeterministic value. If there are no variables, the program starts with
assume true . By convention, these initialization statements do not read any
variables.

– There is no location that is not visited by any trace.

Program Paths. We define a program path of P as a sequence of statements where
the target location of a statement is always identical with the source location
of the statement that directly follows. Intuitively, the paths of P are all the
connected segments of all the traces of P . Formally:

Paths(P)
def
= {σ1σ2 ... σn ∈ Σ∗ | ∀i ∈ {1, ... , n − 1}. tgt(σi) = src(σi+1)}

Assertions, Hoare Triples. An assertion is a logical formula over the program
variables Var and describes an abstract program state, i.e., a set of valuations of
the program variables.

We use the standard notation of Hoare triples. The Hoare triple {ϕ}σ {ψ}
holds if the formula ϕ ∧ sf(σ) → ψ′ is valid.

Floyd Proof. A Floyd proof for program P is a mapping ι of locations in Loc to
assertions, i.e., ι : Loc → Formulas, such that ι(�0) =
, and ι(�err) = ⊥, and
for every control flow edge (�, σ, �′) ∈ δ the following Hoare triple holds.

{ι(�)} σ {ι(�′)}
We say a program is correct if there exists a Floyd proof for it. We say that a
trace τ is infeasible if there exists a Floyd proof for the straight-line program
that corresponds to τ .

4 Data Flow in Data Flow Graph vs. Data Flow in
Program Traces

In this section we formally introduce the data flow graph, its denotation as a
data flow tree language, and the data flow tree language induced by the traces
of a program. Then we compare the two languages.

8 J. Hoenicke et al.

The Functions use and def. The ingredients for constructing a data flow graph
are the control flow graph together with the functions use and def.

The function use : Σ → 2Var assigns every statement σ a set of variables that
are read by σ. The function def : Σ → 2Var assigns every statement σ a set of
variables that are written by σ.

For this section we rely on the reader’s intuition for what it means that a
statement reads or writes a variable. For our result concerning tree languages it
is irrelevant how use and def are chosen. We will give well-formedness constraints
for use and def in Sect. 5.

Data Flow Graph. Following [12] we define the reaching definitions of a location
� ∈ Loc wrt. a variable x ∈ Var as all the statements that define x and that are
the beginning of a control flow path to � where x is not overwritten.

RDP (x, �)
def
= {σ0 ∈ Σ |σ0σ1 ... σn ∈ Paths(P)

∧ tgt(σn) = �

∧x ∈ def(σ0)
∧∀i ∈ {1, ... , n}.x �∈ def(σi)}

A data flow edge connects two statements and is decorated with a program
variable. The data flow edge (σ, x, σ′) exists in P if σ is a reaching definition for
x at src(σ′), and σ′ reads x. The data flow graph P# of a program P is the set
of all the data flow edges that exist in P . Formally:

P# def
= {(σ, x, σ′) ∈ Σ × Var × Σ | σ ∈ RDP (x, src(σ′)) ∧ x ∈ use(σ′)}

For a trace τ we define DFG(τ) as the data flow graph of the straight-line
program that corresponds to τ .

Data Flow Trees. We define data flow trees as a special kind of trees.

Definition 1 (Dataflow tree). Let Σ be a set of statements and Var be the
set of variables used in Σ. Let use and def be two functions mapping statements
to sets of variables. Then we define a data flow tree t as a tree where

– the ranked alphabet is (Σ, rank), where rank is the function that assigns a
statement the cardinality of its use-set, i.e.,

rank(σ)
def
= |use(σ)| ,

– the index set is the set of program variables, i.e.,

Post ⊆ Var∗,

– for every position p and every variable x that is used by statement t(p) there
exists a position p′ in Post that is the child of p at index x and whose state-
ment t(p′) defines x, i.e.,

∀p ∈ Post, x ∈ use(t(p)).∃p′ ∈ Post.p
′ = childt(x, p) ∧ x ∈ def(t(p′)).

A Tree-Based Approach to Data Flow Proofs 9

We call a data flow tree that has a data flow proof infeasible.
The infeasibility of a data flow tree implies the infeasibility of all of its lin-

earizations {τ | DFT(DFG(τ))}. However, the other direction does not hold in
general: A data flow tree may be feasible even though all of its linearizations
are infeasible. It follows from Theorem 2 that this is not the case if we restrict
ourselves to Cartesian assertions.

4.1 Data Flow Trees from the Data Flow Graph

We define the set data flow trees that is denoted by the data flow graph P#.

Definition 2 (Data flow trees of P#). The denotation of P#, DFT(P#), is
the set of data flow trees such that every edge in every tree corresponds to an
edge in P#:

DFT(P#) = {t | t is a data flow tree

∧∀(p, childt(x, p)) ∈ Pos2t .(t(childt(x, p)), x, t(p)) ∈ P#

∧t(ε) = σerr}

Given the data flow graph P#, it is easy to construct a (deterministic, root-to-
frontier) tree automaton that accepts precisely the language DFT(P#).

4.2 Data Flow Trees from the Control Flow Graph

For intuition, the data flow tree belonging to a trace τ of P is obtained in two
steps. First we build the data flow graph of τ , DFG(τ), which has the shape of
a directed acyclic graph (DAG). Second we convert this acyclic graph to a tree
by duplicating nodes going backwards from the last statement of τ , which is the
error statement σerr. So σerr will be the root of the tree.

Note that in case of a loop-free data flow graph, the DFT-operator yields a
singleton set. We will sometimes abuse notation, and use the singleton set to
refer to its element.

Definition 3 (Data flow trees of P). The data flows of a program P are
given as the data flows tree of all traces of P :

DFT(Traces(P))
def
= {DFT(DFG(τ)) | τ ∈ Traces(P)}

We observe that that the tree language denoted by P# is an overapproximation
of the tree language obtained from the traces of P .

Proposition 1. DFT(P#) is a superset of DFT(Traces(P)), i.e.,

DFT(P#) ⊇ DFT(Traces(P)).

10 J. Hoenicke et al.

4.3 DFT(P#) = path-closure(DFT(Traces(P))

We collect some facts about the relationship between DFT(Traces(P)) and
DFT(P#) that we already know:

– DFT(Traces(P)) is in general neither regular nor path-closed.
– DFT(P#) ⊇ DFT(Traces(P)).
– DFT(P#) is regular and path-closed.

The following theorem will show that DFT(P#) is precisely the path-closure of
DFT(Traces(P)).

Theorem 1. The data flow tree language denoted by P#, is equal to the path-
closure of the data flow tree language derived from P , i.e.,

DFT(P#) = path-closure(DFT(Traces(P))).

Proof. “⊇”: We know that DFT(P#) ⊇ DFT(Traces(P)) holds by Proposition 1.
DFT(P#) is clearly path-closed because the construction of the trees may use
any combination of edges for the variables in the use-set of a given statement.
The proof goal follows immediately from those two facts.

“⊆”: We show that tree-paths(DFT(P#)) ⊆ tree-paths(DFT(Traces(P))).
Choose tp = (p1, σ1) ... (pn, σn) ∈ tree-paths(DFT(P#)). By definition, P# con-
tains the data flow edge (σi, x, σi+1) for every two adjacent elements of the tree
path (pi, σi) and (pi+1, σi+1) with 1 ≤ i ≤ n−1. Therefore, there must be a path
in P that connects the two statements, i.e., σiσ

′ ... σi+1 ∈ Paths(P) where x is
not defined in between. When we concatenate the paths in P that we obtained
from all pairs (σi, σi+1) on the tree path tp, we get an trace of our program,
τ ∈ Traces(P). By construction, DFT(DFG(τ)) = t is a tree that contains tp.
Thus, tp ∈ tree-paths(DFT(Traces(P))). ��
It is not true in general that the path-closure of a non-regular tree language
is regular. Intuitively, one important reason for DFT(Traces(P)) having this
property is that it is constructed from Traces(P), a regular word language.

Corollary 1. The tree language path-closure(DFT(Traces(P))) is regular (even
though DFT(Traces(P)) is in general not regular).

5 Data Flow Proofs and Cartesian Floyd Proofs

In this section we give one more characterization of the power of data flow proofs.
We define data flow proofs and Cartesian Floyd proofs. We start by giving an
overview of the relevant sections of the paper by Oh et al. [13] and point out
critical aspects like the functions use and def. Using on this technical apparatus,
we prove the equivalence between data flow proofs and Cartesian Floyd proofs.
Afterwards we give a set of Horn constraints that can be used to compute a data
flow proof from a data flow graph if one exists.

A Tree-Based Approach to Data Flow Proofs 11

Oh et al.’s Sparse Analysis. Oh et al.’s approach takes as input an off-the-
shelf static analysis (consisting of an abstract domain and an abstract post
operator) and a program. The output is a sparse analysis of the given program,
i.e., an abstract post operator that effectively operates on the data flow graph
of the program and yields the same analysis result as the original abstract post
operator. A sparse analysis result can be seen as an inductive annotation of the
data flow graph. Thus it can be seen as a data flow proof (introduced formally
in the next paragraph), except that it does not have to be safe, i.e., it does not
need to prove the error location unreachable.

One major obstacle that sparse analysis (and verification) faces is to obtain
a suitable data flow graph. If the data flow graph has too few edges, the analysis
may loose precision compared to the original one. (A verification procedure loses
completeness in that case.) If the data flow graph has too many edges, the
analysis may not run faster than the original one. Note that the existence of a
data flow dependency is a semantic property both of the abstract domain and
the program. For example the statement x := x*2 has no effect in the sign-
domain (assuming mathematical integers), and thus can be left out of the data
flow graph.

Oh et al. define precise use and def functions dependent on the result of
the original analysis (Definitions 3.12 and 3.10 respectively). They are precise
in the sense they yield the smallest data flow graph that retains the original
analysis result. Oh et al. also give a condition for safe overapproximations of these
functions such that the sparse analysis does not loose precision (Definition 3.21,
Theorem 3.23). In practice, they propose to run a preanalysis on an inexpensive
abstract domain to obtain overapproximated use and def functions, and then
run the sparse main analysis using those.

Data Flow Proof. We define a data flow proof as an inductive annotation of the
data flow graph.

The nodes in P# are statements. The set of incoming edges in P# of state-
ment σ where variable x is flowing in P# is

inP#(σ, x)
def
= {(σ′, x, σ) | ∃σ′.(σ′, x, σ) ∈ P#}.

The sets of outgoing edges of statement σ in P# are

outP#(σ)
def
= {(σ, x, σ′) | ∃σ′∃x.(σ, x, σ′) ∈ P#}

A data flow proof κ for program P is a mapping from the edges of the data flow
graph P# to the set of formulas, i.e., κ : P# → Formulas, such that

– for all statements σ ∈ Σ with use(σ) = {x1, ... , xn}, and for all tuples of
incoming edges (ex1 , ... , exn

) ∈ inP#(σ, x1) × · · · × inP#(σ, xn) and for all
outgoing data flow edges of σ, eout ∈ outP#(σ)

12 J. Hoenicke et al.

{
∧

1≤i≤n

κ(exi
)} σ {κ(eout)}, if σ �= σerr

and {
∧

1≤i≤n

κ(exi
)} σerr {⊥}, if σ = σerr

– and for every data flow edge (σ, x, σ′), the formula κ((σ, x, σ′)) contains no
variable other than x, i.e.,

∀(σ, x, σ′) ∈ P#. vars(κ((σ, x, σ′))) ⊆ {x}.

This definition follows Kincaid and Farzan [5] except that it also ensures the
unreachability of the error location. The first condition ensures that for each
statement every combination of assertions at its incoming data flow edges guar-
antees the assertion at all of its outgoing edges. The second condition states that
each data flow edge e = (σ, x, σ′), κ(e) contains only the variable x. Note that
for a statement with an empty use-set the conjunction is empty, i.e., the Hoare
triple should hold for the pre-condition
.

Cartesian Floyd Proofs. Intuitively, Cartesian Floyd proofs allow only assertions
that do not relate the values of different variables. We call an assertion ϕ a
Cartesian assertion if it is
, ⊥, or a conjunction where each conjunct only
refers to one program variable x ∈ Var , i.e.,

ϕ = ϕ1 ∧ ... ∧ ϕn where vars(ϕi) = {xi}.

Let Di denote the domain of the program variables xi for each variable
xi ∈ Var . Then, D1 × · · · × Dn is the domain of the program state (assuming a
linear ordering of the variable set Var). Also, each ϕi defines a subset Mi ⊆ Di

and the the Cartesian assertion ϕ = ϕ1 ∧ ... ∧ ϕn describes a set of states that
is the Cartesian product M1 × ... × Mn.

Definition 4 (Cartesian Floyd Proof). A Floyd proof is called Cartesian if
all of its assertions are Cartesian.

Note that in principle every program with a Floyd proof can be made into
a program with a Cartesian Floyd proof by replacing all variables by a single
variable that holds the whole program state. This technique is usually called
packing (or variable packing). However packing influences the shape of the data
flow graph; packing all variables together yields a data flow graph that is iso-
morphic to the control flow graph. For further descriptions of packing see [3,13].

Oh et al. do not discuss Cartesian abstraction explicitly. However they dis-
tinguish non-relational and relational abstract domains and use variable packing
for the relational domains. This amounts to our notion of Cartesian abstraction.

Safe use and def. Oh et al.’s define precise and overapproximated use and def
functions. We adapt this to our notation and define safe use and def functions,
which correspond to the overapproximated functions. This will allow us to relate

A Tree-Based Approach to Data Flow Proofs 13

Data flow proofs to Cartesian Floyd proofs in Theorem 2. We implicitly allow
overapproximations as one may use use and def function that are not minimal
but safe.

We define the following projection function π, which, given a variable x and
an assertion ϕ, extracts from ϕ only the constraint it puts on x.

π(x, ϕ)
def
= ∃x1, ... , xn.ϕ where {x1, ... , xn} = Var \ {x}

Definition 5 (Safe use and def). Let σ be a statement, let ϕ and ψ be Carte-
sian assertions.

– We call def safe under the following condition:
If variable x is not contained in def(σ), then the Hoare triple {ϕ}σ {ψ} must
hold if and only if ψ projected to x is a weakening of ϕ projected to x. For-
mally:

x /∈ def(σ) =⇒ ({ϕ}σ {ψ} ⇐⇒ π(x, ϕ) |= π(x, ψ))

– We call use safe if, given {ϕ}σ {ψ} holds, the weakened precondition, that
only uses the projection to variables in use(σ), is strong enough such that
the parts of the postcondition that constrain variables in def(σ) can still be
concluded. Formally:

{
∧

x∈Var

π(x, ϕ)} σ {
∧

x∈Var

π(x, ψ)}

=⇒ {
∧

x∈use(σ)

π(x, ϕ)} σ {
∧

x∈def(σ)

π(x, ψ)}

Concrete Syntactic use and def. In Table 1 we give concrete definitions for use
and def that are safe for any program in our programming language. The defini-
tion shows that there is an easily computable instance of use and def. However,
there is much room for optimization here, in general and with respect to given
program. More complicated programming languages (for example with pointers)
may introduce the need for more involved definitions.

The main difficulty here is to correctly deal with assume statements. We
introduce a fresh auxiliary variable a /∈ Var . The data flow edges labelled with
a allow data flow proofs to express that an assume statement blocks execution
of another statement even though their variables are disjoint. Because a does
not occur in any statement, no value constraint will be put on a, but data flow
edges labelled by a may be annotated with ⊥ expressing unreachability of the
following statements.

Proposition 2. use and def, as defined in Table 1, are safe use- and def-
functions for any program.

14 J. Hoenicke et al.

Table 1. Concrete use- and def-functions

σ use(σ) def(σ)

x := e vars(e) ∪ {a} {x}
assume ϕ Var ∪ {a} Var ∪ {a}

Equivalence of Data Flow Proofs and Cartesian Floyd Proofs. We state the
equivalence between data flow proofs and Cartesian Floyd proofs.

Theorem 2 (Data flow proof vs. Cartesian Floyd proof). There exists a
data flow proof for P if and only if there exists a Cartesian Floyd proof for P .

Proof. A Cartesian proof can be seen as a non-sparse program analysis result
for some abstract domain. A data flow proof can be seen as the result of a sparse
program analysis for some abstract domain. Oh et al. show how one can be
constructed from the other (Theorem 3.23, Appendix A, Appendix B in [13]).

This theorem allows us to justify the following proof rule:

If P has a data flow proof then P is correct.

From Theorem 2 it immediately follows that the proof rule is sound, complete
with respect to Cartesian Floyd proofs, and that the power of Cartesian Floyd
proofs is the best we can achieve with data flow proofs.

Data Flow Proofs via Horn Constraint Solving. We can use standard tools for
Horn constraint solving [1] in order to compute a data flow proof. Given a data
flow graph P#, we construct a set of Horn clauses whose solution is a data flow
proof for P .

For each node σ of P# and every variable x ∈ use(σ) we introduce a predicate
Iσ,x(x). For every edge (σ, x, σ′) ∈ P#, with use(σ) = {x1, ... , xn}, we add the
following Horn constraint.

∀x1, ... , xn, x.Iσ,x1(x1) ∧ ... ∧ Iσ,xn
(xn) ∧ sf(σ) → Iσ′,x(x′)

For the error guard σerr, with use(σerr) = {x1, ... , xn}, we add the following
Horn constraint.

∀x1, ... , xn, x.Iσerr,x1(x1) ∧ ... ∧ Iσerr,xn
(xn) ∧ sf(σerr) → ⊥

This set of Horn constraints corresponds to a slight reformulation of the con-
straints describing a data flow proof. The predicates Iσ,x can be converted to a
data flow proof and back as follows.

κ((σ, x, σ′))
def
= Iσ′,x Iσ,x

def
=

∨

e∈in
P# (σ,x)

κ(e)

A Tree-Based Approach to Data Flow Proofs 15

If the Horn clause solver produces a counterexample (i.e., a derivation of ⊥),
then we can only conclude the absence of a Cartesian proof (not the incorrect-
ness of the program). The counterexample produced by the Horn clause solver
corresponds to a data flow tree. We now need to check whether there exists a
linearization of the data flow tree that is a control flow trace. This check can be
done using techniques from [7].

The general setting of Horn constraints allows us to go beyond the setting of
data flow graphs; we leave this to future work.

6 Related Work

Farzan and Kincaid renewed the interest in data flow graphs in the context of
verification. They propose to iteratively compute an annotation on the data flow
graph, convert it to an annotation of the control flow graph, and use a possible
counterexample for safety of the control flow graph to refine the data flow graph
[5,6]. In this paper we assume that the data flow graph is fixed.

Farzan et al. [7] also introduced inductive data flow graphs, which achieve
compact representations of many interleaving traces through a parallel represen-
tation. They use Craig interpolants to detect when interleaved statements don’t
influence each other. The branching of inductive data flow graphs is computed
from interpolants where as in this paper it is fixed (given through the functions
use and def).

Oh et al. [13,14] showed that any abstract interpretation-style program anal-
ysis can be done on the data flow graph instead of the control flow graph. We
transfer their result into the setting of verification. While the step from analysis
to verification is generally a trivial one, we account for several subtle differences
between their setting and our setting of verification. The non-fixed assertion lan-
guage has consequences for the computation of the data flow graph. The demand
for a safe inductive annotation also means we have to formulate a set of con-
straints instead of an abstract post operator. Our setting furthermore allows us
to leverage a third dimension of sparseness (next to so-called temporal and spa-
tial sparseness mentioned by Oh et al.); in particular we only consider program
parts that have a data flow to the error guard.

Denaro et al. [4] investigated the potential of data flow analysis for software
testing. They show experimentally that the set of data flows of the executions
of a program is significantly different from the data flows denoted by the data
flow graph.

The notion of viewing a control flow graph as the denotation of a set of traces
as in trace refinement schemes [9] has inspired the view on the data flow graph
as a denotation of a set of data flow trees.

7 Future Work

Much of the effectiveness of sparse program analysis depends on the computa-
tion of a good data flow graph, and the same is to be expected for program

16 J. Hoenicke et al.

verification through data flow proofs. One question is if the counterexamples
to the existence of a data flow proof that a verification procedure yields can be
exploited effectively to refine the functions use and def, through variable packing
or through other techniques.

The path-closedness of the data flow graph, together with the nonregularity
of DFT(Traces(P)) points to a potential for refinement that leads to languages
that are no longer path-closed. More generally one perspective opened by our
work is a new notion of data flow proofs that considers finer sets of data flow
trees than the data flow graph.

References

1. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

2. Comon, H., et al.: Tree automata techniques and applications (2007)
3. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Why does

astrée scale up? Formal Methods Syst. Des. 35(3), 229–264 (2009)
4. Denaro, G., Pezzè, M., Vivanti, M.: On the right objectives of data flow testing.

In: ICST, pp. 71–80. IEEE Computer Society (2014)
5. Farzan, A., Kincaid, Z.: Verification of parameterized concurrent programs by mod-

ular reasoning about data and control. In: POPL, pp. 297–308. ACM (2012)
6. Farzan, A., Kincaid, Z.: Duet: static analysis for unbounded parallelism. In: Shary-

gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 191–196. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-39799-8 12

7. Farzan, A., Kincaid, Z., Podelski, A.: Inductive data flow graphs. In: POPL, pp.
129–142. ACM (2013)

8. Floyd, R.W.: Assigning meanings to programs. Math. Aspects Comput. Sci. 19,
19–32 (1967)

9. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 7

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

11. Martens, W., Neven, F., Schwentick, T.: Deterministic top-down tree automata:
past, present, and future. In: Logic and Automata, volume 2 of Texts in Logic and
Games, pp. 505–530. Amsterdam University Press (2008)

12. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

13. Oh, H., et al.: Global sparse analysis framework. ACM Trans. Program. Lang. Syst.
(TOPLAS) 36, 8:1–8:44 (2014)

14. Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of sparse
global analyses for C-like languages. In: PLDI, pp. 229–238. ACM (2012)

https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-39799-8_12
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-662-03811-6

Executable Counterexamples in Software
Model Checking

Jeffrey Gennari1, Arie Gurfinkel2(B), Temesghen Kahsai3, Jorge A. Navas4,
and Edward J. Schwartz1

1 Carnegie Mellon University, Pittsburgh, USA
2 University of Waterloo, Waterloo, Canada

arie.gurfinkel@uwaterloo.ca
3 University of Iowa, Iowa City, USA
4 SRI International, Menlo Park, USA

Abstract. Counterexamples—execution traces of the system that illus-
trate how an error state can be reached from the initial state—are essen-
tial for understanding verification failures. They are one of the most
salient features of Model Checkers, which distinguish them from Abstract
Interpretation and other Static Analysis techniques by providing a user
with information on how to debug their system and/or the specification.
While in Hardware and Protocol verification, the counterexamples can
be replayed in the system, in Software Model Checking (SMC) coun-
terexamples take the form of a textual or semi-structured report. This
is problematic since it complicates the debugging process by preventing
developers from using existing processes and tools such as debuggers,
fault localization, and fault minimization.

In this paper, we argue that for SMC the most useful form of a coun-
terexample is an executable mock environment that can be linked with
the code under analysis (CUA) to produce an executable that exhibits
the fault witnessed by the counterexample. A mock environment is dif-
ferent from a unit test since it can interface with the CUA at the function
level, potentially allowing it to bypass complex logic that interprets pro-
gram inputs. This makes mock environments easier to construct than
unit tests. In this paper, we describe the automatic environment gener-
ation process that we have developed in the SeaHorn verification frame-
work. We identify key challenges for generating mock environments from
SMC counterexamples of complex memory manipulating programs that
use many external libraries and function calls. We validate our prototype
on the verification benchmarks from Linux Device Drivers in SV-COMP.
Finally, we discuss open challenges and suggests avenues for future work.

This material is based upon work supported by the Office of Naval Research under con-
tract no. N68335-17-C-0558 and by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under
contract no. N66001-18-C-4011. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the Office of Naval Research, DARPA, or SSC Pacific. We acknowl-
edge the support of the Natural Sciences and Engineering Research Council of Canada
(NSERC), RGPAS-2017-507912.

c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 17–37, 2018.
https://doi.org/10.1007/978-3-030-03592-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_2

18 J. Gennari et al.

1 Introduction

Software testing is the most widely used technique for assuring quality of a
software system. Automated testing tools, such as fuzzers, generate a test input
(or a test-case), which are concrete values for program inputs that are fed to the
Code Under Analysis (CUA). If the execution raises an exception, crashes, or
produces unexpected output, then that test-case triggers a bug. Developers are
familiar with such test-cases and can use them to help understand the nature of
the bug and develop a fix.

Although testing can be very effective at finding bugs, it cannot uncover all
bugs because exhaustively enumerating all program inputs is not possible. A
complementary approach to testing is Software Model Checking (SMC)1. SMC
has several advantages over testing. First, it can (symbolically) explore all pro-
gram executions, and as a result, it can prove the absence of bugs in addition
to finding them. Unlike some forms of testing (e.g., mutational fuzzing), SMC is
completely automated and does not require user-provided test-cases or inputs.

One of the most important features of SMC (and Model Checking in gen-
eral) is its ability to produce a counterexample when the property of interest
is violated. A counterexample is a trace through the system that shows how
the system reaches an error state from the initial state. The current state-of-
the-art is for SMC tools to generate counterexamples as a machine readable
document describing a set of assignments of variables to their corresponding
values, or traces through an abstract transition system. For example, the SLAM
verification project uses a special text format and a special visualizer for its
counterexamples, and the Linux Driver Verification project uses an XML-based
format indicating the line numbers and function calls that were executed. Most
recently, the Software Verification Competition (SV-COMP) has adopted an
XML-based format for its counterexamples.

These counterexample formats are often enhanced by a variety of visualizers
to illustrate the relationship between a counterexample and a program. Most
commonly, a visualizer simulates a debug session, by showing a counterexample
as an execution over the program text. A recent study [25] has argued that a
textual report from an analysis tool does not fit well into the usual development
cycle, and that this is one of the leading reasons why developers do not adopt
static program analysis tools.

In this paper, we argue that the most useful representation of a counterex-
ample that a SMC can output for the developer is an executable mock environ-
ment. An executable mock environment E is a code module that implements the
external environment used by the CUA C such that linking C and E together
produces an executable that triggers the buggy execution witnessed by the coun-
terexample. In other words, a mock environment lifts the counterexample into
an executable code.

1 Some authors make the distinction between static and dynamic SMC. The former
analyzes statically all possible program executions while the latter is an adaptation
for testing. Unless otherwise stated, we always refer to static SMC.

Executable Counterexamples in Software Model Checking 19

As an example, we show in Fig. 1 a simplified C snippet from the Linux Driver
Verification Project (LDV) [26] and a conceptual C implementation of a mock
environment. LDV programs are Linux kernel modules annotated with assertions
that check for proper API usage (e.g., every lock is eventually unlocked and no
lock is taken twice in a row). The C snippet shown on the left of Fig. 1 allocates
external memory by calling ldv ptr, a special LDV function that represents a
memory interaction between the device driver and the kernel. To represent an
error during this interaction, ldv ptr can return a pointer value greater than
a predefined absolute address2. The mock environment on the right of Fig. 1
triggers the error function (VERIFIER error) by returning an invalid pointer
(2013) from ldv ptr and yielding 457 when VERIFIER nondet int is called.

Fig. 1. C snippet (left) and an example of a mock environment implementation (right)

Mock environments are natural to software developers. They are analogous
to traditional test doubles, such as mock objects3, which are often used to sim-
ulate complex behaviors or external services in testing. Mock objects tend to be
limited in their implementation; they must be manually configured, and perhaps
involve recompilation or specific program design strategies to achieve desired
behaviors. Furthermore, the mocks themselves become additional dependencies
that must be maintained with test-cases. Conversely, mock environments are
automatically generated from counterexamples and capture all the conditions
necessary to replay error traces through the CUA. Developers need not worry
about configuration or environmental dependencies; they can simply run the
executable counterexample using their traditional tools such as a debugger.

The main challenge in generating mocks is to synthesize an environment that
is sufficient to trigger a bug in the CUA while being a realistic enough represen-
tation of the real environment to be of interest to the developer. In principle,

2 The constant 2012 is added by the LDV team as part of kernel modeling.
3 http://www.mockobjects.com/2009/09/brief-history-of-mock-objects.html.

http://www.mockobjects.com/2009/09/brief-history-of-mock-objects.html

20 J. Gennari et al.

mock generation can be reduced to symbolic execution, which would guaran-
tee that the mock is consistent with the operational semantics of the program.
Unfortunately, in practice, state-of-the-art symbolic execution engines do not
scale to this task. Existing symbolic execution engines are good at exploring
many shallow executions, or opportunistically finding bugs at an end of a long
concrete execution. None are good at finding a targeted non-trivial execution
that satisfies some constraints found by an SMC [6].

In summary, we make the following contributions: (1) formally define a con-
crete semantics for executable counterexamples, (2) describe a general framework
for building executable counterexamples, (3) describe an instance of the frame-
work as implemented in SeaHorn [22], a state of the art software analysis tool,
and (4) present a preliminary experimental evaluation of our framework imple-
mentation in SeaHorn by benchmarking it on the Linux Driver Verification set
of benchmarks from SV-COMP.

2 Concrete Semantics for Executable Counterexamples

In this section, we formally define what we mean by a counterexample and a
mock environment. To do so, we first define a simple imperative language that
has an explicit error state and a corresponding concrete semantics. We then show
how this language can be extended to represent external functions and memory
allocations.

2.1 A Simple Imperative Language

To simplify the presentation, we first define a simple language restricted to inte-
gers and pointers and without function calls. The syntax is described in Fig. 2.
The set of program variables is V = VP ∪ VI , where VP and VI are the set
of pointer and integer variables, respectively. We assume that the integer and
pointer variables are disjoint, VP ∩ VI = ∅. Integer and pointer variables are
denoted with symbols vi ∈ VI and vp ∈ VP , respectively. The symbol v ∈ V
denotes a variable of either integer or pointer type. Boolean and arithmetic
expressions are described by b ∈ BExp and a ∈ AExp, respectively. We assume
they are equipped with the standard boolean (opb) and arithmetic (opa) opera-
tors. Similarly, we define pointer expressions p ∈ PExp, which are equipped with
pointer equality and inequality operators (opp).

We assume a classical structural operational semantics with a standard mem-
ory model for C programs. A pointer is a pair 〈Loc,Offset〉, where Loc is a unique
identifier of a memory object of size Sz(Loc) and Offset is the byte offset in Loc,
where 0 ≤ Offset < Sz(Loc). The number of possible memory objects is infinite.
The special constant null is denoted by the pointer (0, 0). We assume a function
Sz : Loc 	→ N that maps each memory object to its size.

Executable Counterexamples in Software Model Checking 21

Fig. 2. A simple imperative language

Fig. 3. Operational semantics for language described in Fig. 2

To define a program state, we need environments that map both program
variables and pointers to values, and a store that represents memory contents:

ei ∈ EnvI = VI 	→ Z ep ∈ EnvP = VP 	→ 〈Loc,Offset〉
h ∈ Store = 〈Loc,Offset〉 	→ 〈Loc,Offset〉 ∪ Z ∪ ε

An integer environment ei ∈ EnvI maps integer variables to integer values. A
pointer environment ep ∈ EnvP maps pointer variables to pointers. A store h ∈
Store is a mapping from pointers to either pointers or integer values. The symbol

22 J. Gennari et al.

ε denotes that the pointer points to uninitialized memory. We use functions P, B,
and A to express the semantics of pointer, boolean and arithmetic expressions:

P : PExp → (EnvI × EnvP) → 〈Loc,Offset〉
B : BExp → (EnvI × EnvP) → B

A : AExp → EnvI → Z

The semantics of boolean and arithmetic expressions is standard and the details
are omitted for brevity. However, we describe here the semantics for pointers:

P[[p]](ei, ep) =
{

(0, 0) if p ≡ null or (0, 0) = ep(p)
(Loc, o + A[[a]]ei) if p ≡ vp + a and (Loc, o) = ep(vp)

The structural operational semantics for our language is given in Fig. 3. A
configuration 〈S, ei, ep, h, ω〉 consists of a statement S, an integer environment
ei, a pointer environment ep, a store h and a flag ω that indicates whether
error has been executed. Given two configurations c1 and c2, the notation c1 ⇒
c2 means that c2 is reachable from c1 in one execution step according to the
semantics. ⇒∗ is the transitive closure of the ⇒ relation. Our semantics tracks
whether error is reached and sets ω to true if that is the case. The statement
p:=alloc(sz) allocates a fresh memory object of size sz and returns a pointer
to it. The statement vp := p performs pointer arithmetic but does not read
from memory. The statements vp := load(vp′), vi := load(vp), store(vi, vp′),
and store(vp, vp′) read and write memory. We assume that memory operations
abort execution when the pointer operand cannot be resolved to a legal offset of
an allocated memory object. For simplicity, we do not keep track of such runtime
error states in our semantics. The rest is standard so we omit the details.

2.2 Extending with External Functions and Memory

One key feature of SMC is that the environment of the CUA does not need to
fully defined. For example, external functions, which are called by the CUA but
whose implementations are not in the CUA, and memory regions allocated by
external functions are both permitted by SMC. This is vital, for instance, when
model checking of Linux device drivers, as the whole system is not available.
However, partially defined programs cannot be represented by the operational
semantics presented so far. To represent external functions and memory regions,
we first extend our syntax with a new statement:

v := extern alloc(v1, . . . , vn)

where the variables v, v1, . . . , vn can be either integers or pointers. Note that with
some syntactic sugar this statement is enough to model both external function
calls with parameters v1, . . . , vn and externally allocated memory.

We then extend our definition of a configuration as follows. In addition to
〈S, ei, ep, h, ω〉, we need a global counter λ ∈ N used for a time-stamp. The

Executable Counterexamples in Software Model Checking 23

counter is needed to distinguish external memory allocations across loop itera-
tions. We also define two external environments eexti , eextp for integers and point-
ers whose values and memory are allocated externally, respectively:

eexti ∈ ExternalEnvI = N × VP × EnvI × EnvP × Store 	→ Z

eextp ∈ ExternalEnvP = N × VP × EnvI × EnvP × Store 	→ (Loc,Offset)

The environment eexti (eextp) is a mapping from a tuple consisting of: a time-
stamp, a vector of program variables representing the arguments to the function,
and the standard environments (i.e., integer and pointer environments and the
store). We are now ready to define the semantics of our new statement:

〈v := extern alloc(v1, . . . , vn), ei, ep, h, ω, λ, eexti , eextp 〉 =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈ei[v 	→ n], ep, h, ω, λ + 1, eexti , eextp 〉 if v ∈ VI and
n = eexti (λ, v1, . . . , vn, ei, ep, h)

〈ei, ep[v 	→ c], h[c ≡ 〈Loc,O〉 	→ ε],
ω, λ + 1, eexti , eextp 〉 if v ∈ VP and

〈Loc,O〉 = eextp (λ, v1, . . . , vn, ei, ep, h)

2.3 Counterexamples and Mock Environments

We can now formally define both counterexamples and mock environments:

Definition 1 (Counterexample and Mock Environment). Given a pro-
gram Sentry, a counterexample is defined as

〈Sentry, ∅, ∅, ∅, false, 0, eexti , eextp 〉 ⇒∗ 〈ei, ep, h, true, λ, eexti , eextp 〉.

and a mock environment E is defined as the pair of external environments,
〈eexti , eextp 〉.

The rest of this paper describes how to synthesize the external environments
eexti and eextp from a SMC counterexample and how to combine it with the CUA
in order to exercise the error location.

3 A Framework for Constructing Executable
Counterexamples

In this section, we present our framework for generating mocks from counterex-
amples produced by a Software Model-Checker (SMC), and the process of gen-
erating an executable that links the code under analysis (CUA) (which may be
partially defined) with the mock to form a fully defined executable. The frame-
work is illustrated in Fig. 4. Rectangular boxes denote the main components, and
the labeled arrows between these components denote the inputs and outputs of
these components.

24 J. Gennari et al.

CUA

Software
Model Checker

No Model
Directed
Symbolic
Execution

Environment Environment
Builder

Model

Counterexample

Compilation

External
Memory

Virtualization
Execution

Executable

__VERIFIER_error not executed

__VERIFIER_error executed

Fig. 4. Executable Counterexample Generation

The main components of the framework are: (a) a Software Model Checker,
(b) Directed Symbolic Execution, (c) a Mock Environment Builder, and (d) an
External Memory Virtualization. The input to the framework is the Code Under
Analysis (CUA), which contains an embedded safety property. An output, if
possible, is a fully-defined executable that takes no inputs and references no
external functions, and that violates the safety property when it is executed.
We summarize each component and corresponding assumptions in the rest of
this section. An instance of this framework using the Software Model Checker
SeaHorn is presented in Sect. 4.

Software Model Checker. In the first step, an SMC is used to identify a potential
buggy behavior of the CUA. We assume that the SMC finds a counterexample,
since otherwise nothing needs to be generated. We make minimal assumptions
about SMC. First, we assume that the safety property is already combined with
the CUA. This, for example, can be done via a common convention of reducing
safety verification to checking reachability of a designated error function, such as
the VERIFIER error function used by SV-COMP. Second, we assume that the
SMC can produce a trace indicating the loops executed by the counterexample
and their corresponding number of iterations. However, we do not require the
SMC to produce a detailed trace. This is necessary to allow the SMC to use sim-
plification and optimization techniques during verification, some of which might
make it difficult to extract a detailed trace after the analysis. Third, we do not
require the SMC to be sound with respect to the C operational semantics. This
is a necessary assumption because most current SMC techniques sacrifice sound-
ness for scalability. Common soundness issues are related to undefined behavior,
bit-precise semantics of integer operations, or memory modeling. Although we
do not make any assumption about the SMC’s soundness, we hope that the
SMC is sound with respect to some useful subset of the language’s operational
semantics.

Directed Symbolic Execution (DirSE). In this step, a counterexample produced
by SMC is analyzed by Directed Symbolic Execution. The main purpose of DirSE
is to reproduce the counterexample found by the SMC and produce a more

Executable Counterexamples in Software Model Checking 25

precise counterexample with respect to the concrete semantics. First, DirSE
produces a Control Flow Graph (CFG) of the program which is sliced with
respect to the counterexample trace. A key observation is that the sliced CFG is
acyclic since each loop is unrolled using the information from the trace. Recall
that the SMC must produce counterexamples given as traces indicating the
number of times loops are executed. However, since we do not require the SMC to
produce a detailed trace, the sliced CFG can still contain a large number of paths.
Next, DirSE tries to prove that VERIFIER error is still reachable. This search
process can be quite challenging because of the need for bit-precise semantics
of integer operations, potential undefined behavior, and the presence of external
memory allocation and functions which are not defined in the CUA. A successful
output of DirSE is a counterexample generated by a SMT solver using bit-level
precision. If a counterexample cannot be obtained because DirSE determines
that no buggy execution exists in the sliced CFG, the SMC’s counterexample is
deemed unsound and the counterexample generation process is aborted.

Mock Environment Builder (MB). This component takes the detailed trace pro-
duced by DirSE and produces a mock environment in the form of object code.
Essentially, it “internalizes” all external functions by creating mocks for them.
Thus, the main task for the mock builder is to produce all values and mem-
ory addresses for all the memory that is allocated outside of the CUA. This is
quite challenging. While the addresses for return values can be extracted from
the counterexample, the mock builder is not aware whether an external call is
allocating memory or what happens to a pointer that is passed as a parameter.

External Memory Virtualization (EMV). The last component of the framework
takes the executable binary produced by linking the CUA and the mock together,
and ensures that, when executed, it violates the safety property. The main chal-
lenge is to ensure that all memory addresses generated by the MB are valid so
that each memory access can be resolved to a legal offset of an allocated mem-
ory object, while at the same time the complete execution triggers a property
violation. In our framework, the MB does not allocate memory and therefore, it
cannot map the (abstract) memory addresses generated by DirSE to valid (i.e.,
allocated) memory. This is the main task of the EMV which translates between
the two types of addresses. The EMV provides a virtual external memory to
the executable, ensuring that no memory access ever triggers a program failure
during the execution. More precisely, the EMV traps each memory access of the
program, and, whenever the access appears to reference an unallocated memory
region, it either redirects the access to a special memory region, or, simulates a
valid memory access by providing a default value back to the program. Having
multiple choices in how to map unallocated memory regions to valid ones is the
reason why MB is decoupled from EMV.

Finally, we believe that our framework is general enough so that almost any
verification tool can be plugged in. However, this does not mean that all tools
can clearly benefit from all our components or the framework itself. For instance,
Bounded Model Checking (BMC) can usually produce bit-precise counterexam-

26 J. Gennari et al.

ples, and as a result would not benefit from DirSE. Some Test Case Generation
(TCG) tools (see Sect. 6) model the concrete semantics of the program and allo-
cate memory on-the-fly. Thus, they might not benefit from our framework at all.
The main advantage of our framework is, however, that it separates the problem
of model-checking a program from the generation of an executable counterexam-
ple. This is vital for scalability since it allows the SMC to perform abstractions
which would be difficult, if not impossible, to apply on BMC and TCG tools.

4 Executable Counterexample Generation in SeaHorn

In this section, we present an instance of our framework using SeaHorn [22], a
publicly available Software Model Checker. We organize the section following the
same structure as Sect. 3 describing the implementation details of each of the four
main components of the framework: Software Model Checker, Directed Symbolic
Execution, Mock Environment Builder, and External Memory Virtualization.

The SeaHorn Software Model Checker. SeaHorn is a SMC for C/C++ pro-
grams based on the LLVM framework. It uses clang to compile programs to the
LLVM intermediate representation, applies many of the LLVM optimizations to
pre-process the code before analysis, and then uses a custom analysis engine
based on Abstract Interpretation and Constrained Horn Clauses for verification.
SeaHorn is sound with respect to its specialized semantics of C. In particu-
lar, it assumes that all integers are of arbitrary precision (i.e., unbounded or
mathematical), and assumes a C-like memory model [23]. Furthermore, because
SeaHorn relies on multiple LLVM components, which aggressively optimize
undefined computations, the presence of undefined behavior (e.g., signed integer
overflow, out-of-bound array access, and reads from uninitialized memory) in a
program may significantly affect its interpretation.

Directed Symbolic Execution in SeaHorn. A high-level description for DirSE
implemented in SeaHorn is shown in Fig. 5. The input to DirSE is a counterex-
ample CEX produced by SeaHorn. The counterexample CEX only indicates
which loop heads must be executed and for how many iterations, and represents
many potential execution paths. From CEX, DirSE first constructs a sliced
acyclic CFG that contains all executions witnessed by CEX (line 1). Symbolic
execution over the CFG is reduced to a Bounded Model Checking (BMC) prob-
lem. The verification condition of the CFG is encoded into a SMT formula φ, and
the satisfiability of φ is checked by an SMT solver. The BMC is specialized for
handling dynamically allocated memory. We use points-to analysis [23] to parti-
tion the memory used by the CFG into disjoint regions, represented by a points-
to graph GMem. Next, all behaviors of the CFG are encoded into verification
conditions φ using bit-precise semantics of all of the LLVM instructions (line 2).
In the formula φ, we represent each memory region in GMem by an array, and
each memory access is mapped to an array select or store operation respectively,
by associating a pointer to its corresponding memory region. Finally, extra con-
straints φalloc are generated to map regions to memory addresses (line 3) which

Executable Counterexamples in Software Model Checking 27

Fig. 5. DirSE in SeaHorn implemented as a BMC problem

are consistent with the C memory model. These constraints ensure, for instance,
that allocated pointers are not NULL, that they are disjoint, and that no two
allocated segments intersect. More precise modeling of memory allocation is pos-
sible (e.g., all memory addresses are 4-byte or 8-byte aligned) but at the expense
of increasing the solving time. Finally, an SMT solver checks for satisfiability of
φ ∧ φalloc. If the solver returns UNSAT (or times out) the process is aborted.
Otherwise, the model corresponding to the concrete counterexample is returned.
The model is extended to contain meta-data information so that each variable
in the model can be mapped back to its corresponding LLVM variable.

Mock Environment Builder in SeaHorn. A description of the MB is shown in
Fig. 6. The MB produces an LLVM bitcode file that provides definitions for all
of the external functions in the CUA. The MB proceeds in two phases. In the
first phase (lines 2–6), the MB walks the concrete counterexample produced by
DirSE and collects all external calls of the form v := f(v). It then uses the
model M from DirSE to find and record the return value v of the call-site. This
represents the only possible side-effect since we assume external functions do
not modify global state or any of their arguments. In the second phase (lines 7–
9), the MB emits LLVM bitcode (function EmitCode) defining each external
function. For each external function f , it constructs a body Bf that tracks the
number of times it is called and returns an appropriate value based on the order
of the call. That is, in the first call to f , Bf returns the first value that f returned
in the counterexample, in the second call it returns the second value, etc.

As an example, Fig. 7 shows the mocks (in LLVM bitcode) that MB generated
for the Linux Driver Verification (LDV) program introduced earlier in Fig. 1.
Lines 6–14 and 16–24 provide definitions for the two external functions in that
code: VERIFIER nondet int and ldv ptr, respectively. Lines 1–4 define the
global variables used by the two functions. Since the code of the two functions
follows exactly the same structure, we focus on the definition of ldv ptr. The
function is assigned its own global counter, lambda 2, to track the number of

28 J. Gennari et al.

Fig. 6. High-level description of the Mock Environment Builder in SeaHorn

Fig. 7. Example of mock environment in LLVM bitcode corresponding to the C pro-
gram in Fig. 1

Executable Counterexamples in Software Model Checking 29

calls. Lines 18–20 increment the counter each time the function is called. The
function is also assigned a global array ptr vals containing the values that will
be returned by each call to ldv ptr; these values are extracted from the concrete
counterexample. (This array is called Vals in EmitCode in Fig. 6). Finally, a
call to our run-time library function seahorn get value ptr is used to retrieve
an appropriate value from ptr vals using the current value of lambda 2. We
postpone the definitions of the two external functions, seahorn get value i32
and seahorn get value ptr, until we describe our next component.

External Memory Virtualization in SeaHorn. The EMV instruments the CUA
with memory load and store hooks that control access to memory. This is
achieved by replacing each load or store instruction in the CUA with a func-
tion call to the special functions seahorn mem load and seahorn mem store,
respectively. Note that it is sufficient to instrument only instructions whose
corresponding memory object might alias with an external object. The goal
of these hooks is to map external “virtual” memory to real memory. This is vital
because if a pointer that is externally allocated (e.g., p at line 6 on the left of
Fig. 1) does not refer to a real memory address, the executable counterexample
will probably crash when the pointer is dereferenced.

We have implemented EMV as an LLVM pass that replaces every load
and store instructions with calls to the corresponding functions in our run-
time library. A simplified version of the source code of these functions
is shown in Fig. 8. We also present the implementation of the functions

seahorn get value i32 and seahorn get value ptr discussed earlier. These
functions check for a given value in a given global array and return it to the
caller. The case of seahorn get value ptr is a bit more involved. Whenever a
pointer to an external memory object is returned, we need to guess the size of
the corresponding allocated object. Unfortunately, it is not possible in general.
Instead, we guess the size based on the type. We assume that all addresses within
the guessed regions are externally allocated.

The definition of seahorn mem load and seahorn mem store are shown on
the right of Fig. 8. These functions decide whether a pointer being dereferenced
is allocated by the CUA or not (is valid address). For this, we use the map
absptrmap. If the dereferenced pointer is within the bounds of any of the memory
objects externally allocated then the address is considered invalid, otherwise it
is considered to be allocated by the CUA, and, therefore, valid. If the pointer
is valid then both seahorn mem load and seahorn mem store implement the
original semantics of load and store. Otherwise, a load returns a pointer pointing
to a region with all its contents written by zeroes and store is ignored. Note that
although simple, this solution is sufficient for many of our benchmarks.

30 J. Gennari et al.

Fig. 8. External Virtualization implemented in SeaHorn

5 Experimental Evaluation

In this section, we report on the evaluation of our framework as implemented
in SeaHorn. Our goal is to show that the generation of executable counterex-
amples is feasible on a set of non-trivial benchmarks. In the future, it would be

Executable Counterexamples in Software Model Checking 31

interesting to evaluate the effectiveness of executable counterexamples compared
to other outputs from an SMC, such as textual reports. All experiments were
done on a 16 core, 3.5 GHz Intel Xeon CPU and 64 GB of RAM. Each component
of our framework was restricted to 5 min CPU and 4 GB memory limits.

For the evaluation, we took all benchmarks in the Systems, DeviceDrivers,
and ReachSafety categories of SV-COMP 2018. These categories are representa-
tive of real code. In total, this yielded 356 unsafe benchmarks. From those, our
SMC solved 144, failed in 18, and ran out of resources in 194. DirSE success-
fully concretized 141 counterexamples (out of 144). The three failures are due
to an abstraction mismatch between SMC and DirSE: SMC is not bit-precise
but DirSE is bit-precise. MB and EMV were successful on all 141 concretized
counterexamples. Finally, we ran all the binaries witnessing a counterexample.
We observed three outcomes: (a) the executable found the dedicated error func-
tion VERIFIER error in 24 cases, (b) the executable terminated but it did
not execute VERIFIER error in 44 cases, and (c) the executable ran out of
resources in 73 cases.

Table 1. Experimental results for validated counterexamples in SeaHorn

The detailed results for the successful 24 cases are shown in Table 1. The table
reports on the time in seconds taken by the SMC, DirSE, MB, and counterexam-
ple execution, respectively. We also show the number of CFG cut-points (#CP)
of the counterexample returned by SMC and the number of basic blocks (#BB)
that DirSE considered based on the counterexample. Note that sometimes DirSE
takes significantly longer than SMC. This is expected because DirSE uses more
complex semantics. Mock construction and execution take a negligible amount
of time.

Analysis of Results and Current Limitations. Results show that construct-
ing executable counterexamples is possible using current Software Model Check-
ing techniques. The main challenge is improving techniques for extracting the

32 J. Gennari et al.

memory model assumed by the SMC. Manually inspecting the failing cases shows
that the pointers extracted from external allocation sites are often dereferenced
further. Our current strategy traps such dereferences and replaces them with
some default values. While this is sometimes sufficient, it does not always work.
We have tried replacing such addresses by symbolic memory and using a sym-
bolic execution engine, but this did not scale.

One manual solution we found is to replace external dereferences by external
functions calls. For example, dereferencing an external field foo->f is replaced
by a call to an external function get foo f(foo) that returns the value of the
field. Such external calls are trapped by the mock to produce the required value.
Selectively applying this manual technique, we converted several failing cases to
successful executable counterexamples. For example, Fig. 9 shows the changes for
usb urb-drivers-input-misc-keyspan remote.ko false-unreach-call.cil.out.i.pp.i.
Three get functions are added to wrap around memory references (the original
code is in comments). These functions allow the MB to inject the right values to
guide the program toward the counterexample. While currently this is a manual
process, we believe it can be significantly automated in the future.

Fig. 9. Example of manual modifications to generate executable counterexample

6 Related Work

Generating executable tests from Software Model Checking counterexamples is
not a new idea. One of the earliest approaches was proposed by Beyer et al.
[3]. However, they do not consider programs that manipulate memory or use
external functions.

Executable Counterexamples in Software Model Checking 33

Executable Counterexamples from SMC. Rocha et al. [29] propose
EZProofC, a tool to extract information about program variables from coun-
terexamples produced by ESBMC [12] and generate executable programs that
reproduce the error. First, EZProofC extracts the name, value, and line number
for each variable assignment in the counterexample. Second, the code is instru-
mented so that the original assignment statements are replaced with assign-
ments of the corresponding values in the counterexample. This approach is
closely related to ours, but there are some important differences. First, EZProofC
assumes that it is easy to match assignments in ESBMC counterexamples to
the original source code. This assumption does not hold if verification is com-
bined with aggressive optimization or transformations. In our experience, such
optimizations are essential for scalability. In contrast, we make no such assump-
tions. More importantly, EZProofC does not deal with dereferences of pointers
allocated by external functions. We found this to be prevalent in benchmarks,
difficult to address, and is a primary focus of our work.

Muller and Ruskiewicz [28] produce .NET executable from a Spec# program
and a symbolic counterexample. Counterexamples may include complex types
including classes, object creation, and initialization of their fields. There are
again some key differences. First, they target Spec#, a language without direct
pointer manipulation, while we target C. As a result, our memory models differ
significantly since Spec# is type-safe while C is not. Second, their executables
simulate the verification semantics as defined by the verifier rather than the
concrete semantics as defined by the language. Instead, our executables simulate
the concrete semantics of C programs. As a result, their executables cannot
guarantee the existence of an error even when an error is exercised since it might
be ruled out by the concrete semantics. In contrast, in our approach an error is
always consistent with the concrete semantics when the executable triggers it. A
downside to our approach, however, is that our approach might fail to generate
a successful executable counterexample when the verification semantics differ
significantly from the concrete semantics. Third, their executables do not contain
the original CUA but instead an abstraction of it where loops are modeled with
loop invariants and methods with contracts.

Csallner and Smaragdakis [14] propose CnC (Check ‘n’ crash), a tool that
uses counterexamples identified by ESC/Java [15], to create concrete test-cases
(set of program inputs) that exercise the identified violation. Test-cases are then
fed to the testing tool JCrasher [13]. When ESC/Java identifies a violation, CnC
turns the counterexample into a set of constraints, which are solved to yield a
program that exercises the violation. CnC is able to produce programs that con-
tain numeric, reference, and array values. As in our framework, the executables
produced by CnC simulate the concrete semantics of the underlying language
(Java for CnC). Apart from using different memory models, the main distinc-
tion is that CnC aims at generating test-cases, while we focus on generating
mocks that synthesize the external environment of the program. Test-cases are,
in general, harder to produce because of the difficulty of ensuring that library
calls produce the outputs needed to exercise the error. Instead, we try to gen-

34 J. Gennari et al.

erate the coarsest mocks for those library calls that can still exercise the error.
Therefore, we believe our methodology can scale better for larger applications.

Recently, Beyer et al. [4] proposed an approach similar to Rocha et al. [29].
Given a counterexample in the SV-COMP [2] witness automaton format, orig-
inal source is instrumented by assigning values from the counterexample. The
approach is supported by CPAChecker [5] and Ultimate Automizer [24]. Similar
to Rocha et al. [29], they do not deal with externally allocated pointers.

Test Case Generation. Dynamic Model Checking (DMC) adapts Model
Checking to perform testing. One of the earliest DMC tools is VeriSoft [16]
which has been very successful at finding bugs in concurrent software. The tool
provides a simulator that can replay the counterexample but it does not gener-
ate executables. Test-case generation tools such as Java PathFinder [32], DART
[18], EXE [8], CUTE [30], Klee [7], SAGE [19], and PEX [31] generate test-cases
that can produce high coverage and/or trigger shallow bugs based on dynamic
symbolic execution (DSE). The Yogi project [1,20,21] combines SMC with test-
ing to improve scalability of the verification process. They compute both over-
and under-approximations of the program semantics so that they can both prove
absence of bugs and finding errors in a scalable way. Yogi tools have been inte-
grated in the Microsoft’s Static Driver Verifier. Christakis and Godefroid [9]
combine SAGE [19] and MicroX [17] to prove memory safety of the ANI Win-
dows Image Parser. SAGE starts from a random test case and performs DSE
while computing procedure summaries. MicroX computes sets of inputs and
outputs for ANI functions without any provided information while allocating
memory on-the-fly for each uninitialized memory address. They model precisely
the concrete semantics of the program: “symbolic execution of an individual path
has perfect precision: path constraint generation and solving is then sound and
complete”.

These tools model the concrete semantics of the program and allocate mem-
ory on-the-fly while we deliberately allow the SMC to use abstract semantics or
even be unsound. By doing so, the verification process can scale. The challenge
for us is to synthesize an environment that can exercise the error in the pres-
ence of uninitialized memory, while for these tools, the process of lifting an error
execution to a test case is relatively simpler.

Guided Symbolic Execution. Hicks et al. [27] propose two heuristics to guide
symbolic execution (SE) to reach a particular location. The first uses a distance
metric to guide SE while the second uses the callgraph to run SE in a forward
manner while climbing up through the call chain. Christakis et al. [11] introduce
a program instrumentation to express which parts of the program have been
verified by a static analysis tool, and under which assumptions. They use PEX
[31] to exercise only those unverified parts. The same authors [10] instrument the
code of a static analysis tool to check for all known unsound cases and provide
a detailed evaluation about it. In all these cases, symbolic execution is guided
in an intelligent manner to reach certain locations of interest. However, none of
these techniques focus on dealing with memory.

Executable Counterexamples in Software Model Checking 35

7 Conclusion

We presented a new framework to generate mock environments for the Code
Under Analysis (CUA). A mock environment can be seen as actual binary code
that implements the external functions that are referenced by the CUA so that
the CUA execution mirrors the counterexample identified by the Model Checker.
We believe that having executable counterexamples is essential for software engi-
neers to adopt Model Checking technology since they would be able to use their
existing toolchain. Moreover, we described formally the concrete semantics of
executable counterexample based on a simple extension to the standard opera-
tional semantics for C programs. This significantly differs from the textual-based
counterexample representation used by SV-COMP tools. Finally, we have imple-
mented an instance of the framework in SeaHorn, and tested it on benchmarks
from SV-COMP 2018. Although the initial results are promising, more work
remains to be done, especially to handle counterexamples with more compli-
cated memory structures.

Acknowledgments. Authors would like to thank Natarajan Shankar for his invalu-
able comments to improve the quality of this paper.

References

1. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
Proceedings of the ACM/SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2008, Seattle, WA, USA, 20–24 July 2008, pp. 3–14 (2008)

2. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 20

3. Beyer, D., Chlipala, A., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating tests
from counterexamples. In: 26th International Conference on Software Engineering
(ICSE 2004), Edinburgh, UK, 23–28 May 2004, pp. 326–335 (2004)

4. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses. In:
Dubois, C., Wolff, B. (eds.) TAP 2018. LNCS, vol. 10889, pp. 3–23. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-92994-1 1

5. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

6. Beyer, D., Lemberger, T.: Software verification: testing vs. model checking. In:
Strichman, O., Tzoref-Brill, R. (eds.) Hardware and Software: Verification and
Testing. LNCS, vol. 10629, pp. 99–114. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70389-3 7

7. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: 8th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI 2008, San Diego,
California, USA, 8–10 December 2008, pp. 209–224 (2008)

https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7

36 J. Gennari et al.

8. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. ACM Trans. Inf. Syst. Secur. 12(2), 10:1–10:38
(2008)

9. Christakis, M., Godefroid, P.: Proving memory safety of the ani windows image
parser using compositional exhaustive testing. In: D’Souza, D., Lal, A., Larsen,
K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 373–392. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8 21

10. Christakis, M., Müller, P., Wüstholz, V.: An experimental evaluation of deliberate
unsoundness in a static program analyzer. In: D’Souza, D., Lal, A., Larsen, K.G.
(eds.) VMCAI 2015. LNCS, vol. 8931, pp. 336–354. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46081-8 19

11. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution
toward unverified program executions. In: Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, 14–22 May
2016, pp. 144–155 (2016)

12. Cordeiro, L.C., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. IEEE Trans. Softw. Eng. 38(4), 957–974 (2012)

13. Csallner, C., Smaragdakis, Y.: JCrasher: an automatic robustness tester for Java.
Softw. Pract. Exper. 34(11), 1025–1050 (2004)

14. Csallner, C., Smaragdakis, Y.: Check ‘n’ crash. In: Proceedings of the 27th Inter-
national Conference on Software Engineering - ICSE 2005, p. 422. ACM Press,
New York (2005)

15. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Berlin,
Germany, 17–19 June 2002, pp. 234–245 (2002)

16. Godefroid, P.: VeriSoft: a tool for the automatic analysis of concurrent reactive soft-
ware. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 476–479. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6 52

17. Godefroid, P.: Micro execution. In: 36th International Conference on Software
Engineering, ICSE 2014, Hyderabad, India, 31 May–07 June 2014, pp. 539–549
(2014)

18. Godefroid, P., Klarlund, N., Sen, K.: DART directed automated random testing. In:
Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, IL, USA, 12–15 June 2005, pp. 213–223
(2005)

19. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proceedings of the Network and Distributed System Security Symposium, NDSS
2008, San Diego, California, USA, 10th February-13th February 2008 (2008)

20. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-must
program analysis: unleashing the power of alternation. In: Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, Madrid, Spain, 17–23 January 2010, pp. 43–56 (2010)

21. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYN-
ERGY: a new algorithm for property checking. In: Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2006, Portland, Oregon, USA, 5–11 November 2006, pp. 117–127 (2006)

22. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

https://doi.org/10.1007/978-3-662-46081-8_21
https://doi.org/10.1007/978-3-662-46081-8_19
https://doi.org/10.1007/3-540-63166-6_52
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20

Executable Counterexamples in Software Model Checking 37

23. Gurfinkel, A., Navas, J.A.: A context-sensitive memory model for verification of
C/C++ programs. In: Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp. 148–168.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66706-5 8

24. Heizmann, M., et al.: Ultimate automizer with SMTInterpol. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 641–643. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-36742-7 53

25. Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why don’t software develop-
ers use static analysis tools to find bugs? In: Proceedings of the 2013 International
Conference on Software Engineering, ICSE 2013, pp. 672–681 (2013)

26. LDV: Linux Driver Verification. http://linuxtesting.org/ldv
27. Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed symbolic execution.

In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7 11

28. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification
attempts. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 73–87.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 8

29. Rocha, H., Barreto, R., Cordeiro, L., Neto, A.D.: Understanding programming bugs
in ANSI-C software using bounded model checking counter-examples. In: Derrick,
J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 128–
142. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-4 10

30. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 38

31. Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9 10

32. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with java
pathfinder. In: Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2004, Boston, Massachusetts, USA, 11–14
July 2004, pp. 97–107 (2004)

https://doi.org/10.1007/978-3-319-66706-5_8
https://doi.org/10.1007/978-3-642-36742-7_53
http://linuxtesting.org/ldv
https://doi.org/10.1007/978-3-642-23702-7_11
https://doi.org/10.1007/978-3-642-21437-0_8
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1007/11817963_38
https://doi.org/10.1007/978-3-540-79124-9_10

Extending VIAP to Handle Array
Programs

Pritom Rajkhowa(B) and Fangzhen Lin

Department of Computer Science,
The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong
{prajkhowa,flin}@cse.ust.hk

Abstract. In this paper, we extend our previously described fully auto-
mated program verification system called VIAP primarily for verifying
the safety properties of programs with integer assignments to programs
with arrays. VIAP is based on a recent translation of programs to first-
order logic proposed by Lin [1] and directly calls the SMT solver Z3. It
relies more on reasoning with recurrences instead of loop invariants. In
this paper, we extend it to programs with arrays. Our extension is not
restricted to single dimensional arrays but general and works for mul-
tidimensional and nested arrays as well. In the most recent SV-COMP
2018 competition, VIAP with array extension came in second in the
ReachSafety-Arrays sub-category, behind VeriAbs.

Keywords: Automatic program verification · Array · Structure
Multi-dimensional · Nested · First-order logic
Mathematical induction · Recurrences · SMT · Arithmetic

1 Introduction

Arrays are widely used data structures in imperative languages. Automatic ver-
ification of programs with arrays is considered to be a difficult the task as it
requires effective reasoning about loops and nested loops in case of multidimen-
sional arrays. We have earlier reported a system called VIAP [2] that can prove
non-trivial properties about programs with loops without using loop invariants.
In this paper, we extend VIAP to arrays. In particular, we show how our system
can handle multidimensional arrays. While there have been a few systems that
can prove some non-trivial properties about one-dimensional arrays automati-
cally, we are not aware of any that can do so for multidimensional arrays. Systems
like Dafny [3],VeriFast [4] and Why [5] can indeed prove non-trivial properties
about programs with multidimensional arrays, but they require user-provided
loop invariant(s). Program verification is in general an undecidable problem, so
there cannot be a fully automated system that works in all cases. Still, it is
worthwhile to see how much one can do with fully automatic systems, hence the
interest competitions like SV-COMP for fully automated systems.
c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 38–49, 2018.
https://doi.org/10.1007/978-3-030-03592-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_3

Extending VIAP to Handle Array Programs 39

In the following, we first describe how our system works. We then discuss
some related work and finally make some concluding remarks.

2 Translation

Our translator consider programs in the following language:

E ::= array(E,...,E) |
operator(E,...,E)

B ::= E = E |
boolean-op(B,...,B)

P ::= array(E,...,E) = E |
if B then P else P |
P; P |
while B do P

where the tokens E, B, P stand for integer expressions, Boolean expressions,
and programs respectively. The token array stands for program variables, and
the tokens operator and boolean-op stand for built-in integer functions and
Boolean functions, respectively. Notice that for array, if its arity is 0, then it
stands for an integer program variable. Otherwise, it is an array variable. Notice
also that while the notation array[i][j] is commonly used in programming
languages to refer to an array element, we use the notation array(i,j) here
which is more common mathematics and logic.

Our system actually accepts C-like programs which are converted to these
programs by a preprocessor. In particular, goto-statements are removed using
the algorithm proposed in [6].

Given a program P , and a language X, our system generates a set of first-
order axioms denoted by ΠX

P that captures the changes of P on X. Here by a
language we mean a set of functions and predicate symbols, and for ΠX

P to be
correct, X needs to include all program variables in P as well as any functions
and predicates that can be changed by P .

The set ΠX
P of axioms are generated inductively on the structure of P . The

algorithm is described in details in [1] and an implementation is [2]. This paper
extends it to handle arrays. The inductive cases are given in table provided in
the supplementary information depicted in1. There are two primitive cases, one
for integer assignment and one for array element assignment. Before we describe
them, we first describe our representation of arrays.

We consider arrays as first-order objects that can be parameters of functions,
predicates, and can be quantified over. In first-order logic, this means that we
have sorts for arrays, and one sort for each dimension. In the following, we denote
by int the integer sort, and arrayk the k-dimensional array sort, where k ≥ 1.

To denote the value of an array at some indices, for each k ≥ 1, we introduce
a special function named dkarray of the arity:

dkarray : arrayk × intk → int,

1 https://goo.gl/2ZBGUr.

https://goo.gl/2ZBGUr

40 P. Rajkhowa and F. Lin

as we consider only integer valued arrays. Thus d1array(a, i) denotes the value
of a one-dimensional array a at index i, i.e. a[i] under a conventional notation,
and d2array(b, i, j) stands for b[i][j] for two-dimensional array b. We can also
introduce a function to denote the size of an array. However, we do not consider it
here as the programs that we deal with in this paper does not involve operations
about array sizes and we assume that all array references are legal.

Recall that we generate a set of axioms for a program P under a language
X. The generated set of axioms captures the changes of P on X, so X needs
to include all functions and predicates that can be changed by P . Therefore if a
program makes changes to, say a two-dimensional array, then X must include
d2array.

When we translate a program to first-order axioms, we need to convert
expressions in the program to terms in first-order logic. This is straightforward,
given how we have decided to represent arrays. For example, if E is a(1, 2)+b(1),
where a is a two-dimensional array and b a one-dimensional array, then Ê, the
first-order term that corresponds to E, is d2array(a, 1, 2) + d1array(b, 1).

We are now ready to describe how we generate axioms for assignments, First,
for integer variable assignments:

Definition 21. If P is V = E, and V ∈ X, then ΠX
P is the set of the following

axioms:

∀x.X1(x) = X(x), for each X ∈ X that is different from V,

V 1 = Ê

where for each X ∈ X, we introduce a new symbol X1 with the same arity
standing for the value of X after the assignment, and Ê is the translation of the
expression E into its corresponding term in logic as described above.

For example, if P1 is

I = a(1,2)+b(1)

and X is {I, a, b, d1array, d2array} (a and b are for the two array variables in
the assignment, respectively), then ΠX

P1
is the set of following axioms:

I1 = d2array(a, 1, 2) + d1array(b, 1),
a1 = a,

b1 = b,

∀x, i.d1array1(x, i) = d1array(x, i),
∀x, i, j.d2array1(x, i, j) = d2array(x, i, j).

Again we remark that we assume all array accesses are legal. Otherwise, we
would need axioms like the following to catch array errors:

¬in-bound(1, b) → arrayError,

¬in-bound((1, 2), a) → arrayError,

where in-bound(i, array) means that the index i is within the bound of array,
and can be defined using array sizes.

Extending VIAP to Handle Array Programs 41

Definition 22. If P is V(e1,e2,...,ek) = E, then ΠX
P is the set of the fol-

lowing axioms:

∀x.X1(x) = X(x), for each X ∈ X which is different from dkarray,

dkarray1(x, i1, ..., ik)
= ite(x = V ∧ ii = ê1 ∧ · · · ∧ ik = êk, Ê, dkarray(x, i1, ..., ik)),

where ite(c, e, e′) is the conditional expression: if c then e else e′.

For example, if P2 is b(1)=a(1,2)+b(1), and X is {I, a, b, d1array, d2array},
then ΠX

P2
is the set of following axioms:

I1 = I,

a1 = a,

b1 = b,

∀x, i.d1array1(x, i) =
ite(x = b ∧ i = 1, d2array(a, 1, 2) + d1array(b, 1), d1array(x, i)),

∀x, i, j.d2array1(x, i, j) = d2array(x, i, j).

Notice that b1 = b means that while the value of b at index 1 has changed, the
array itself as an object has not changed. If we have array assignments like a=b
for array variables a and b, they will generate axioms like a1 = b.

We now give two simple examples of how the inductive cases work described
in the tables2 provided as supplementary material mentioned previously. See [1]
for more details.

Consider P3 which is the sequence of first P1 then P2:

I = a(1,2)+b(1);
b(1)=a(1,2)+b(1)

The axiom set ΠX
P3

is generated from ΠX
P1

and ΠX
P2

by introducing some new
symbols to connect the output of P1 with the input of P2:

I2 = d2array(a, 1, 2) + d1array(b, 1),
a2 = a,

b2 = b,

∀x, i.d1array2(x, i) = d1array(x, i),
∀x, i, j.d2array2(x, i, j) = d2array(x, i, j),
I1 = I2,

a1 = a2,

b1 = b2,

∀x, i.d1array1(x, i)
= ite(x = b2 ∧ i = 1, d2array2(a2, 1, 2) + d1array2(b2, 1), d1array2(x, i)),

∀x, i, j.d2array1(x, i, j) = d2array2(x, i, j),
2 https://goo.gl/2ZBGUr.

https://goo.gl/2ZBGUr

42 P. Rajkhowa and F. Lin

where I2, a2, b2, d1array2, d2array2 are new symbols to connect P1’s output
with P2’s input. If we do not care about the intermediate values, these temporary
symbols can often be eliminated. For this program, eliminating them yields the
following set of axioms:

I1 = d2array(a, 1, 2) + d1array(b, 1),
a1 = a,

b1 = b,

∀x, i.d1array1(x, i) =
ite(x = b ∧ i = 1, d2array(a, 1, 2) + d1array(b, 1), d1array(x, i)),

∀x, i, j.d2array1(x, i, j) = d2array(x, i, j).

The most important feature of the approach in [1] is in the translation of
loops to a set of first-order axioms. The main idea is to introduce an explicit
counter for loop iterations and an explicit natural number constant to denote
the number of iterations the loop executes before exiting. It is best to illustrate
by a simple example. Consider the following program P4:

while I < M {
I = I+1;

}

Let X = {I,M}. To compute ΠX
P4

, we need to generate first the axioms for the
body of the loop, which in this case is straightforward:

I1 = I + 1,

M1 = M

Once the axioms for the body of the loop are computed, they are turned into
inductive definitions by adding a new counter argument to all functions and
predicates that may be changed by the program. For our simple example, we
get

∀n.I(n + 1) = I(n) + 1, (1)
∀n.M(n + 1) = M(n), (2)

where the quantification is over all natural numbers. We then add the initial
case, and introduce a new natural number constant N to denote the terminating
index:

I(0) = I ∧ M(0) = M,

I1 = I(N) ∧ M1 = M(N),
¬(I(N) < M(N)),
∀n.n < N → I(n) < M(n).

One advantage of making counters explicit and quantifiable is that we can
then either compute closed-form solutions to recurrences like (1) or reason

Extending VIAP to Handle Array Programs 43

about them using mathematical induction. This is unlike proof strategies like
k-induction where the counters are hard-wired into the variables. Again, for
more details about this approach, see [1] which has discussions about related
work as well as proofs of the correctness under operational semantics.

3 VIAP

We have implemented the translation to make it work with programs with a C-
like the syntax used SymPy to simplify algebraic expressions and compute the
closed-form solutions to simple recurrences, and finally verified assertions using
Z3. The resulting system, called VIAP, is fully automated. We reported in an
earlier paper [2] how it works on integer assignments. We have now extended it
to handle arrays. We have described how the translation is extended to handle
array element assignments in the previous section. In this section, we describe
some implementation details.

We have already mentioned that temporary variables introduced during the
translation process can often be eliminated, and that SymPy can be used to sim-
plify algebraic expressions and compute closed-form solutions to simple recur-
rences. All of these have already been implemented for basic integer assignments
and described in our earlier paper [2], therefore we do not repeat them here. For
arrays, an important module that we added is for instantiation.

Our main objective is translating a program to first-order logic axioms with
arithmetic. This translation provides the relationship between the input and
output values of the program variables. The relationship between the input and
output values of the program variables is independent of what one may want to
prove about the program. SMT solver tools like Z3 is just an off shelf tool, so
we never considered using the built-in array function there.

3.1 Instantiation

Instantiation is one of the most important phases of the pre-processing of axioms
before the resulting set of formulas is passed on an SMT-solver according to some
proof strategies. The objective is to help an SMT solver like Z3 to reason with
quantifiers. Whenever an array element assignment occurs inside a loop, our
system will generate an axiom like the following:

∀x1, x2...xk+1, n.dkarrayi(x1, x2...xk+1, n + 1) =
ite(x1 = A ∧ x2 = E2 ∧ ... ∧ xk+1 = Eh+1, E,

dkarrayi(x1, x2...xk+1, n)) (3)

where

– A is a k-dimensional array.
– dkarrayi is a temporary function introduced by translator.
– x1 is an array name variable introduced by translator, and is universally

quantified over arrays of k dimension.

44 P. Rajkhowa and F. Lin

– x2,....,xk+1 are natural number variables representing array indices, and are
universally quantified over natural numbers.

– n is the loop counter variable universally quantified over natural numbers.
– E,E2, ..., Ek+1 are expressions.

For an axiom like (3), our system performs two types of instantiations:

– Instantiating Arrays: this substitutes each occurrence of variable x1 in the
axiom (3) by the array constant A, and generates the following axiom:

∀x1, x2...xk+1.dkarrayi(A, x2...xk+1, n + 1)
= ite(x2 = E2 ∧ ... ∧ xk+1 = Eh+1, E, dkarrayi(A, x2...xk+1, n)) (4)

– Instantiating Array Indices: This substitutes each occurrence of variable
xi, 2 ≤ i ≤ k, in the axiom (4) by Ei, and generates the following axiom:

∀n.dkarrayi(A,E2...Ek+1, n + 1) = E (5)

Example 1. This example shows the effect of instantiation on a complete exam-
ple. Consider the following Battery Controller program from the SV-COMP
benchmark [7,8]:

1. int COUNT , MIN ,i=1 ;
2. int volArray[COUNT];
3. if(COUNT %4 != 0) return ;
4. while(i <= COUNT /4) {
5. if (5 >= MIN){ volArray [i*4-4]=5; }
6. else { volArray [i*4-4]=0; }
7. if (7 >= MIN){ volArray [i*4-3]=7; }
8. else { volArray [i*4-3]=0; }
9. if (3 >= MIN){ volArray [i*4-2]=3; }
10. else { volArray [i*4-2]=0; }
11. if (1 >= MIN){ volArray [i*4-1]=1; }
12. else { volArray [i*4-1]=0; }
13. assert (volArray[i]>=MIN ||volArray[i]==0);
14. i=i+1; }

Our system generates the following set of axioms after the recurrences from the
loop are solved by SymPy:

1. COUNT1 = COUNT
2. j1 = j
3. volArray1 = volArray
4. MIN1 = MIN
5. i1 = ite(((COUNT%4) == 0), (N1 + 1), 1)
6.

∀x1, x2.d1array1(x1, x2)
= ite((COUNT%4) == 0, d1array13(x1, x2, N1), d1array(x1, x2))

Extending VIAP to Handle Array Programs 45

7.

∀x1, x2, n1.d1array13(x1, x2, (n1 + 1)) = ite(1 ≥ MIN,

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4 − 1, 1, d1array13(volArray, x2, n1)),

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4 − 1, 0,

ite(3 ≥ MIN,

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4 − 2, 1, d1array13(volArray, x2, n1))

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4 − 2, 0,

ite(7 ≥ MIN,

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4 − 3, 1, d1array13(volArray, x2, n1)),

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4 − 3, 0,

ite(5 ≥ MIN,

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4 − 4, 1,

d1array13(volArray, x2, n1)),

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4 − 4, 0,

d1array13(volArray, x2, n1)))))))))

8. ∀x1, x2.d1array13(x1, x2, 0) = d1array(x1, x2)
9. (N1 + 1) > (COUNT/4)

10. ∀n1.(n1 < N1) → (n1 + 1) ≤ (COUNT/4)

where (COUNT%4) == 0 is copied directly from the conditional COUNT%4 !=0
in the program and is converted to (COUNT%4) = 0 in Z3.

The instantiation module will then generate the following new axioms from
the one in 7:

1. ∀n1.0 ≤ n1 < COUNT →
d1array13(volArray, (n1 + 1) ∗ 4 − 1, n1 + 1) = ite(1 ≥ MIN, 1, 0)

2. ∀n1.0 ≤ n1 < COUNT →
d1array13(volArray, (n1 + 1) ∗ 4 − 2), n1 + 1) = ite(3 ≥ MIN, 1, 0)

3. ∀n1.0 ≤ n1 < COUNT →
d1array13(volArray, (n1 + 1) ∗ 4 − 3, n1 + 1) = ite(7 ≥ MIN, 1, 0)

4. ∀n1.0 ≤ n1 < COUNT →
d1array13(volArray, (n1 + 1) ∗ 4 − 4, n1 + 1) = ite(5 ≥ MIN, 1, 0)

For the the following assertion to prove:

d1array13(volArray, n1 + 0, N1) ≥ 2 ∨ d1array13(volArray, n1 + 0, N1) = 0

VIAP successfully proved the assertion irrespective of the value of COUNT. On
the other hand, tools like CBMC [5] and SMACK+Corral [9] which prove this
assertion for arrays with small values of COUNT=100 fail when the COUNT value
is non-deterministic or bigger(COUNT=10000) and this has been also reported
by [8]. Other tools like UAutomizer [10], Seahorn [11], ESBMC [12], Ceagle [13],
Booster [14], and Vaphor [15] fail to prove the assertion even for a small value
of COUNT. To our knowledge, Vaphor [15] and VeriAbs [16] are the only other
systems that can prove this assertion regardless of the value of COUNT.

46 P. Rajkhowa and F. Lin

3.2 Proof Strategies

Currently, VIAP tries to prove the given assertion by first trying it directly with
Z3. If this direct proof fails, it tries a simple induction scheme which works as
follows: if N is a natural number constant in the assertion β(N), it is replaced
by a new natural number variable n and proves the universal assertion ∀nβ(n)
using an induction on n. There is much room for improvement here, especially
in the heuristics for doing the induction. This is an active future work for us.

3.3 Multi-dimensional Arrays

Finally, we show an example of a program with multi-dimensional arrays. In
fact, with our approach, nothing special needs to be done here. Consider the
following program for doing matrix addition:

1. int i,j,A[P][Q],B[P][Q],C[P][Q];
2. i=0;j=0;
3. while(i < P){
4. j=0;
5. while(j < Q){
6. C[j][i] = A[i][j]+B[i][j];
7. assert(C[i][j] == A[i][j]+B[i][j])
8. j=j+1;}
9. i=i+1;}

For this program, our system generates the following set of axioms:

1. P1 = P
2. Q1 = Q
3. A1 = A
4. B1 = B
5. C1 = C
6. i1 = (N2 + 0)
7. j1 = j5(N2)
8. ∀x1, x2, x3.d2array1(x1, x2, x3) = d2array5(x1, x2, x3, N2)
9.

∀x1, x2, x3, n1, n2.d2array2(x1, x2, x3, (n1 + 1), n2)
= ite(x1 = C ∧ x2 = n1 ∧ x3 = n2,

d2array2(A,n1 + 0, n2 + 0, n1, n2)+d2array2(B,n1 + 0, n2 + 0, n1, n2),
d2array2(x1, x2, x3, n1, n2))

10. ∀x1, x2, x3, n2.d2array2(x1, x2, x3, 0, n2) = d2array5(x1, x2, x3, n2)
11. ∀n2.(N1(n2) ≥ Q)
12. ∀n1, n2.(n1 < N1(n2)) → (n1 < Q)
13. ∀n2.j5((n2 + 1)) = (N1(n2) + 0)
14. ∀x1, x2, x3, n2.d2array5(x1, x2, x3, (n2 + 1)) = d2array2(x1, x2, x3, N1

(n2), n2)

Extending VIAP to Handle Array Programs 47

15. j5(0) = 0
16. ∀x1, x2, x3.d2array5(x1, x2, x3, 0) = d2array(x1, x2, x3)
17. (N2 ≥ P)
18. ∀n2.(n2 < N2 → (n2 < P))

and the following assertion to prove:

∀n1, n2.d2array5(C, (n1 + 0), (n2 + 0), N2)

= d2array5(A, (n1 + 0), (n2 + 0), N2) + d2array5(A, (n1 + 0), (n2 + 0), N2).

VIAP proved it in 30 s using the direct proof strategy. In comparison, given
that the program has multi-dimensional arrays and nested loops, state-of-art
systems like SMACK+Corral [9], UAutomizer [10], Seahorn [11], ESBMC [12],
Ceagle [13], Booster [14], VeriAbs [16] and Vaphor [15] failed to prove it.

Verifiability: VIAP is implemented in python. The source code, benchmarks
and the full experiments are available in [17].

4 Related Work

Tools like Dafny [3], VeriFast [4] and Why [5] can prove the correctness of a
program with multi-dimensional array only if provided with suitable invariants,
however, VIAP is a fully automatic prover. The Vaphor tool [15], is a Horn
clause base approach which uses the Z3 [18] solver in the back-end, and cannot
handle array program with non-sequential indices, unlike VIAP. Seahorn [11] is
another horn clause based verification framework. Seahorn can only prove 3 out
of 88 programs from the Array-Example directory of SV-COMP benchmarks.
There is a sizable body of work that considers the verification of C programs
including programs with an array such as SMACK+Corral [9], UAutomizer [10],
ESBMC [12], Ceagle [13]. The major limitation of UAutomizer is that it can
only handle most of the programs with array when the property is not quanti-
fied. Ceagle [13] and SMACK+Corral [9] got first and second position in the
ReachSafety-Arrays sub-category of ReachSafety category. SMACK+Corral is
not very effective when it comes to dealing with multi-dimensional programs.
Similarly, the Booster [14] verification tool failed when interpolants for univer-
sally quantified array properties (like programs with multidimensional array)
became hard to compute.

5 Concluding Remarks and Future Work

In this paper, we describe an approach to prove the correctness of imperative
programs with arrays in a system we implemented in an earlier work, called
VIAP. VIAP is continuously evolving. In the future, we will work on incorpo-
rating proofs of the following in VIAP - (1) programs with more advanced data
structures like linked lists, binary trees. (2) program termination (3) and object-
oriented programs in languages like Java.

48 P. Rajkhowa and F. Lin

Acknowledgment. We would like to thank Jianmin Ji, Peisen YAO, Anand Inasu
Chittilappilly and Prashant Saikia for useful discussions. We are grateful to the devel-
opers of Z3 and SymPy for making their systems available for open use. All errors
remain ours. This work was supported in part by the HKUST grant IEG16EG01.

References

1. Lin, F.: A formalization of programs in first-order logic with a discrete linear order.
Artif. Intell. 235, 1–25 (2016)

2. Rajkhowa, P., Lin, F.: VIAP - automated system for verifying integer assignment
programs with loops. In: 19th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2017, 21–24 September, Timisoara,
Romania (2017)

3. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

4. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: Ver-
iFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5 4

5. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

6. Erosa, A.M., Hendren, L.J.: Taming control flow: a structured approach to elim-
inating goto statements. In: Bal, H.E. (ed.) Proceedings of the IEEE Computer
Society ICCLs, Toulouse, France, pp. 229–240 (1994)

7. Program Committee/Jury: SV-COMP: Benchmark Verification Tasks (2018)
8. Chakraborty, S., Gupta, A., Unadkat, D.: Verifying array manipulating programs

by tiling. In: Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp. 428–449. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66706-5 21

9. Carter, M., He, S., Whitaker, J., Rakamaric, Z., Emmi, M.: Smack software verifi-
cation toolchain. In: 2016 IEEE/ACM 38th International Conference on Software
Engineering Companion (ICSE-C), pp. 589–592, May 2016

10. Heizmann, M., et al.: Ultimate automizer with SMTInterpol. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 641–643. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-36742-7 53

11. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

12. Cordeiro, L., Morse, J., Nicole, D., Fischer, B.: Context-bounded model checking
with ESBMC 1.17. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol.
7214, pp. 534–537. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28756-5 42

13. Wang, D., Zhang, C., Chen, G., Gu, M., Sun, J.: C code verification based on
the extended labeled transition system model. In: Proceedings of the MoDELS
2016 Demo and Poster Sessions co-located with ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2016),
2–7 October 2016, Saint-Malo, France, pp. 48–55 (2016)

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-319-66706-5_21
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-642-28756-5_42
https://doi.org/10.1007/978-3-642-28756-5_42

Extending VIAP to Handle Array Programs 49

14. Alberti, F., Ghilardi, S., Sharygina, N.: Booster: an acceleration-based verification
framework for array programs. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 18–23. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-11936-6 2

15. Monniaux, D., Gonnord, L.: Cell morphing: from array programs to array-free horn
clauses. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 361–382. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7 18

16. Chimdyalwar, B., Darke, P., Chauhan, A., Shah, P., Kumar, S., Venkatesh, R.:
VeriAbs: verification by abstraction (competition contribution). In: Legay, A., Mar-
garia, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 404–408. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54580-5 32

17. Rajkhowa, P., Lin, F.: VIAP tool and experiments (2018). https://github.com/
VerifierIntegerAssignment/VIAP ARRAY

18. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/978-3-319-11936-6_2
https://doi.org/10.1007/978-3-319-11936-6_2
https://doi.org/10.1007/978-3-662-53413-7_18
https://doi.org/10.1007/978-3-662-54580-5_32
https://github.com/VerifierIntegerAssignment/VIAP_ARRAY
https://github.com/VerifierIntegerAssignment/VIAP_ARRAY
https://doi.org/10.1007/978-3-540-78800-3_24

Lattice-Based Refinement in Bounded
Model Checking

Karine Even-Mendoza1(B), Sepideh Asadi2, Antti E. J. Hyvärinen2,
Hana Chockler1, and Natasha Sharygina2

1 King’s College London, London, UK
{karine.even mendoza,hana.chockler}@kcl.ac.uk

2 Università della Svizzera italiana, Lugano, Switzerland
{antti.hyvaerinen,sepideh.asadi,natasha.sharygina}@usi.ch

Abstract. In this paper we present an algorithm for bounded model-
checking with SMT solvers of programs with library functions—either
standard or user-defined. Typically, if the program correctness depends
on the output of a library function, the model-checking process either
treats this function as an uninterpreted function, or is required to use
a theory under which the function in question is fully defined. The for-
mer approach leads to numerous spurious counter-examples, whereas the
later faces the danger of the state-explosion problem, where the resulting
formula is too large to be solved by means of modern SMT solvers.

We extend the approach of user-defined summaries and propose to
represent the set of existing summaries for a given library function as a
lattice of subsets of summaries, with the meet and join operations defined
as intersection and union, respectively. The refinement process is then
triggered by the lattice traversal, where in each node the SMT solver uses
the subset of SMT summaries stored in this node to search for a satisfying
assignment. The direction of the traversal is determined by the results of
the concretisation of an abstract counterexample obtained at the current
node. Our experimental results demonstrate that this approach allows
to solve a number of instances that were previously unsolvable by the
existing bounded model-checkers.

1 Introduction

Bounded model checking (BMC) amounts to verifying correctness of a given
program within the given bound on the maximal number of loop iterations and
recursion depth [10]. It has been shown very effective in finding errors in pro-
grams, as many errors manifest themselves in short executions. As the programs
usually induce a very large state space even at bounded depth, there is a need
for scalable tools to make the verification process efficient. The satisfiability
modulo theories (SMT) [22] reasoning framework is currently one of the most
successful approaches to verifying software in a scalable way. The approach is
based on modeling the software and its specifications in propositional logic, while

c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 50–68, 2018.
https://doi.org/10.1007/978-3-030-03592-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_4

Lattice-Based Refinement in Bounded Model Checking 51

expressing domain-specific knowledge with first-order theories connected to the
logic through equalities. Successful verification of software relies on finding a
model that is expressive enough to capture software behavior relevant to cor-
rectness, while sufficiently high-level to prevent reasoning from becoming pro-
hibitively expensive—the process known as theory refinement [28]. Since in gen-
eral more precise theories are more expensive computationally, finding such a
balance is a non-trivial task. Moreover, often there is no need to refine the the-
ory for the whole program. As the modern approach to software development
encourages modular development and re-use of components, programs increas-
ingly use library functions, defined elsewhere. If the correctness of the program
depends on the implementation of the library (or user-defined) functions, there
is a need for a modular approach that allows us to refine only the relevant func-
tions. Yet, currently, the theory refinement is not performed on the granularity
level of a single function, hence BMC of even simple programs can result in a
state explosion, especially if the library function is called inside a loop.

In this paper, we introduce an approach to efficient SMT-based bounded
model checking with lattices of summaries for library functions, either taken from
known properties of the functions or user-defined. Roughly speaking, the lattice
is a subset lattice, where each element represents a subset of Boolean expressions
(that we call facts) that hold for some subset of inputs to the function; the join
and meet operators are defined as union and intersection, respectively (see Sect. 2
for the formal definition). The counter-example-guided abstraction refinement
(CEGAR) [14,16] that we describe in this paper is lattice-based, is triggered
by a traversal of the lattice, and the CEGAR loop is repeated until one of the
following outcomes occurs: (i) we prove correctness of the bounded program (that
is, absence of concrete counterexamples), (ii) we find a concrete counterexample,
or (iii) the current theory together with the equalities in the lattice is determined
insufficient for reaching a conclusion.

The following motivational example illustrates the use of lattices with LRA
(quantifier-free linear real arithmetic) theory.

Example 1. The code example in Fig. 1 describes the greatest common divisor
(GCD) algorithm. We assume that both inputs are positive integers. The pro-
gram is safe with respect to the assertion g ≤ x. However, with the LRA theory,
an SMT solver cannot prove correctness of the program, as GCD is not express-
ible in LRA. The standard approach is to have gcd(x, y) assume any real value;
thus, attempting to verify this program with an SMT solver and the LRA theory
results in an infinite number of spurious counterexamples.

In the example, we augment the solver with a set of facts about the modulo
function, arranged in a meet semilattice. These facts are taken from an existing
set of lemmas and theorems of the Coq proof assistant [3] for a%n:

f1 ≡ z mod mult ≡
≡ a mod n = 0 with the assumption a == x ∗ n for some positive integer x;

f2 ≡ z mod pos bound ∧ z mod unique ≡

52 K. Even-Mendoza et al.

1 i n t gcd (i n t x , i n t y) {
2 i n t tmp ;
3 whi le (y != 0) {
4 tmp = x%y ;
5 x=y ;
6 y=tmp ; }
7 re turn x ;
8 }

1 i n t main (void) {
2 i n t x=45;
3 i n t y=18;
4 i n t g = gcd (x , y) ;
5

6 a s s e r t (g <= x) ;
7 }

Fig. 1. The GCD program using modulo function

≡ (0 ≤ a mod n < n) ∧ (0 ≤ r < n =⇒ a = n ∗ q + r =⇒ r = a mod n)

for some positive integers r and q, with the assumption (n > 0) ∧ (a �= x ∗ n);

f3 ≡ z mod remainder ∧ z mod unique full ≡
≡ (n �= 0 =⇒ (0 ≤ a mod n < n ∨ n < a mod n ≤ 0)) ∧ ((0 ≤ r < n ∨ n < r ≤ 0)

=⇒ a = b ∗ q + r =⇒ r = a mod n) with the assumption true.

The assumptions are different from the original guards in [3], as these are
re-written during the build of the meet semilattice. The original subset lat-
tice consists of all subsets of the set {f1, f2, f3}. It is analysed and reduced as
described in Sect. 3 to remove contradicting facts and equivalent elements. In
this example, the set {f3} generalises {f1} � {f2}. Figure 2 shows the original
subset lattice on the left, and the resulting meet semilattice of facts on the right.

Fig. 2. Original subset lattice of facts and reduced meet semilattice for the modulo
function in LRA

In the lattice traversal, we start from the bottom element ∅ and traverse the
meet semilattice until we either prove that the program is safe or find a real
counterexample (or show that a further theory refinement is needed). In this
example, we traverse the lattice until the element {f3}, which is sufficient to
prove that the program is safe. Specifically, the fact f1 is used to prove loop
termination, and the fact f2 is used to prove the assert.

Our algorithms are implemented in the bounded model checker HiFrog [5]
supporting a subset of the C language and using the SMT solver OpenSMT

Lattice-Based Refinement in Bounded Model Checking 53

[29]. We demonstrate the lattice construction on several examples of lattices for
the modulo function. The facts for the lattice construction are obtained from the
built-in theorems and statements in the Coq proof assistant [3].

Our preliminary experimental results show that lattice-traversal-based
CEGAR can avoid the state-explosion problem and successfully solve programs
that are not solvable using the standard CEGAR approach. The lattices are
constructed using data from an independent source, and we show that even with
a relatively small lattice we can verify benchmarks which either are impossible
to verify in less precise theories or are too expensive to verify with the precise
definition. Our set of benchmarks is a mix of our own crafted benchmarks and
benchmarks from the software verification competition SV-COMP 2017 [4].

The full paper, HiFrog tool, and lattices and programs used in our experi-
ments, are available at http://verify.inf.usi.ch/content/lattice-refinement.

Related Work. Lattices are useful in understanding the relationships between
abstractions, and have been widely applied in particular in Craig interpolation
[20]. For instance [33] presents a semantic and solver-independent framework
for systematically exploring interpolant lattices using the notion of interpolation
abstraction. A lattice-based system for interpolation in propositional structures
is presented in [23], further extended in [6,32] to consider size optimisation tech-
niques in the context of function summaries, and to partial variable assignments
in [30]. Similar lattice-based reasoning has also been extended to interpolation
in different SMT theories, including the equality logic with uninterpreted func-
tions [8], and linear real arithmetic [7]. The approach presented in this work is
different from these in that we do not rely on interpolation, and work in tight
integration with model checking.

In addition to interpolation, also computationally inexpensive theories can
be used to over-approximate complex problem. This approach has been used
in solving equations on non-linear real arithmetic and transcendental functions
based on linear real arithmetic and equality logic with uninterpreted functions
[12,13,31]; as well as on scaling up bit-vector solving [5,27,28]. Parts of our
work can be seen as a generalisation of such approaches as we support inclu-
sion of lemmas from more descriptive logics to increase the expressiveness of
computationally lighter logics.

Abstract interpretation [18] uses posets and lattices to model a sound approx-
imation of the semantics of code. Partial completeness and completeness in
abstract interpretation [17,19,25,26] refers to the no loss of precision during
the approximation of the semantics of code. Giacobazzi et al. [25,26] present
the notation of backward and forward completeness in abstract interpretation
and show the connection between iteratively computing the backward (forward)-
complete shell to the general CEGAR framework [16]; however the completeness
of their algorithm depends on the properties of the abstraction while our algo-
rithm has no such requirements.

http://verify.inf.usi.ch/content/lattice-refinement

54 K. Even-Mendoza et al.

Interesting work on combining theorem provers with SMT solvers include
the SMTCoq system [24]. Our work uses facts from the Coq library, but differs
from SMTCoq in that we import the facts directly to the SMT solver instead
of giving the SMT solver to Coq.

2 Preliminaries

Lattices and Subset Lattices. For a given set X, the family of all subsets of X,
partially ordered by the inclusion operator, forms a subset lattice L(X). The �
and � operators are defined on L(X) as intersection and union, respectively.
The top element � is the whole set X, and the bottom element ⊥ is the empty
set ∅. The height of the subset lattice L(X) is |X| + 1, and all maximal chains
have exactly |X|+1 elements. We note that L(X) is a De-Morgan lattice [11], as
meet and join distribute over each other. In this paper, we consider only lattices
where X is a finite set.

A meet-semilattice is a partially ordered set that has a � for any subset of
its elements (but not necessarily �).

Bounded Model Checking. Let P be a loop-free program represented as a transi-
tion system, and a safety property t, that is, a logical formula over the variables
of P . We are interested in determining whether all reachable states of P satisfy
t. Given a program P and a safety property t, the task of a model checker is
to find a counter-example, that is, an execution of P that does not satisfy t, or
to prove the absence of counter-examples on P . In the bounded symbolic model
checking approach followed in the paper the model checker encodes P into a
logical formula, conjoins it with the negation of t, and checks the satisfiability of
the encoding using an SMT solver. If the encoding is unsatisfiable, the program
is safe, and we say that t holds in P . Otherwise, the satisfying assignment the
SMT solver found is used to build a counter-example.

Function Summaries. In HiFrog, function summaries are Craig interpolants
[20]. The summaries are extracted from an unsatisfiable SMT formula of a suc-
cessful verification, are over-approximations of the actual behavior of the func-
tions, and are available for other HiFrog runs. We use the definition of function
summaries [35] and SMT summaries [5] as in our previous works; examples of
function summaries are available at http://verify.inf.usi.ch/hifrog/tool-usage.

HiFrog and User-Defined Summaries. The tool HiFrog [5] consists of two
main components: an SMT encoder and an interpolating SMT solver OpenSMT2
[29], and uses function summaries [34]. It is possible to provide to HiFrog a
library of user-defined summaries, which are treated in the same way as function
summaries by the SMT solver. We note that the whole set of summaries is
uploaded to the SMT solver at once, which can lead to time-outs due to the
formula being too large. In contrast, our approach by using lattices only uploads
the subset of summaries that are necessary for solving the current instance of
the library function. In the encoding of the experimental sections and examples

http://verify.inf.usi.ch/hifrog/tool-usage

Lattice-Based Refinement in Bounded Model Checking 55

we will use the quantifier-free SMT theories for equality logic with uninterpreted
functions (EUF), linear real arithmetic (LRA), and fixed-width bit vectors. Note
that fixed-width bit vectors are essentially propositional logic.

3 Construction of the Lattice of Facts

In this section we formally define the semilattice of facts for a given library
function and describe an algorithm for constructing it; the inner function calls
in the algorithm are explained at the end of Sect. 3.2. We note that while the size
of the semilattice can be exponential in the number of the facts, the construction
of the semilattice is done as a preprocessing step once, and the results are used
for verification of all programs with this function.

3.1 Definitions

A fact for a library function g with its assumption is added to the set of facts Fg

as (assume(X) ∧ fact(g)) expression, where X is a constraint on the domain of
the input to g under which fact(g) holds. For example, for the modulo function,
we can have a fact assume((a ≥ 0) ∧ (n > 0)) ∧ a%n ≥ 0. For every fact
(assume(X) ∧ fact(g)), we add a fact assume(¬X) ∧ true to Fg. As we discuss
later, this is done in order to ensure that the lattice covers the whole domain of
input variables for the function g.

Given a set of facts Fg for a library function g, the subset lattice L(Fg) is
constructed as defined in Sect. 2. The height of L(Fg) is |Fg|+1 by construction,
and the width is bounded by the following lemma on the width of a subset
lattice.

Lemma 1. For a set S of size s, let L(S) be the subset lattice of S. Then, the
width of L(S) is bounded by

(
s

 s
2 �

)
.

Proof. The bound follows from Sperner’s theorem [9] that states that the width
of the inclusion order on a power set is

(
s

 s
2 �

)
. ��

Not all elements in L(Fg) represent non-contradictory subsets of facts. For
example, a fact f1 = assume((a > 0) ∧ (n > 0)) ∧ a%n ≥ 0 and a fact
f2 = assume(a = 0) ∧ a%n = 0 are incompatible, as the conjunction of their
assumptions does not hold for any inputs. In addition, some elements are equiv-
alent to other elements, as the facts are subsumed by other facts. We remove
the contradictory elements from the lattice, and for a set of equivalent elements
we leave only one element. We denote the resulting set by Lmin(Fg) ⊆ L(Fg),
and the number of facts in an element E, as #E (E ∈ L(Fg)).

It is easy to see that Lmin(Fg) is a meet semilattice, since if two elements
are in Lmin(Fg), they are non-contradictory, and hence their intersection (or an
element equivalent to the intersection) is also in Lmin(Fg). In general, we do
not expect the � element, representing the whole set Fg, to be in Lmin(Fg).
Rather, there is a set of maximal elements of Lmin(Fg), each of which represents

56 K. Even-Mendoza et al.

a maximal non-contradictory subset of facts of Fg; we denote the set of maximal
elements of Lmin(Fg) as maxLmin(Fg).

In the next subsection we describe the algorithm for constructing Lmin(Fg).

3.2 Algorithm

The construction of a meet semilattice of facts for a library function g given a set
of conjunctions of facts and their constraints expressed as assume statements, is
described in Algorithm 1. The algorithm consists of five main components:

Construct a subset lattice from the input. For every statement and its
assumption, we construct a fact fg (line 1); given the set Fg of all facts, we
construct a subset lattice L(Fg) as defined in Sect. 3.1 (line 2).
Consistency check. For every element in the subset lattice we analyse the
subset of facts corresponding to this element (lines 3–10); if the subset contains
no contradictions (lines 6–7), we add the node to the meet semilattice (line 8).
Equivalence check. Remove equivalent elements from the meet semilattice
(lines 11–20).
Cleanup. After the execution of the checks and removal of elements above, it is
possible that in the resulting structure, an element has a single predecessor (lines
21–25). In this case, we unify the element with its predecessor (line 23). This
process is repeated iteratively until all elements have more than one predecessor,
except for the direct successors of the ⊥ element.
Overlapping Assumes. Strengthen an assumption to avoid overlapping
between elements (line 26).

The result of the algorithm is the meet semilattice Lmin(Fg), as defined in
Sect. 3.1. Clearly, the exact Lmin(Fg) depends on the input set of statements,
as well as on the theory. We note, however, that Lmin(Fg) can be used by the
SMT solver with a different theory than the one in which it was constructed, as
long as an encoding of the facts in SMT-LIB2 format with this logic exists. For
example, the reduced meet semilattice in Fig. 2 can be used in EUF, even when
its construction is done via propositional logic, since the encoding of f1, f2, and
f3 exists in EUF. Algorithm 1 invokes the following procedures:

– #E: the number of facts in an element E (defined in Sect. 3.1);
– buildSubsetLattice: construct a subset lattice L(Fg) given a finite set Fg

of facts;
– minimise: given an element E ∈ L(Fg), remove any fact fg ∈ E such as that

∃E′ ⊂ E.(
∧

f ′
g∈E′−{fg} f ′

g) =⇒ fg, starting from the smallest to the largest
E′ (i.e., remove a fact fg if other facts in E imply fg; that way, we minimise
the size of the E);

– checkSAT(F): determine the satisfiablity of a formula F ;
– swap(E1, E2): swap the current subset of facts in E1 with E2, while (roughly

speaking) each element keeps its own edges;
– immediateLower(E): get all immediate predecessors of the element E;
– immediateUpper(E): get all immediate successors of the element E;

Lattice-Based Refinement in Bounded Model Checking 57

Algorithm 1. Construction of Lmin(Fg)
Input : facts = {(X1, Y1), . . . , (Xn, Yn)}: set of pairs of assumptions and facts.
Output: Lmin(Fg)

1 Fg ← ⋃
(X,Y)∈facts{assume(X) ∧ Y, assume(¬X) ∧ true}

2 L(Fg) ← buildSubsetLattice(Fg)
3 foreach element E ∈ L(Fg) do
4 minimise(E) //remove facts that are generalised by other facts in E
5 Query ← ∧

fg∈E fg

6 〈result , 〉 ← checkSAT(Query)
7 if result is SAT then
8 Add E to Lmin(Fg)
9 end

10 end

11 foreach two elements Elower, Eupper ∈ Lmin(Fg) such that Elower is lower than
Eupper do

12 Query ← ¬(
∧

fg∈Elower
fg ⇐⇒ ∧

fg∈Eupper
fg)

13 〈result , 〉 ← checkSAT(Query)
14 if result is UNSAT then
15 if #Elower < #Eupper then
16 swap(Eupper, Elower)
17 end

18 Remove Elower from Lmin(Fg)

19 end

20 end

21 foreach element E ∈ Lmin(Fg) do
22 if (#immediateUpper(E) is 1) ∧ (#immediateLower(immediateUpper(E)) is

1) then
23 Remove E from Lmin(Fg)
24 end

25 end

26 Lmin(Fg) ← fixOverlapsAssume(Lmin(Fg))

27 return Lmin(Fg)

– fixOverlapsAssume(Lmin(Fg)): for each meet element E ∈ Lmin(Fg), change
the assumptions of E’s immediate successors to fix any overlapping assump-
tions. assume(X) of an immediate successor with a trivial fact is updated by
intersecting with negations of all (original) assumes of the rest of the immedi-
ate successors of E, when removing any successor with (altered) assume(X)
equals to false. assume(X) of an immediate successor with facts in Fg is
strengthen by intersecting with the negation of an assume(X) of overlapping
elements with facts in Fg.

In Fig. 2, for example, the assume(X) statement of f2 originally was (n > 0)
thus the assumes of f1 and f2 overlap over many values, e.g., when a = n; in
the example in Fig. 2 we fix the assume of f2 to avoid such overlapping.

58 K. Even-Mendoza et al.

4 Lattice-Based Bounded Model Checking

In this section we describe the Lattice-Based Counterexample-Guided Abstrac-
tion Refinement algorithm for verifying programs with respect to a safety prop-
erty. We present a formal notation for the data structure we use in the refinement
algorithm and show that the refinement algorithm can prove safety of a program
with respect to a given bound.

4.1 Definitions

For a program P and a safety property t such as that P ∪{t} has functions which
are missing the full definition in the current level of abstraction, we denote the
set of all such functions in P ∪ {t} as G, thus G = {g1, . . . , gm}. Each function
g ∈ G has a meet semilattice Lmin(Fg). The set of all meet semilattices of
functions in G is Lmin

G = {Lmin(Fg1), . . . , L
min(Fgm)}.

For each statement s ∈ P ∪{t} with g ∈ G function, we create an instance of
Lmin(Fg). The set Lmin

G,K is a set of all instances of all meet semilattices in Lmin
G .

A meet semilattice instance Lmin
i (Fg) ∈ Lmin

G,K is the i-th instance of function
g in P ∪ {t} where 1 ≤ i ≤ kg, and kg ∈ K is the number of instance of g in
P ∪ {t}. For simplicity of the description of the refinement, we assume each s
has at most one function g ∈ G; if there is more than one g, one can write an
equivalent code that guarantees this property. Note that Algorithms 3, 4 and 2
change instances of meet semilattices and not the meet semilattice itself; since
each statement with a function g requires a different set of facts and thus must
traverse the meet semilattice independently with its instance.

During Algorithm 3, we mark elements E ∈ Lmin
i (Fg) as Safe and add any

such E to the cut of Lmin
i (Fg). A cut of Lmin

i (Fg) is a set of all elements with
an in-edge in the cut-set of the graph representation of Lmin

i (Fg). For example,
possible cuts in the reduced meet semilattice in Fig. 2 can be: {{f1}, {f2}} or
{{f3}}.

Definition 1. Let XLmin
i (Fg) ⊂ Lmin

i (Fg) be a subset of elements. We say
XLmin

i (Fg) is a cut of Lmin
i (Fg) if all chains from ∅ to element(s) Emax ∈

maxLmin
i (Fg) contain at least one element in XLmin

i (Fg).

where Emax is a maximal element; maximal elements of a meet semilattice and
a set of maximal elements are described in Sect. 3.1.

We use the elements in the cut of Lmin
i (Fg) in the proof of Theorem1; we show

Algorithm 2 returns Safe when a program with a given bound and a property
is Safe, because the union of all assumptions of elements in XLmin

i (Fg) captures
the whole domain of the inputs of g,

Lemma 2. Given a cut XLmin
i (Fg) of function g : Din → Dout the union of all

assumptions (assume statements) of all facts in the cut is Din.

Proof. We prove by induction that for a subset lattice L(Fg): for any element
E ∈ L(Fg) its assume refers to the same domain as the union of assumes of all
successors of E element.

Lattice-Based Refinement in Bounded Model Checking 59

(base) the union of assumes of all successors of ∅ element is Din: from line 1
in Algorithm 1 we know that the union of assumes of all successors of ∅ element
is Din by construction of Fg, and ∅ element has no assumption and thus captures
all the input domain.

(step) for each element E ∈ L(Fg), the union of assumes of all successors
of E is equivalent to the assume of E. Since L(Fg) is a subset lattice, then
all immediate upper elements of an element E ∈ L(Fg) contain exactly one
additional fact from Fg. From line 1 in Algorithm1, we know that any fact
(assume(X)∧Y) has the opposite fact (¬assume(X)∧true), thus union of any
such pair of facts in Fg leaves the original assume of E the same; since each
of the successor of E must contain either an original fact or its complementary
fact, we get that the assume of the union of the successors of E stays the same
as required.

Since all chains start from ∅ which refers to the whole domain Din, and since
the assume of an element is a union of assumes of its immediate successors as
proved by induction above, then if there is a cut where the union of all assumes
of all facts in the cut is not Din then there is a chain from ∅ to maximal element
without an element in the cut, which contradict the definition of a cut. When
extract Lmin(Fg), we only fix overlapping assumes thus the union of assumes
stays the same in a cut and therefore refers to the whole domain as before. ��
Note that, the rest of the changes of elements in Lmin(Fg) do not affect the
union of assumes; consistency check removes elements with no contribution to
the input domain (as these equivalent to false), equivalence check affects only the
number of possible cuts, and cleanup removes elements with the same assume
with a weaker fact in compare to their single immediate successor.

4.2 Algorithm

Algorithm 2 takes the symbolically encoded program P with a safety property
t and constructs an over-approximating formula ϕ̂ of the problem in a given
initial logic (line 1). Algorithm2 refines ϕ̂ by adding and removing facts from
meet semilattices Lmin(Fg) ∈ Lmin

G according to the traversal on an instance of
the meet semilattice per refined expression (main loop, lines 3–21); the algorithm
terminates once it has proved the current ϕ̂ is Safe (lines 8–10), after extracting
a real counterexample (lines 14–16), or after using all facts in meet semilattices
of Lmin

G while still receiving spurious counterexamples (lines 17–19 or 23). The
refinement in Algorithm 2 is finite and returns Unsafe if t does not hold in P .
Algorithm 2 returns Safe if and only if the facts in Lmin

G can refine functions in
ϕ̂ and t holds in P .

A counterexample in the last known precision is returned when t does not
hold in P and the facts in Lmin

G can refine the over-approximate functions in
ϕ̂. Algorithm 2 checks if CE is a spurious counterexample similarly to the coun-
terexample check in [28] and returns either true with a real counterexample when
all queries are SAT, or false otherwise. The solver produces an interpretation for

60 K. Even-Mendoza et al.

the variables or a partial interpretation of uninterpreted functions and uninter-
preted predicates in the case of EUF, for statements s ∈ P ∪ {t} in the current
precision. The counterexample validation determines whether the conjunction
of s and CE with an interpretation or partial interpretation is UNSAT in a
more precise theory; an UNSAT result in any of the queries indicates that the
counterexample is indeed spurious. A more precise theory can be the theory
of bit-vectors as in [28] or the theory the meet semilattice was built with; if
no available description of the function g with the current query exist in any
preciser theory, we assume CE is spurious.

The data structures used in Algorithm 2 are described in Sect. 4.1. Note that
Algorithm 2 allocates a new instance of a meet semilattice Lmin

i (Fg) ∈ Lmin
G,K for

each i-th instance of function g in P ∪{t}, thus the main loop in lines 3–21 refers
only to these instances of meet semilattices, where i, kg, g,K,G are defined in
Sect. 4.1.

Algorithm 2. Lattice-Based Counterexample-Guided Refinement
Input : P = {s1 := (x1 = t1), . . . , sn := (xn = tn)}: a program, t: safety

property, Lmin
G = {Lmin(Fg1), . . . , L

min(Fgm)}: a set of meet
semilattices.

Output: 〈Safe, ⊥〉 or 〈Unsafe,CE〉 or 〈Unsafe, ⊥〉
1 ϕ̂ ← ∧

s∈P∪{t} convert(s)

2 Lmin
G,K ← ⋃

s∈P∪{t},g∈G,i∈{1,...,kg(∈K)}(L
min
i (Fg) ← initialiseLI(s, Lmin(Fg)))

3 while ∃Lmin
i (Fg) ∈ Lmin

G,K : element(Lmin
i (Fg)) has upper element do

4 χ ← ∧
Lmin

i (Fg)′∈Lmin
G,K

currentFacts(Lmin
i (Fg)

′)

5 Query ← ϕ̂ ∧ χ
6 〈result ,CE〉 ← checkSAT(Query)
7 if result is UNSAT then
8 if (∀Lmin

i (Fg)
′′ ∈ Lmin

G,K : isSafe(Lmin
i (Fg)

′′)) ∨ (χ is true) then
9 return 〈Safe, ⊥〉 //Safe - Quit

10 end

11 Lmin
G,K ← updateCutAndWalk(Lmin

G,K) //element is safe, continue traversal

12 end
13 else
14 if checkRealCE(Query ,CE) then
15 return 〈Unsafe,CE〉 //Real Counterexample - Quit
16 end

17 if !refine(Query ,CE , P, t, Lmin
G,K) then

18 return 〈Unsafe, ⊥〉 //Cannot Refine - Quit
19 end

20 end

21 end
22 // End Of Main Loop
23 return 〈Unsafe, ⊥〉 //Cannot refine - Quit

Lattice-Based Refinement in Bounded Model Checking 61

Sub-Algorithm 3 is a high-level description of updateCutAndWalk sub-
procedure. For the current instance of a meet semilattice Lmin

i (Fg) where E
is the current element, updateCutAndWalk marks E as safe, adds E to the cut
of Lmin

i (Fg), and traverses on an instance of a meet semilattice via walkRight
either on Lmin

i (Fg) (if not yet safe) or (else) on any instance with no cut yet.
Note that the sub-procedure walkRight changes the same instance of a meet
semilattice until Algorithm 2 is in either lines 9, 15, 18, or 22, or Algorithm3 is
in lines 3–5.

Algorithm 3. updateCutAndWalk - Mark element as safe and traverse the
semilattice
Input : Lmin

G,K : a set of meet semilattice instances.
Output: Lmin

G,K after traversal
1 Lmin

i (Fg) ← last changed meet semilattice instance in Lmin
G,K

2 Mark current element in Lmin
i (Fg) as Safe

3 if isSafe(Lmin
i (Fg)) then

4 ∀Lmin
i (Fg)

′ ∈ Lmin
G,K .¬isSafe(Lmin

i (Fg))
′ =⇒ reset(Lmin

i (Fg)
′)

5 Set Lmin
i (Fg) to be an item from the set

{Lmin
i (Fg)

′′|Lmin
i (Fg)

′′′ ∈ Lmin
G,K ∧ ¬isSafe(Lmin

i (Fg))
′′′}

6 end

7 walkRight(Lmin
i (Fg))

8 return Lmin
G,K // Returns back to the main loop in Alg. 2 line 11

A high-level description of the sub-procedure refine is given in Algorithm 4,
and describes the refinement of a single CE via instances of a meet semilattice.
The main loop (lines 1–13) searches Lmin

i (Fg) which refines CE , the inner loop
(lines 3–9) adds facts from elements in Lmin

i (Fg) until CE is refined or a maximal
element is reached; in the latter case we drop the changes in Lmin

i (Fg) (lines 10–
12) and try a different Lmin

i′ (Fg′). The refinement successes if the query (line 5)
detects CE is a spurious counterexample without using a more precise theory
(lines 4–8) but using new added facts (line 10, previous loop). The refinement
fails if for all Lmin

i (Fg) ∈ Lmin
G,K , no element could refine the current CE (lines

17–19). The refinement order is determined by the way Algorithm 4 goes over
statements s ∈ P ∪{t} (line 1), which is done according to sets of basic heuristics
defined in [28].

We describe the rest of the function calls in general; let s be a statement
s ∈ P ∪ {t}, F be a logical formula, CE a counterexample, x a meet semilattice
of a statement s with a function g, and x′ an instance of a meet semilattice x.
Algorithms 2, 3, and 4 invoke the following procedures:

– convert(s): create a symbolic formula in the initial logic;
– checkSAT(F): determine the satisfiablity of a formula F ;
– checkRealCE(F,CE): is true if CE is a valid counterexample of formula F ;
– element(x′): retrieve the current element in x′ or � for x′ with a full cut;

62 K. Even-Mendoza et al.

Algorithm 4. refine with a Single Counterexample
Input : Query and CE formulas, and P =

{s1 := (x1 = t1), . . . , sn := (xn = tn)}: a program, t: safety property,
Lmin

G,K : a set of meet semilattice instances.
Output: true or false

1 for s ∈ P ∪ {t} with Lmin
i (Fg) ∈ Lmin

G,K do
2 n ← element(Lmin

i (Fg)) //To reset later to original location

3 while element(Lmin
i (Fg)) has upper element do

4 χ′ ← currentFacts(Lmin
i (Fg))

5 〈result , 〉 ← checkSAT(Query ∧ CE ∧ χ′)
6 if result is UNSAT then
7 break // Refined the current CE
8 end
9 if result is SAT then

10 walkUpper(Lmin
i (Fg))

11 end

12 end

13 if element(Lmin
i (Fg)) ∈ maxLmin

i (Fg) ∧ result is SAT then
14 reset(Lmin

i (Fg), n)
15 end

16 end

17 if all Lmin
i (Fg) ∈ Lmin

G,K reset location in line 11 then
18 return false // Returns and terminates the main loop in Alg. 2 lines 17-18
19 end
20 return true // Returns back to the main loop in Alg. 2 line 17

– currentFacts(x′): retrieves the formula of facts in x′ which is either a union
of all elements in the cut, an intersection of the facts in the current element,
or true if the current element is the ∅;

– walkRight(x′): simulate a traversal of x′ as described below;
– walkUpper(x′): simulate a traversal of x′ from the current element to elements

with stronger subset of facts;
– initialiseLI(s, x): create an instance of a meet semilattice x′ for s and

operation(s), if a meet semilattice exists in Lmin
G for operation(s);

– operation(s): retrieve the operation or function call name in s;
– isSafe(x′): indicate if x′ refines g in s with Safe result as described above,

an Unsafe result of the refinement is taken care in the loop itself and does
not need a sub-procedure;

– reset(x′): set the current element of simulation of the lattice traversal to be
⊥ and initialise the inner state of the search on the meet semilattice instance.

Note that, the function updateCutAndWalk is Algorithm 3, and the function
refine is Algorithm 4, both are been called in the main loop of Algorithm2,
lines 11 and 17 respectively.

Lattice-Based Refinement in Bounded Model Checking 63

Traversal of a Meet Semilattice. For function g such as that g is over-
approximated in the initial theory and g has a meet semilattice Lmin(Fg) ∈
Lmin
G , the algorithm creates an instance of a meet semilattice Lmin

i (Fg) to simu-
late the traversal of the meet semilattice in a DFS style per instance of g. Several
instances of a meet semilattice of g are required for example when g is part of a
loop.

A traversal on an instance of a meet semilattice Lmin
i (Fg) starts with ∅ ele-

ment, adding no facts to the query ϕ̂. During execution, if ϕ̂ is SAT in the
current precision, then the next element on the traversal is one of the immediate
successors of the current element, as long as no real counterexample is obtained,
in which case the algorithm terminates and returns Unsafe with the counterex-
ample. After reaching an element in maxLmin

i (Fg) during the traversal indicates
that the facts in the elements of Lmin

i (Fg) cannot refine the i − th instance of
g with respect to the spurious counterexample, which can also terminate the
refinement in Algorithm 2 and returns Unsafe.

Once the query ϕ̂ with facts of E ∈ Lmin
i (Fg) is UNSAT, the traversal skips

the successors of E, marks E as safe, adds E to XLmin
i (Fg), and continues with

one of the siblings of E according to the DFS order from left to right; if there are
no remaining siblings of E, the traversal of Lmin

i (Fg) terminates, and outputs
the cut XLmin

i (Fg); there is no use of a current element of the meet semilattice
Lmin
i (Fg) once the traversal terminates and only the facts in its cut are used.

For a program with several instances of meet semilattices, once Algorithm 2
finds a cut XLmin

i (Fg), the cut is added to χ′ as a union of all elements in the
cut with their facts. This allows using the facts in the cut for searching cuts on
the rest of the instances of meet semilattices.

The following theorem shows that if Algorithm2 outputs a positive result
(that is, the program is safe with respect to the given bound), then there are no
counterexamples up to the given depth in the program.

Theorem 1. Given a program P , a safety property t, a set of functions (g ∈)
G, and a set of instances of meet semilattices Lmin

G,K for the functions in G, if
there exists a cut XLmin

i (Fg) in the meet semilattice of facts Lmin
i (Fg) for each

instance i ∈ kg of the function g such that the result of solving the program with
each element in XLmin

i (Fg) is UNSAT, then the program is safe with respect to
the given bound and the property.

Proof (Sketch). Algorithm 2 returns Safe in line 8 when all Lmin
i (Fg) are safe

with respect to their cuts XLmin
i (Fg). The last query (Algorithm 2, line 6) just

before satisfying the condition in line 8 is a conjunction of union of elements of
cuts XLmin

i (Fg) of each of the instances of the meet semilattice. By Lemma 2,
the union of assume statements of elements in the cut is the input domain Din

of g, for all instances i ∈ kg of all g ∈ G. Therefore, if no satisfying assignment
has been found in the cut, there is no satisfying assignment in Din of g, for all
instances of g in the unwound program P . Therefore, the result is UNSAT, and
the program is safe with respect to the given bound. ��

64 K. Even-Mendoza et al.

The cut we use, is a disjunction (i.e., union of elements in a cut) of a con-
junction of facts (i.e., intersection of all facts in an element in a cut); when using
more than a single cut in Query , the expression is a conjunction of the expres-
sion of a cut above. The full proof of Theorem1 is shown in the full version
of the paper http://verify.inf.usi.ch/content/lattice-refinement using a formal
definition of the expression of a cut.

5 Implementation and Evaluation

This section describes the prototype implementation and the evaluation of the
lattice-based counterexample-guided refinement framework.

The algorithm is implemented on the SMT-based function summarisation
bounded model checker HiFrog[5] and uses the SMT solver OpenSMT[29].
The experiments run on a Ubuntu 16.04 Linux system with two Intel Xeon
E5620 CPUs clocked at 2.40 GHz. The timeout for all experiments is at 500 s
and the memory limit is 3 GB.

The scripts for the build of a meet semilattice, the meet semilattice for mod-
ulo operation, the complete experimental results, and the source code, are avail-
able at [1,2]. The script contains greedy optimisations of Algorithm1 to avoid,
if possible, exponential number of SAT-solver calls; lines 3–10: starting the loop
from the smallest subsets of facts, once a small subset of facts of an element is
contradictory, all its upper elements are pruned; lines 11–19: considers only pairs
of (roughly speaking) connected elements.

HiFrog

SMT-Encoder
Symbolic
execution

SSA
Slicing

LRA

EUF

Lattice Traversal

CEX
validator

Refiner

Facts
Model

OpenSMT

OpenSMT

BVP

OpenSMT

LRA EUF Semi
Lattices

terms + new
facts vs. CEX

SAT

UNSAT

current
encoding SAT

inconclusive;
need to refine theory

Safe
Assertion holds

Terms
vs. CEX

UNSAT

SAT
error

trace

Facts

UNSAT

SAT +
Model

program +
assertion

selection
of theory

Fig. 3. The SMT-based model checking framework implementing a lattice-based
counterexample-guided refinement approach used in the experiments

The overview of interaction between HiFrog, the refiner in HiFrog and
the SMT solver OpenSMT is shown in Fig. 3. In the current prototype we

http://verify.inf.usi.ch/content/lattice-refinement

Lattice-Based Refinement in Bounded Model Checking 65

add facts of the meet semilattice as SMT summaries, while checking before
using a summary that its assume formula holds for better performance. The
definition of the cut stays the same and contains only facts from Fg. The spurious
counterexample check is done via the CEX validator using bit-vector logic (see
[28]); any function that has no precise encoding is then added as a candidate
to refine as HiFrog cannot validate a counterexample in the context of this
function.

The lattice traversal component contains 3 sub-components: (1) facts model
which contains the pure model (the meet semilattice) we load to HiFrog and
instances of a meet semilattice per expression we refine, (2) the CEX valida-
tor that validates the counterexample and reports real counterexamples in case
found, and (3) the refiner which does the refinement, adds facts to and removes
facts from the encoding, interacts with the CEX validator and terminates the
refinement for each of the three possible cases. The OpenSMT instances use
either EUF or LRA for modeling and bit-vectors for CEX validation.

Extraction of Facts. The preprocessing step of our framework is extracting a set
of facts Fg for a function g. The facts can be imported from another program or a
library. In the experimental results, we import facts from the Coq proof assistant
[3], where g := mod is modulo function. We use a subset of lemmas, theorems
and definitions of modulo from [3] as is, as the data is simple to use, well known,
and reliable. We translate the facts into the SMT-LIB2 format manually (see [1]
for the results of translation).

Validation. The validation test is as follow; given a function g, a set of facts Fg,
a statement s such that a fact fs ∈ Fg is sufficient to verify s, assure that s ∧ fs
is UNSAT via a model checker. A complementary validation test is the sanity
check which verifies that the facts are not contradictory. We describe in details
the validation tests for modulo operator in the full version of the paper http://
verify.inf.usi.ch/content/lattice-refinement; thus the function g is mod and the
set of facts is Fg := Fmod.

Experimental Results. We use a meet semilattice for refinement of modulo func-
tion with a set of 20 facts which are a small arbitrary subset of modulo operation
properties; the width and height of the modulo meet semilattice are 21 and 18
respectively; the raw data is taken from the Coq proof assistant [3] (see [1] for
a meet semilattice sketch). The UNSAT proof of queries during the refinement
are done using either OpenSMT [29] or Z3 [21], using a none-incremental mode
of the solvers, due to known problems in the OpenSMT implementation; we
expect better experimental results in terms of time and memory consumption
once improving the implementation.

Our benchmarks consist of 74 C programs using the modulo operator at least
few times; in 19 benchmarks the modulo operator is in a loop. The benchmarks
set is a mix of 19 SV-COMP 2017 benchmarks [4] (8 Unsafe and 11 Safe bench-
marks), our own 24 benchmarks including some hard arithmetic operations with
modulo and multiplication, and 31 crafted benchmarks with modulo operator

http://verify.inf.usi.ch/content/lattice-refinement
http://verify.inf.usi.ch/content/lattice-refinement

66 K. Even-Mendoza et al.

Table 1. Verification results of lattice refinement against CBMC [15], theory refinement
[28], and EUF and LRA without lattice refinement. #-number of instances, FP SAT-
false positive SAT result, TO-time out of 500 s, MO-Out of Memory of 3GB

Approach # instances solved # instances unsolved

SAT UNSAT FP SAT TO,MO

LRA Lattice Ref. 23 32 9 10,0

EUF Lattice Ref. 23 8 33 10,0

Theory Ref. 22 18 20 11,3

CBMC 5.7 23 34 1 6,10

PURE LRA 23 7 34 10,0

PURE EUF 23 6 35 10,0

(20 Unsafe and 35 Safe benchmarks). Table 1 provides the summary of the
experimental results.

We compared our implementation of lattice-based refinement approach in
HiFrog against: pure LRA encoding and pure EUF encoding in HiFrog,
theory-refinement mode of HiFrog, and cbmc version 5.7 (the winner of the
software model checking competition falsification track in 2017). cbmc version
5.7 --refine option performs as the standard cbmc version, and thus is not
included in Table 1.

Even with a prototype implementation of meet semilattices of facts, HiFrog
fares quite well in comparison to established tools. In particular, it has better
resource consumption than cbmc and theory-refinement mode of HiFrog, while
also having much better results proving safety of programs than HiFrog with-
out lattices; and moreover HiFrog with meet semilattices of facts has the same
performance as HiFrog with a lightweight theory only, and yet is able to prove
safety of more benchmarks than before. The lattice base refinement approach
can still fail to prove safety when other operations are abstracted from the SMT
encoding (e.g., SHL, SHR, pointer arithmetic) or, in LRA when the code con-
tains non-linear expressions. Another reason is related to the modeling itself:
a small sample of 20 facts can be insufficient to prove safety, as well the com-
bination of several meet semilattices might require smarter heuristics. None of
the approaches in the comparison reports Unsafe benchmarks as Safe. The full
table of results and the set of benchmarks are available at [1].

Acknowledgments. We thank Grigory Fedyukovich for helpful discussions.

References

1. http://verify.inf.usi.ch/content/lattice-refinement
2. https://scm.ti-edu.ch/projects/hifrog/
3. The coq proof assistant. https://coq.inria.fr/

http://verify.inf.usi.ch/content/lattice-refinement
https://scm.ti-edu.ch/projects/hifrog/
https://coq.inria.fr/

Lattice-Based Refinement in Bounded Model Checking 67

4. Competition on software verification (SV-COMP) (2017). https://sv-comp.sosy-
lab.org/2017/

5. Alt, L., et al.: HiFrog: SMT-based function summarization for software verification.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 207–213.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5 12

6. Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: A proof-sensitive app-
roach for small propositional interpolants. In: Gurfinkel, A., Seshia, S.A. (eds.)
VSTTE 2015. LNCS, vol. 9593, pp. 1–18. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-29613-5 1

7. Alt, L., Hyvärinen, A.E.J., Sharygina, N.: LRA interpolants from no man’s land.
Hardware and Software: Verification and Testing. LNCS, vol. 10629, pp. 195–210.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70389-3 13

8. Alt, L., Hyvärinen, A.E.J., Asadi, S., Sharygina, N.: Duality-based interpolation
for quantifier-free equalities and uninterpreted functions. In: Stewart, D., Weis-
senbacher, G. (eds.) Proceedings of FMCAD 2017, pp. 39–46. IEEE (2017)

9. Anderson, I.: Combinatorics of Finite Sets. Clarendon Press, Oxford (1987)
10. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

11. Birkhoff, G.: Lattice Theory, 3rd edn. AMS, Providence (1967)
12. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant checking

of NRA transition systems via incremental reduction to LRA with EUF. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 58–75. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-662-54577-5 4

13. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Satisfiability mod-
ulo transcendental functions via incremental linearization. In: de Moura, L. (ed.)
CADE 2017. LNCS (LNAI), vol. 10395, pp. 95–113. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63046-5 7

14. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

15. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

16. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

17. Cousot, P.: Partial completeness of abstract fixpoint checking. In: Choueiry, B.Y.,
Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 1–25. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-44914-0 1

18. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1977, pp. 238–252. ACM, New York (1977)

19. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 1979, pp. 269–282. ACM, New York (1979)

20. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22, 269–285 (1957)

https://sv-comp.sosy-lab.org/2017/
https://sv-comp.sosy-lab.org/2017/
https://doi.org/10.1007/978-3-662-54580-5_12
https://doi.org/10.1007/978-3-319-29613-5_1
https://doi.org/10.1007/978-3-319-29613-5_1
https://doi.org/10.1007/978-3-319-70389-3_13
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-662-54577-5_4
https://doi.org/10.1007/978-3-319-63046-5_7
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/3-540-44914-0_1

68 K. Even-Mendoza et al.

21. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

22. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

23. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–
145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11319-2 12

24. Ekici, B., Mebsout, A., Tinelli, C., Keller, C., Katz, G., Reynolds, A., Barrett,
C.: SMTCoq: a plug-in for integrating SMT solvers into Coq. In: Majumdar, R.,
Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 126–133. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63390-9 7

25. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements
in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp.
356–373. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-47764-0 20

26. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM 47(2), 361–416 (2000)

27. Ho, Y.S., Chauhan, P., Roy, P., Mishchenko, A., Brayton, R.: Efficient uninter-
preted function abstraction and refinement for word-level model checking. In:
FMCAD, pp. 65–72. ACM (2016)

28. Hyvärinen, A.E.J., Asadi, S., Even-Mendoza, K., Fedyukovich, G., Chockler, H.,
Sharygina, N.: Theory refinement for program verification. In: Gaspers, S., Walsh,
T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 347–363. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66263-3 22

29. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: an SMT
solver for multi-core and cloud computing. In: Creignou, N., Le Berre, D. (eds.)
SAT 2016. LNCS, vol. 9710, pp. 547–553. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-40970-2 35

30. Janč́ık, P., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Kofroň, J., Sharygina,
N.: PVAIR: partial variable assignment InterpolatoR. In: Stevens, P., Wasowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 419–434. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7 25

31. Kutsuna, T., Ishii, Y., Yamamoto, A.: Abstraction and refinement of mathemati-
cal functions toward smt-based test-case generation. Int. J. Softw. Tools Technol.
Transfer 18(1), 109–120 (2016)

32. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
a framework for producing effective interpolants in SAT-based software verification.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol.
8312, pp. 683–693. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45221-5 45

33. Rummer, P., Subotic, P.: Exploring interpolants. In: Formal Methods in Computer-
Aided Design (FMCAD), pp. 69–76. IEEE (2013)

34. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: bounded model checking with
interpolation-based function summarization. In: Chakraborty, S., Mukund, M.
(eds.) ATVA 2012. LNCS, pp. 203–207. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33386-6 17

35. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based function summaries
in bounded model checking. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC
2011. LNCS, vol. 7261, pp. 160–175. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34188-5 15

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-11319-2_12
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1007/3-540-47764-0_20
https://doi.org/10.1007/978-3-319-66263-3_22
https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1007/978-3-662-49665-7_25
https://doi.org/10.1007/978-3-642-45221-5_45
https://doi.org/10.1007/978-3-642-45221-5_45
https://doi.org/10.1007/978-3-642-33386-6_17
https://doi.org/10.1007/978-3-642-33386-6_17
https://doi.org/10.1007/978-3-642-34188-5_15
https://doi.org/10.1007/978-3-642-34188-5_15

Verified Certificate Checking
for Counting Votes

Milad K. Ghale1(B), Dirk Pattinson1, Ramana Kumar2, and Michael Norrish3

1 Australian National University, Canberra, Australia
{milad.ketabghale,dirk.pattinson}@anu.edu.au

2 Data61, CSIRO and UNSW, Kensington, Australia
ramana.kumar@cl.cam.ac.uk

3 Data61, CSIRO, and ANU, Canberra, Australia
michael.norrish@data61.csiro.au

Abstract. We introduce a new framework for verifying electronic vote
counting results that are based on the Single Transferable Vote scheme
(STV). Our approach frames electronic vote counting as certified com-
putation where each execution of the counting algorithm is accompanied
by a certificate that witnesses the correctness of the output. These cer-
tificates are then checked for correctness independently of how they are
produced. We advocate verification of the verifier rather than the soft-
ware used to produce the result. We use the theorem prover HOL4 to
formalise the STV vote counting scheme, and obtain a fully verified cer-
tificate checker. By connecting HOL4 to the verified CakeML compiler,
we then extract an executable that is guaranteed to behave correctly
with respect to the formal specification of the protocol down to machine
level. We demonstrate that our verifier can check certificates of real-size
elections efficiently. Our encoding is modular, so repeating the same pro-
cess for another different STV scheme would require a minimal amount
of additional work.

1 Introduction

The main contribution of this paper is a new framework for verifiably correct vote
counting. Electronic voting is becoming more and more prevalent worldwide. But
almost scandalously, the current state of affairs leaves much to be desired, given
that the public vote is a cornerstone of modern democracy. Indeed electronic
techniques as they are used now may be seen as a step back from traditional
paper based elections.

For example, the vote counting software that is used in Australia’s most
populous state, New South Wales, was found to contain errors that had an
impact in at least one seat that was wrongly filled with high probability. This
was reported in specialist publications [5] as well as the national press [3].

When counting ballots by hand, the counting is monitored by scrutineers,
usually members of the general public or stakeholders such as party representa-
tives. In contrast, computer software that is used to count ballots merely pro-
duces a final result. Moreover, in many cases, the source code of these programs
c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 69–87, 2018.
https://doi.org/10.1007/978-3-030-03592-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_5

70 M. K. Ghale et al.

is commercial in confidence, and there is no evidence of the correctness of the
count that could be seen as analogous to scrutineers in traditional, paper-based
vote counting.

It is universally recognised that transparent and verifiable vote counting is
a key constituent to establish trustworthiness, and subsequently trust, in the
final outcome. The computer-based methods currently in use fail to meet both
expectations.

In the literature on electronic voting, the notion of universal verifiability of
vote counting (any voter can check that the announced result is correct on the
basis of the published ballots [14]) has long been recognised as being central,
both for guaranteeing correctness, and building trust, in electronic elections.
This notion has three subproperties; verifiability of casting votes as intended
by voters, recording votes as intended, and counting votes as recorded [8]. The
aim of this paper is only to address the last property, namely verifiability of the
tallying process.

The approach presented here combines the concept of certifying algorithms
[17] with formal specification and theorem proving to address this challenge. In
a nutshell, a certifying algorithm is an algorithm that produces, with every exe-
cution, an easily-verifiable certificate of the correctness of the computed result.
This certificate can then be scrutinised by a verifier, independently of the tools,
hardware or software that were used to create the certificate.

Our focus in this paper is on the certificate verifier. We briefly discuss a
concise formal specification of single transferable vote (STV), a complex, pref-
erential voting system used e.g. in Ireland, Malta, New Zealand and Australia
for multi-seat constituencies. From this specification, we develop a notion of cer-
tificate so that correct certificates guarantee correctness of election results. The
main body of our work concerns the verifier (certificate checker), and we present
a synthesis of the verifier that is itself fully verified down to the machine-code
level.

This proceeds in four steps.1 First, we formalise the vote counting protocol as
a sequence of steps inside the HOL theorem prover where every step corresponds
to an action taken by a counting officer in a paper-based setting. There are two
kinds of stages that we call judgements in analogy to typing assertions in type
theory. Final judgements just declare the set of winners. NonFinal judgements
represent the current state of the count as a tuple, corresponding to a snap-
shot of the stage of the count in a paper-based setting. The formalisation of the
voting protocol then takes the form of rules that specify how to advance from
one judgement to the next, thereby progressing the count. The applicability of
particular rules are described by side conditions that are in turn formalised by
HOL predicates. A correct certificate is then simply a sequence of judgements
where each judgement is justified through its predecessor by means of a correct
rule application. The task of the verifier is then simply to process a list of judge-

1 Source code of the formalisation can be found at https://github.com/
MiladKetabGhale/Checker.

https://github.com/MiladKetabGhale/Checker
https://github.com/MiladKetabGhale/Checker

Verified Certificate Checking for Counting Votes 71

ments and ascertain that this is indeed the case. In particular, our specification
of rules is purely descriptive.

Second, in tandem with the logical specification of each rule, we define a
boolean-valued function that checks whether or not the rule has been applied
correctly. This then directly gives rise to the verifier that, at every step, just
checks whether any of the rules is applicable, using the corresponding boolean-
valued function.

Third, we establish correspondence between the logical definitions and their
computational counterparts. This boils down to formally establishing that the
logical specification holds if and only if the boolean-valued function returns true,
which in turn implies the correctness of the certificate verifier. This allows us
to conclude that a valid certificate indeed implies that the election protocol has
been carried out in accordance to the specification.

In the fourth, and last step, we synthesise an implementation of the verifier
and produce a proof of this implementation’s correctness. This is achieved by
using proof-producing synthesis [18] of CakeML code from the HOL definitions,
then using the verified CakeML compiler [22] to produce the machine code. To
perform computation on an actual certificate, we define the formal syntax for
certificates, and a parser in HOL, that we combine with the I/O mechanisms of
CakeML to obtain the verifier. The result is an executable verifier that provably
validates a certificate if and only if the certificate witnesses a correct execution
of the vote counting protocol.

In summary, our slogan is “verify the verifier”. Rather than verifying the
program that performs an election count, we demand that a program produces
a certificate that we can then independently verify. This has several advantages.
For one, it is much less labour intensive to verify the verifier, compared with
verifying the counting program. Second, having verifiable certificates at hand
establishes the count-as-recorded property [8]. Third, we achieve correctness over
a minimal trust base through the use of CakeML.

In the remainder of the paper, we describe our framework in detail and
demonstrate that it can handle real-world size elections by evaluating it on his-
torical data of elections conducted in Australia.

2 The Protocol and Its HOL Formalisation

Single Transferable Vote is a preferential voting scheme that is used in multi-
seat constituencies. Voters rank (possibly a subset of) candidates by assigning
numerical preferences to candidates where no two candidates may be given the
same preference. This allows us to represent ballots as duplicate free lists of
candidates where the list order reflects the preference order.

Each election defines a quota, i.e. a minimal set of votes that a candidate
must receive in order to be elected. The count starts by counting all voters’ first
preferences, and candidates who reach the quota are elected, but in general there
will still be seats to fill. This is effected by two mechanisms:

72 M. K. Ghale et al.

1. Transfer of surplus votes. Votes for elected candidates in excess of the quota
are distributed to (and counted in favour of) the next preference listed on the
ballot.

2. Elimination of candidates. The candidate with the least number of first pref-
erences is eliminated from the election, and their votes are then distributed
to the next listed preference on the ballot.

We give a precise definition of STV below. The main idea of distributing sur-
plus votes is to account for additional candidates favoured by a voter if their
first preference is already elected, whereas elimination honours voters’ follow-on
preferences if their first preference cannot be elected. Of course, the key ques-
tion is precisely which ballots should be considered surplus and distributed to
the next preferences, as follow-on preferences will generally differ. This is the
purpose of a third mechanism:

3. Fractional Transfer. All surplus votes are transfered to the next preference,
but at a reduced weight that is proportional to the size of the surplus.

For example, if a candidate exceeds the quota by 20%, all first preference votes for
that candidate are re-assigned a weight of 0.2 and injected back into the count,
and regarded as first-preference votes for the subsequently listed candidate. In
other words, the number of first preference votes for a candidate is the sum of the
weights of ballots where that candidate is listed as first preference. The initial
weight of all ballots is 1.

There are various versions of STV. They mainly differ in how and when bal-
lots are transferred and candidates are elected, the calculation of the transfer
value, and the various tie breaking methods used to determine which candidate
is to be excluded, and the quota being used. Here, we deal with a generic ver-
sion of STV that incorporates all three mechanisms outlined above, and is very
similar to the method used to elect members of the Australian Senate, and inci-
dentally also to the scheme used elect the representatives of the student union at
the Australian National University. Throughout, we do not assume a particular
definition of the quota, but take this as a parameter. Design decisions in the
precise formulation of the scheme are resolved as follows:

Step-by-step surplus transfer. Surplus votes of elected candidates that have
exceeded the quota are transferred in order of number of first preferences
received. That is, surplus votes of the candidate with the largest number of
first preferences are transferred first.

Electing after each transfer. After each transfer of surpluses, candidates that
reach the quota after surplus votes are being elected immediately.

The description of the formal protocol that we are analysing uses the following
terminology. A continuing candidate is a candidate that has neither been elected
nor eliminated. The first preference of a ballot is the most preferred continuing
candidate, and the transfer value of a ballot is the fractional weight of a ballot.
We keep track of the following data throughout:

Verified Certificate Checking for Counting Votes 73

– the set of uncounted ballots
– a tally for each candidate, the sum of the transfer values of all ballots counted

in the candidate’s favour
– a pile for each candidate that contains all ballots counted in favour of the

respective candidate
– an queue of candidates that await surplus transfer

Initially, the queue for surplus transfer, as well as the piles associated to the
individual candidates are empty, all ballots are uncounted, and all candidates
are continuing. From this initial state, the protocol proceeds as follows:

1. determine the set of formal ballots, i.e. those ballots that represent a total
order of preferences over a subset of candidates, each of which receives an
initial transfer value of 1.

2. determine the number of first preference votes (the tally) for each continuing
candidate. In doing this, record which vote is counted for which candidate by
adding the ballot paper to the respective pile.

3. if there are unfilled seats, all candidates that have reached the quota are
elected, and are added to the transfer queue in order of their tally.

4. if all the vacancies have been filled, counting terminates and the result is
announced.

5. if the number of unfilled vacancies equals or exceeds the number of continuing
candidates, all continuing candidates are elected and the result is announced.

6. if there are still vacancies, all ballots are counted, and the transfer queue is
not empty, remove the first candidate from the transfer queue and transfer
their votes (the votes on their pile) to the next preference by declaring these
votes to be uncounted and the transfer value given by

new value =
number of votes of elected candidate − quota

number of votes of elected candidate
(1)

Subsequent transfer values are computed as the product of the current value
with previous transfer value.

7. if there are still vacancies, all ballots are counted, and all surplus votes are
transferred, choose the candidate with the least amount of first preference
votes and exclude that candidate from the set of continuing candidates. All
votes counted in favour of the eliminated candidate are transferred to the
next preference (with unchanged transfer value).

The purpose of setting aside the ballots counted for particular candidates in
the second step is precisely for the purpose of possibly transferring these ballots
later, in case the candidate is either elected or eliminated.

2.1 An Example Certificate

As argued in the introduction, in the framework of certified computation, each
step of the protocol is evidenced. Each of the steps outlined above is formalised as

74 M. K. Ghale et al.

a rule that progresses the count. Rules have side conditions (e.g. candidates hav-
ing reached the quota, or all ballots being counted) and rule application changes
the data that we track throughout the count (e.g. updating the tally, or removing
a candidate from the set of continuing candidates). We given an example cer-
tificate in Fig. 1. Here, we have a small election with three candidates A, B and
C, and an initial set of ballots containing b1 = ([A,C], 1), b2 = ([A,B,C], 1),
b3 = ([A,C,B], 1), b4 = ([B,A], 1), b5 = ([C,B,A], 1). Each ballot is a pair,
where the first component is a preference-ordered list of candidates, and the sec-
ond is the transfer value (initially set to 1). The certificate consists of a header
that specifies the quota as a fraction (computed according to the Droop quota
[10]), the number of seats to be filled, and the list of candidates being voted
on. The fourth line is the election result, and the remainder of the certificate
consists of the intermediate steps that lead to this outcome.

The certificate records every step of the count, where a step corresponds
to a rule application, and the rules themselves are modelled on valid actions
that of counting officers to progress the count. The inspection of a certificate
therefore corresponds to witnessing all the individual steps that take place in a
hypothetical counting station.

Intermediate stages of the count record six pieces of information, separated
by semicolons: the ballots the are still to be counted, the tallies of all candidates,
the ballots counted in favour of each candidate, the transfer queue, and finally
the sets of continuing and elected candidates. We briefly illustrate the protocol
using the certificate in Fig. 1 as an example, going though the protocol step-by-
step.

count. First preferences for each candidates are computed, and ballots counted
in favour of particular candidates are placed onto that candidate’s pile. Here, A
is the first preference on b1, b2, and b3 (leading to a tally of 3), and B receives
b4, and C receives b5. Tallies are updated so that tally of A becomes 3, and B
and C each reach 1.

elect. Candidate A exceeds the quota, and is elected. The transfer value of
all ballots counted in A’s favour changes to 1/9 according to formula (1). The
updated pile of A reflects this change in transfer values, and now contains ([A,C],

8/3

2

[A,B,C]

[A,C]
hwin

[b4,([A,B,C],1/9)]]; A[3/1] B[10/9] C[11/9]; A[] B[] C[b5,([C],1/9),([C,B],1/9),([C],1/9)]; []; [A]; [C]
elim

[]; A[3/1] B[10/9] C[11/9], A[] B[b4,([A,B,C],1/9)] C[b5,([A,C],1/9),([A,C,B],1/9)]; []; [A]; [B,C]
count

[([A,C],1/9),([A,B,C],1/9),([A,C,B],1/9)]; A[3/1] B[1/1] C[1/1]; A[] B[b4] C[b5]; []; [A]; [B,C]
transfer

[]; A[3/1] B[1/1] C[1/1]; A[([A,C],1/9),([A,B,C],1/9),([A,C,B],1/9)] B[b4] C[b5]; [A]; [A]; [B,C]
elect

[]; A[3/1] B[1/1] C[1/1]; A[b1,b2,b3] B[b4] C[b5]; []; []; [A,B,C]
count

ba; A[0/1] B[0/1] C[0/1]; A[] B[] C[]; []; []; [A,B,C]

Fig. 1. Example certificate

Verified Certificate Checking for Counting Votes 75

1/9), ([A,B,C], 1/9), and ([A,C,B], 1/9). The data associated with B and C
doesn’t change.

transfer. As there are vacancies and no one else has reached or exceeded the
quota, the surplus of A is dealt with. The list of uncounted ballots is updated
to contain the votes for A (with transfer values updated in the previous step).

count. As there are uncounted ballots (again), tallies are updated. As A is no
longer a continuing candidate, the votes are counted in favour of the highest-
ranked continuing candidate. That is, C receives two new votes (each of value
1/9) which are ([A,C], 1/9) and ([A,C,B], 1/9). Candidate B receives one vote,
which is ([A,B,C], 1/9).

elim. No continuing candidate has reached the quota, one vacancy is still
unfilled, and all ballots are (again) counted. Hence the candidate with the low-
est tally is eliminated (in this case, B) and their votes (with unchanged transfer
values) are again injected into the count.

hwin. The only continuing candidate, that is C, is elected and as we have filled
all the vacancies, a final stage has been obtained.

To validate certificates of this form, we first parse the textual representation
into actual data structures, and then check the certificates for correctness on the
basis of a HOL formalisation that we now describe.

2.2 The HOL Formalisation

Elections are parameterised by the data in the header (candidates, quota and
number of vacancies) that remain constant throughout the count. We use the
term judgement for the data-structure representation of the various stages of the
count. They come in two flavours: final judgements announce the winners, and
non-final judgements are intermediate stages of the execution of the protocol.

Definition 1 (Judgements). We formalise judgements as a datatype with two
constructors. The first constructor, Final w represents a final stage of the compu-
tation, where w is the final list consisting of all of the declared elected candidates.
The second constructor, NonFinal (ba,t ,p,bl ,e,h) is an intermediate stage of the
computation, where ba is the list of uncounted ballots at this point, t is the tally
list recording the number of votes of each candidate has received up to this point,
p is the pile list of votes assigned to each candidate, bl is the list of elected whose
surplus have not yet been transferred, e is the list of elected candidates by this
point, and h is the list of continuing (hopeful) candidates up to this stage.

judgement =
NonFinal (ballots × tallies × piles × cand list × cand list × cand list)

| Final (cand list)

We use lists (instead of sets, or multisets) mainly for convenience of formalisation
in HOL, but this is not used in an essential way either in the definition, or

76 M. K. Ghale et al.

in the formalisation, of the counting rules that we give later. By choosing to
formalise the tally and pile as lists rather than functions operating on the list of
candidates, judgements become an instance of the equality type class which we
use later on in specification and reasoning about counting rules. Additionally,
this formulation reduces the gap between an actual certificate and its abstract
syntactic representation which we refer to as a formal certificate.
As a (formal) certificate consists of a sequence of judgements, each of which
represents a state of the count, we need to verify the correctness of the transitions
between successive judgements. Each rule consists of three main components:

– a specification of how premiss and conclusion relate
– side conditions that specifies when a rule is applicable
– a number of implicit assertions that guarantee the integrity of the data.

For example, we expect a valid certificate to have no duplication in the list of
elected or continuing candidates, and every candidate must have only one tally
and one pile at every non-final judgement.

Crucially, the specification of the counting rules is purely descriptive. To
effectively check certificates, we augment each (specification of a) rule with an
actual decision procedure that, given two judgements, returns either true or
false, depending on whether the rule is applicable or not. The decision procedure
and the formal specification are connected by (formal) proofs of soundess and
completeness, as shown in the figure below.

Here, soundness refers to the fact that the decision procedure only stipulates
that a rule has been correctly applied if the application is in accordance with
the specification and completeness says that this will happen whenever the rule
is applicable. The decision procedures are actual functions in HOL that we then
translate and extract using CakeML to guarantee machine-level correctness, and
both soundness and completeness are established formally in HOL. We illustrate
this in detail with the elimination rule.

Integrity Constraints. The integrity constraints for the elimination rule are iden-
tical to those of other rules. For example, the name of each candidate appears
only once in the initial list of competing candidates. Also, at every stage of the
count, every candidate has exactly one tally and one pile (of votes counted in
their favour). Therefore, if a judgement in a certificate maliciously allocates no
tally, or more than one tally for a single candidate, this error is detected and
the certificate is rejected as invalid. We express the fact that tallies need to be
recorded for every candidate as follows:

Valid_PileTally t l ⇐⇒ ∀ c. mem c l ⇐⇒ mem c (map fst t)

The above predicate is paired with computational twins, and soundness
and completeness connect both. Here, given lists t and l, the function

Verified Certificate Checking for Counting Votes 77

Valid_PileTally_dec1 decides if every first element of each pair in t is a member
of l.

Valid_PileTally_dec1 [] l ⇐⇒ true
Valid_PileTally_dec1 (h::t) l ⇐⇒ mem (fst h) l ∧ Valid_PileTally_dec1 t l

Additionally, the function Valid_PileTally_dec2 determines if each element of l
appears as the first component of a pair in t.

Valid_PileTally_dec2 t [] ⇐⇒ true
Valid_PileTally_dec2 t (l0::ls) ⇐⇒
if mem l0 (map fst t) then Valid_PileTally_dec2 t ls

else false

We prove that the formal specification Valid_PileTally corresponds with the func-
tions Valid_PileTally_dec1 and Valid_PileTally_dec2. Therefore we ensure that
tallies and piles are distinctively allocated to candidates.

� Valid_PileTally t l ⇐⇒ Valid_PileTally_dec1 t l ∧ Valid_PileTally_dec2 t l

Side Conditions. Item 7 of the protocol on Page 5 specifies when and how a
candidate shall be eliminated from the election. It stipulates that

a. there are still seats to fill
b. there are no votes to count at this stage and there are no pending transfers
c. the candidate c has the least tally
d. eliminate the candidate c
e. votes of the eliminated candidate c are transferred according to the next

preference with the same transfer value.

To illustrate how clauses of the protocol are formalised explicitly, we explain
the way that we have specified item (d) inside HOL. We introduce the predicate
equal_except which formally asserts when two lists are equal except for one exact
element.

equal_except c l nl ⇐⇒
∃ l1 l2. l = l1 ++ l2 ∧ nl = l1 ++ [c] ++ l2 ∧ ¬mem c l1 ∧ ¬mem c l2

The computational twin of this definition decides whether two list match with
the exception of one element. This is the function equal_except_dec.

equal_except_dec c [] = []
equal_except_dec c (h::t) = if c = h then t else h::equal_except_dec c t

We formally establish that this function implements the specification given by
the equal_except predicate.

� mem c h ∧ distinct h ⇒ equal_except c (equal_except_dec c h) h

78 M. K. Ghale et al.

Moreover, modulo extensional equality, the function equal_except_dec is
unique.

� mem c h2 ∧ equal_except c h1 h2 ⇒ h1 = equal_except_dec c h2

Having defined the implicit integrity constraints, and the explicit side conditions
in the definition of elimination, we can present the formalisation of this rule in
HOL as a predicate.

The ELIM_CAND rule specifies what it means to legitimately eliminate a
given candidate c. It relates three data items: a candidate, a triple composed
of three fixed parameters which are the quota, vacancies, and the initial list of
candidates, and two judgements j1 and j2 (the premiss and the conclusion of
the rule).

ELIM_CAND c (qu,st ,l) j1 j2 ⇐⇒
∃ t p e h nh nba np.

j1 = NonFinal ([],t ,p,[],e,h) ∧ Valid_Init_CandList l ∧
(∀ c′. mem c′ (h ++ e) ⇒ mem c′ l) ∧ distinct (h ++ e) ∧ Valid_PileTally p l ∧
Valid_PileTally np l ∧ length (e ++ h) > st ∧ length e < st ∧
distinct (map fst t) ∧ Valid_PileTally t l ∧
(∀ c′. mem c′ h ⇒ ∃ x . mem (c′,x) t ∧ x < qu) ∧ mem c h ∧
(∀ d . mem d h ⇒ ∃ x y. mem (c,x) t ∧ mem (d ,y) t ∧ x ≤ y) ∧ equal_except c nh h ∧
nba = get_cand_pile c p ∧ mem (c,[]) np ∧
(∀ d ′.

d ′ �= c ⇒
∀ l . (mem (d ′,l) p ⇒ mem (d ′,l) np) ∧ (mem (d ′,l) np ⇒ mem (d ′,l) p)) ∧

j2 = NonFinal (nba,t ,np,[],e,nh)

The first and the fourth component of j1 which correspond to the list of
uncounted ballots and the backlog are both empty. This realises the condition
(a) stated above. It is also required that h the list of continuing candidates in
the premise j1, and nh the updated list of continuing candidates in j2 satisfy
the predicate equal_except so that condition (d) is met. Each of the conjuncts
in the definition of ELIM_CAND encapsulates part of the item 7 in the protocol.

Similar to the case of equal_except, for each of the conjuncts, we define
a computational counterpart and prove the equivalence of the conjunct with
its computational realisation. Conjunction of these computational definitions
is ELIM_CAND_dec, which is the computational equivalent of the predicate
ELIM_CAND.

ELIM_CAND_dec c (qu,st ,l) (NonFinal (ba,t ,p,bl ,e,h)) (NonFinal (ba′,t ′,p′,bl ′,e′,h′)) ⇐⇒
null ba ∧ null bl ∧ null bl ′ ∧ t = t ′ ∧ e = e′ ∧ length (e ++ h) > st ∧ length e < st ∧
¬null l ∧ distinct l ∧ list_MEM_dec (h ++ e) l ∧ distinct (h ++ e) ∧
Valid_PileTally_dec1 p l ∧ Valid_PileTally_dec2 p l ∧ Valid_PileTally_dec1 p′ l ∧
Valid_PileTally_dec2 p′ l ∧ distinct (map fst t) ∧ Valid_PileTally_dec1 t l ∧
Valid_PileTally_dec2 t l ∧ mem c h ∧ less_than_quota qu t h ∧
h′ = equal_except_dec c h ∧ bigger_than_cand c t h ∧ ba′ = get_cand_pile c p ∧
mem (c,[]) p′ ∧ subpile1 c p p′ ∧ subpile2 c p′ p

ELIM_CAND_dec c v0 (Final v1) v2 ⇐⇒ false
ELIM_CAND_dec c v3 (NonFinal v11) (Final v5) ⇐⇒ false

Verified Certificate Checking for Counting Votes 79

By drawing upon the correspondence established between conjuncts of the elim-
ination specification and computational counterpart, we prove that �ELIM_-
CAND_dec = ELIM_CAND. The same procedure is followed to achieve formal
specification, computational definitions, and their correspondence for the rest of
counting rules.

2.3 The Certificate Verifier

Clearly, one way to verify the result of a computation is to simply re-compute
(possibly using a verified program) [2]. While this makes perfect sense for a deter-
ministic program, voting protocols generally employ tie-breaking techniques that
lead to non-determinism. In the case of STV, for example, this applies when two
candidates are tied for exclusion. In this situation it is permissible to eliminate
either of the candidates. From the perspective of certified computation, this is a
non-issue, as the certificate simply records which choice has been made (and why
this choice is permissible). Compared to simply re-computing, the verification of
a certificate provides another significant advantage: in case of diverging results,
we gain information on precisely what step of the (incorrect) computation is to
blame for the wrong result. Computationally, the additional advantage is sim-
plicity and speed: the verification of the verifier is considerably simpler than that
of a fully-fledged implementation, and certificate checking is also generally faster
than re-computing.

The verification of certificates comprises two steps. First we need to validate
whether the first judgement of the certificate is a valid initial state of the count.
A valid initial judgement is one where candidate’s tally is zero, their piles are
empty, and both the transfer queue and the list of elected candidates are both
empty as well.

initial_judgement l j ⇐⇒
∃ ba t p bl e h.

j = NonFinal (ba,t ,p,bl ,e,h) ∧ (∀ c. mem c (map snd t) ⇒ c = 0) ∧
(∀ c. mem c (map snd p) ⇒ c = []) ∧ bl = [] ∧ e = [] ∧ h = l

Second, we check whether transitions from one judgement to the next is accord-
ing to one of the rules that define the count.

Valid_Step_Spec params j0 j1 ⇐⇒
HWIN params j0 j1 ∨ EWIN params j0 j1 ∨ COUNT params j0 j1 ∨
TRANSFER params j0 j1 ∨ ELECT params j0 j1 ∨
∃ c. mem c (snd (snd params)) ∧ ELIM_CAND c params j0 j1

We can therefore check whether a transition from one judgement to the next is
correct by simply considering the disjunction of all rules.

Valid_intermediate_judgements params J ⇐⇒
J 	= [] ∧ (∃w . last J = Final w) ∧
∀ J0 J1 j0 j1. J = J0 ++ [j0; j1] ++ J1 ⇒ Valid_Step_Spec params j0 j1

80 M. K. Ghale et al.

Putting the specification of a valid initial judgement with valid sequence of
judgements together, we obtain the specification for a valid certificate:

Valid_Certificate params [] ⇐⇒ false
Valid_Certificate params (first_judgement ::rest_judgements) ⇐⇒
initial_judgement (snd (snd params)) first_judgement ∧
Valid_intermediate_judgements params (first_judgement ::rest_judgements)

For checking a formal certificate we therefore first verify that certificate starts
at a permissible initial stage. We then iteratively check that transitions have
happened correctly, and that the terminating state is a final one where winners
are declared. The above specification of a valid vertificate, corresponds to the
following computational formal certificate checker.

Check_Parsed_Certificate params [] ⇐⇒ false
Check_Parsed_Certificate params (first_judgement ::rest_judgements) ⇐⇒
Initial_Judgement_dec (snd (snd params)) first_judgement ∧
valid_judgements_dec params (first_judgement ::rest_judgements)

The correctness of this definition rests on the equivalences we have already estab-
lished between the specifications and their computational counterparts, namely,
Initial_Judgement_dec and initial_judgement, and valid_judgements_dec and
valid_judgements. Consequently a formal certificate is validated if and only if
it is valid according to the HOL specification of Valid_Certificate.

Check_Parsed_Certificate params J ⇐⇒ Valid_Certificate params J

Since the HOL specification realises the protocol, a formal certificate is validated
if and only if it meets the protocol’s expectation.

3 Translation into CakeML and Code Extraction

The verified certificate-checking function, Check_Parsed_Certificate, described
above, is a good starting point for a verifier, but still has two shortcomings: it is
a function in logic rather than an executable program, and as a consequence, its
inputs must be provided as elements of the respective data types, whereas certifi-
cates are purely textual. We now demonstrate how to address these shortcomings
and obtain a verified executable for checking certificates. Our final theorem about
the verifier executable is presented at the end of this section.

Parsing. The input to the verifier is a textual certificate file, in a format sim-
ilar to Fig. 1. We specify this file format indirectly, by defining an executable

Verified Certificate Checking for Counting Votes 81

specification of a certificate parser.

Check_Certificate lines ⇐⇒
case lines of
quota_line::seats_line::candidates_line::winners_line::jlines ⇒

case
(parse_quota quota_line,parse_seats seats_line,
parse_candidates candidates_line,parse_candidates winners_line,
mapm parse_judgement jlines)

of
(Some quota,Some seats,Some candidates,Some winners,Some judgements) ⇒

Check_Parsed_Certificate (quota,seats,candidates)
(rev (Final winners::judgements))

| _ ⇒ false
| _ ⇒ false

Specifically, we define functions that take a string representing a line in the
file and return either None or Some x , where x is the parsed information
from the line. Given these parsing functions—parse_quota, parse_seats, etc.—we
write the verifier as a function, above, that parses lines from the file then calls
Check_Parsed_Certificate to do the verification.

Translation into CakeML and I/O Wrapper. Using prior work on proof-
producing synthesis [18] we can automatically synthesise an implementation of
the function Check_Certificate in the programming language CakeML. The syn-
thesis tool for CakeML produces a theorem relating the semantics of the synthe-
sised program back to the logical function. However, the result is a pure function
that expects the lines of a file as input. To actually open the file and read lines
from it, we write the impure wrapper check_count (making use of the CakeML
Basis Library) around the pure function, and verify the wrapper using Charac-
teristic Formulae for CakeML, as described by Guéneau et al. [13]. The result is
a complete CakeML program whose I/O semantics is verified, witnessed by the
theorem check_count_compiled below, to implement Check_Certificate on lines
from standard input.

To elaborate further on the above step, the impure wrapper check_count calls
two impure functions parse_line and loop. The former, calls I/O functions to read
one line at a time from the concrete certificate given as lines on the standard
input and parse it. It comprises two phases; one for the header of the certificate
file consisting of the quota, seats number, and initial list of candidates, and the
other is for parsing judgement lines. If the parsing fails due to malformedness of
a line, the parser messages the appropriate error on the standard output with
the line number included. However, if it succeeds, the parsed line is fed to the
loop function to check if the transition from two consecutive parsed judgement
lines is a valid step. The parsing and checking of judgement lines continues until
either all steps are verified as correct, or an incorrect step is encountered. The
following theorem asserts that the loop function returns the correct output None
if and only if the initial line of judgements in the certificate file is indeed valid

82 M. K. Ghale et al.

and all steps taken to move from one judgement line to its successor are correct.

loop params i (Final w) j0 js = None ⇐⇒
EVERY (IS_SOME ◦ parse_judgement) js ∧
Check_Parsed_Certificate params (rev (Final w ::j0::map (the ◦ parse_judgement) js))

Compilation in Logic. Finally, we would like an executable verifier in machine
code (rather than CakeML code). To produce this, we use the verifed CakeML
compiler [22], which can be executed within the theorem prover itself. This is
a time-consuming process: compilation within logic can be a thousand times
slower (e.g., half an hour) than running the compiler outside the logic (a second
or two). But the payoff is a final theorem which only mentions the final gen-
erated machine-code implementation: all dependence on the CakeML language
and implementation is discharged by proof.
Final Theorem. The final theorem, which we explain further below, is about the
generated machine code, represented by the constant check_count_compiled.

� wfCL cl ∧ wfFS fs ∧
x64_installed check_count_compiled (basis_ffi cl fs) mc ms ⇒
∃ io_events fs ′.

machine_sem mc (basis_ffi cl fs) ms ⊆
extend_with_resource_limit { Terminate Success io_events } ∧
extract_fs fs io_events = Some fs ′ ∧
(stdout fs ′ “Certificate OK\n” ⇐⇒

Check_Certificate (lines_of (get_stdin fs)))

We assume (x64_installed) that this code is loaded into memory in an x86-
64 machine represented by mc and ms, and that the command line (cl) and
file system (fs) are well-formed. The conclusion of the theorem concerns the
semantics (machine_sem) of executing the machine: it will terminate successfully
(or fail if there is not enough memory) with a trace of I/O events (io_events) such
that if we replay those events on the initial file system, we obtain a resulting file
system fs ′ for which the string “Certificate OK\n” is printed on standard output
if and only if Check_Certificate succeeds on the lines of standard input.

4 Experimental Results

We have tested our approach against some of the past Australian Legislative
Assembly elections in the Australian Capital Territory for years 2008 and 2012
(Fig. 2).2 The certificates were produced by the Haskell program extracted from
our previous formalisation of the same protocol in Coq [11].

We also evaluated the verifier on certificates obtained through randomly gen-
erated ballots. We vary two parameters: the number of ballots and the size of
each ballot. Figure 3 shows the results on certificates where the number of candi-
dates is fixed at 20, vacancies are 5, and the length of each ballot is 12. Also we
2 Tests were conducted on one core of an Intel Core i7-7500U CPU 2.70 GHz× 4

Ubuntu 16.4 LTS.

Verified Certificate Checking for Counting Votes 83

electoral ballots vacancies candidates time (sec) certificate size (MB) year
Brindabella 63334 5 19 86 54.4 2008
Ginninderra 60049 5 27 118 83.0 2008
Molonglo 88266 7 40 329 211.2 2008
Brindabella 63562 5 20 75 74.5 2012
Ginninderra 66076 5 28 191 90.1 2012
Molonglo 91534 7 27 286 158.7 2012

Fig. 2. ACT Legislative Assembly 2008 and 2012

keep the number of ballots, vacancies, and length of each ballot fixed at 100000,
1, and 10 respectively, in order to see the effect of increase in the length of each
ballot (Fig. 4). We have also implemented the protocol in an unverified certify-
ing Haskell program.3 The unverified program was then tested on ballots of the
same ACT Legislative Assembly elections. We have then verified the certificates
produced by this program for each of the districts. The result shows that the
certificates of the districts for the year 2012 are valid. Also the certificate of
Molonglo electorate 2008 is verified as correct. However, the two electorates of
Brindabella and Ginninderra 2008, despite declaring the final winners correctly,
were invalid as an error occurs in an intermediate transition on line 6 in both
certificates.

ballots certificate size time (sec)
400000 523.6 4224
200000 253.3 938
100000 131.1 461

Fig. 3. Varying number of ballots

ballot length certificate size time (sec)
6 60.2 140
12 124.0 298
18 180.5 325

Fig. 4. Varying length of each ballot

Based on the aforementioned error message, we only need to inspect a very
small part of the certificate. Upon closer inspection, we uncovered a subtle error
in the implementation of the elimination rule. On the other hand, the same
program successfully (and correctly) computes election results for other districts,
substantiating the subtlety of the error. We argue that precisely because of such
delicacies in the STV protocol and hence their implementation, we advocate that
vote counting be carried out in a certified way, with a minimal trust base such
as demonstrated in this paper.

5 Discussion

Universal verifiability is a security requirement introduced for measuring veri-
fiability of an election result by any member of the public [8]. The literature

3 Source code can be found in the Github repository given in the second page.

84 M. K. Ghale et al.

on election protocol design agrees on the textual formulation of the concept,
despite the fact that they vary in the technical implementation of the prop-
erty [8]. Moreover, it is accepted that satisfaction of the property rests on ver-
ifying three subproperties, namely cast-as-intended, recorded-as-intended, and
count-as-recorded [8], and also demonstration of the eligibility verifiability as an
explicitly or implicitly stated prerequisite [16].

Our framework only aims at addressing verification of the count-as-recorded
subproperty. We do not attempt to introduce an election protocol for answering
expectations of the universal verifiability. Therefore, verification of other two
subproperties and the eligibility criterion falls outside the focus of the current
work. However, our tool can be perfectly employed by any election protocol
which accommodates STV scheme and uses Mixnets [4] for anonymising and
decrypting ballots. For example, some protocols require authorities to produce a
witness for tallying, and then verify it is a proof of correctness for the announced
tallying result [6]. Such systems can adapt certification and the checker for (a)
offering an independently checkable witness of tallying, and (b) verifying the
certificate in a provably correct way. Finally, the certificates which the checker
operates on include the exact ballots published by election authorities after the
tallying is complete, and are therefore publicly available. Hence, the certificate
would not compromise privacy concerns such as vote buying or voter coercion
any more than the existing practice of ballot publication.

The framework employs CakeML to achieve an end-to-end verification of
certificates. Therefore we prove that executable checker is verified to behave
according to its specification in HOL, which operates in a different environment.
To obtain this level of verification, we rely on the verified proof-synthesis tool of
CakeML, the mechanism for producing deeply embedded equivalent assertions
of HOL functions into CakeML environment, the Characteristic Formulae of
CakeML to assert that the pure (deeply embedded functions) behave consistently
with the impure I/O calls, and the verified compiler that generates executables
that provably respect all of the above proofs.

Furthermore, the separation of the program from proofs offered in the com-
bined CakeML and HOL environment makes our formalisation easier to under-
stand. In particular, we believe that external scrutineers should be able to exam-
ine the specification of the framework to understand what it does, rather than
having to also get to grips with CakeML proofs and computational components.
HOL4’s rich rewriting tactics and libraries also allow us to express the protocol
and discharge related proofs with a minimum amount of lines of encoding.

We have demonstrated the practical feasibility of our approach by means of
case studies. For example, the certificates of the Molonglo district, the biggest
Legislative Assembly electorate in Australia, are checked in just five minutes.

Our framework is modular in two different ways. On the one hand, the for-
malisation realises the counting scheme as a set of standalone logical rules. On
the other hand, each of the rules comprises independent assertions. Since every
STV election consists of counting, elimination, transfer, electing and declaration
of winners, we only need to change some of these rules locally to capture different

Verified Certificate Checking for Counting Votes 85

variants. For example, the STV version used in the Senate elections of Australia
requires transfer of excess votes of an elected candidate before any other rule can
apply. This difference can be formalised in our system simply by modifying a sin-
gle component of the TRANSFER rule. So for establishing verification results, we
simply have to discharge a few correspondences in HOL. Furthermore, the steps
of translation into CakeML and the process of extracting a verified executable
remains mostly unaffected.

6 Related Work

Given that our main concern is with the count-as-recorded property, we pro-
vide an overview of existing work from the perspective of their tally verification
methods. We also compare with related work that combines theorem proving
and certified computation.

The existing certificate-producing implementations of vote counting mainly
formalise a voting protocol inside the Coq theorem prover and then prove some
desired properties about the formalised specification, and then extract the devel-
opment into Haskell [11,20,23] or OCaml [21] programs. Since the semantics of
the target and source of the extraction method differ, and there is no proof that
the translation occurs in a semantic-preserving way, verification of the specifica-
tion does not provably extend to the extracted program. Moreover, these work
are either not accompanied by a checker [11], or their checker is an unverified
Haskell/OCaml program [20,21,23]. One therefore has to trust both the extrac-
tion mechanism and the compiler used to produce the executable.

In the context of certified computation, Alkassar et al. [1] combine certified
computation and theorem proving with methods of code verification to estab-
lish a framework for validation of certifying algorithms in the C programming
language. With the help of the VCC tool [9], pre- and postconditions are gener-
ated that are syntactically generalized in the Isabelle theorem prover and then
discharged. The user has to trust the VCC tool, and there is duplication of
effort in that one has to generalise the conditions imposed by the VCC and then
implement them manually in Isabelle to prove. To ameliorate this disadvantage,
Noschinski et al. [19] replace the intermediate step where VCC is invoked by
the AutoCorres [12] verifier which provably correctly translates (part of) the C
language into Isabelle in a semantics-preserving manner. Nonetheless one has to
trust that the machine code behaviour corresponds to its top-level C encoding.

Some election protocols [8,15] do require a witness for the tallying result,
which should then be verified for correctness. Other work (e.g., [7]) implements
algorithms in programming environments such as Python. However the algo-
rithm, the correctness proof of the algorithm, and the implementation occur
in different unverified environments. Finally, Cortier et al. [6] present simple
formally stated pre- and post-conditions for elections that allow voting for one
candidate. This is done inside the dependently-typed programming language F �.
The F � environment is implemented by a compiler that translates into RDCIL,
a dialect of .NET bytecode. The verification also depends on the external SMT

86 M. K. Ghale et al.

solver Z3. The size of these tools’ implementations makes for a very large trusted
code base.

7 Conclusion

Correct, publicly verifiable, transparent election count is a key constituent of
establishing trustworthiness in the final outcome. The tool developed here has
clarity in encoding, precision in formulation, and modularity in implementation
so that it can be taken as a framework for verifying STV election results down
to machine level.

References

1. Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C.: A framework for the verifi-
cation of certifying computations. J. Autom. Reason. 52(3), 241–273 (2014)

2. Blum, M., Kannan, S.: Designing programs that check their work. In: Proceedings
of the 21st Annual ACM Symposium on Theory of Computing, 14–17 May 1989,
Seattle, Washington, USA, pp. 86–97 (1989)

3. Brooks, L., Griffits, A.: NSW council elections: computer ‘guesstimate’ might have
ignored your vote. ABC News, September 2017. http://www.abc.net.au/news/
2017-09-14/computer-algorithms-may-sway-local-council-elections/8944186

4. Chaum, D.: Untraceable electronic mail return addresses and digital pseudonyms.
In: Gritzalis, D.A. (ed.) Secure Electronic Voting, pp. 211–219. Springer, Boston
(2003). https://doi.org/10.1007/978-1-4615-0239-5_14

5. Conway, A., Blom, M., Naish, L., Teague, V.: An analysis of New South Wales
electronic vote counting. In: Proceedings of the ACSW 2017, pp. 24:1–24:5 (2017)

6. Cortier, V., Eigner, F., Kremer, S., Maffei, M., Wiedling, C.: Type-based verifica-
tion of electronic voting protocols. In: Focardi, R., Myers, A. (eds.) POST 2015.
LNCS, vol. 9036, pp. 303–323. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46666-7_16

7. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for Helios
under weaker trust assumptions. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS
2014. LNCS, vol. 8713, pp. 327–344. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11212-1_19

8. Cortier, V., Galindo, D., Küsters, R., Müller, J., Truderung, T.: Verifiability
notions for e-voting protocols. IACR Cryptology ePrint Archive 2016, 287 (2016)

9. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: VCC: contract-
based modular verification of concurrent C. In: 31st International Conference on
Software Engineering, ICSE 2009, Vancouver, Canada, 16–24 May 2009, Compan-
ion Volume, pp. 429–430 (2009)

10. Droop, H.R.: On methods of electing representatives. J. Stat. Soc. Lond. 44(2),
141–202 (1881). http://www.jstor.org/stable/2339223

11. Ghale, M.K., Goré, R., Pattinson, D.: A formally verified single transferable voting
scheme with fractional values. In: Krimmer, R., Volkamer, M., Braun Binder, N.,
Kersting, N., Pereira, O., Schürmann, C. (eds.) E-Vote-ID 2017. LNCS, vol. 10615,
pp. 163–182. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68687-5_
10

http://www.abc.net.au/news/2017-09-14/computer-algorithms-may-sway-local-council-elections/8944186
http://www.abc.net.au/news/2017-09-14/computer-algorithms-may-sway-local-council-elections/8944186
https://doi.org/10.1007/978-1-4615-0239-5_14
https://doi.org/10.1007/978-3-662-46666-7_16
https://doi.org/10.1007/978-3-662-46666-7_16
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/978-3-319-11212-1_19
http://www.jstor.org/stable/2339223
https://doi.org/10.1007/978-3-319-68687-5_10
https://doi.org/10.1007/978-3-319-68687-5_10

Verified Certificate Checking for Counting Votes 87

12. Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: automatic verified
abstraction of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
99–115. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32347-8_
8

13. Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified characteristic for-
mulae for CakeML. In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 584–610.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-1_22

14. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting proto-
cols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 389–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15497-3_24

15. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, 4–8 October 2010,
pp. 526–535 (2010)

16. Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance:
new insights from a case study. In: 32nd IEEE Symposium on Security and Privacy,
S&P 2011, 22–25 May 2011, Berkeley, California, USA, pp. 538–553 (2011)

17. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Comput. Sci. Rev. 5(2), 119–161 (2011)

18. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into
pure and stateful ML. J. Funct. Program. 24(2–3), 284–315 (2014)

19. Noschinski, L., Rizkallah, C., Mehlhorn, K.: Verification of certifying computations
through autocorres and simpl. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014.
LNCS, vol. 8430, pp. 46–61. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-06200-6_4

20. Pattinson, D., Schürmann, C.: Vote counting as mathematical proof. In: Pfahringer,
B., Renz, J. (eds.) AI 2015. LNCS (LNAI), vol. 9457, pp. 464–475. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-26350-2_41

21. Pattinson, D., Tiwari, M.: Schulze voting as evidence carrying computation. In:
Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 410–426.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66107-0_26

22. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A.C.J., Owens, S., Norrish, M.: A new
verified compiler backend for CakeML. In: Garrigue, J., Keller, G., Sumii, E. (eds.)
Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, 18–22 September 2016, pp. 60–73. ACM
(2016). http://doi.acm.org/10.1145/2951913.2951924

23. Verity, F., Pattinson, D.: Formally verified invariants of vote counting schemes. In:
Proceedings of the Australasian Computer Science Week Multiconference, ACSW
2017, Geelong, Australia, 31 January–3 February 2017, pp. 31:1–31:10 (2017).
http://doi.acm.org/10.1145/3014812.3014845

https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/978-3-642-15497-3_24
https://doi.org/10.1007/978-3-642-15497-3_24
https://doi.org/10.1007/978-3-319-06200-6_4
https://doi.org/10.1007/978-3-319-06200-6_4
https://doi.org/10.1007/978-3-319-26350-2_41
https://doi.org/10.1007/978-3-319-66107-0_26
http://doi.acm.org/10.1145/2951913.2951924
http://doi.acm.org/10.1145/3014812.3014845

Program Verification in the Presence of
I/O

Semantics, Verified Library Routines, and Verified
Applications

Hugo Férée1(B), Johannes Åman Pohjola2,3(B), Ramana Kumar3,5P,
Scott Owens1, Magnus O. Myreen2, and Son Ho4

1 School of Computing, Univerity of Kent, Canterbury, UK
H.Feree@kent.ac.uk

2 CSE Department, Chalmers University of Technology, Gothenburg, Sweden
3 Data61, CSIRO/UNSW, Sydney, Australia
johannes.amanpohjola@data61.csiro.au

4 École Polytechnique, Paris, France
5 DeepMind, London, UK

Abstract. Software verification tools that build machine-checked proofs
of functional correctness usually focus on the algorithmic content of the
code. Their proofs are not grounded in a formal semantic model of the
environment that the program runs in, or the program’s interaction with
that environment. As a result, several layers of translation and wrapper
code must be trusted. In contrast, the CakeML project focuses on end-
to-end verification to replace this trusted code with verified code in a
cost-effective manner.

In this paper, we present infrastructure for developing and verify-
ing impure functional programs with I/O and imperative file handling.
Specifically, we extend CakeML with a low-level model of file I/O, and
verify a high-level file I/O library in terms of the model. We use this
library to develop and verify several Unix-style command-line utilities:
cat, sort, grep, diff and patch. The workflow we present is built around
the HOL4 theorem prover, and therefore all our results have machine-
checked proofs.

1 Introduction

Program verification using interactive theorem provers is at its most pleasant
when one reasons about shallow embeddings of the program’s core algorithms
in the theorem prover’s native logic. For a simple example, consider this shallow
embedding in the HOL4 theorem prover1 of a program that given two lists
returns the longest:

longest l l ′ = if length l ≥ length l ′ then l else l ′

1 https://hol-theorem-prover.org/.

c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 88–111, 2018.
https://doi.org/10.1007/978-3-030-03592-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_6&domain=pdf
https://hol-theorem-prover.org/
https://doi.org/10.1007/978-3-030-03592-1_6

Program Verification in the Presence of I/O 89

Reasoning about such a shallow embedding is a breeze. The definition above is
an equation in the HOL4 logic, so in a proof we can always replace the left-hand
side with the right-hand side. The numbers and lists it uses are those of the
HOL4 library, so all pre-existing theorems and proof procedures for them are
directly applicable to our development. There is no need for the indirection and
tedium of explicitly invoking the semantic rules of some calculus, program logic
or programming language semantics.

This approach, while convenient, leaves two gaps in the verification story:

1. Any properties we prove are about a mathematical function in the HOL4
logic, and do not apply to the real program that runs outside of the logic,
other than by a questionable informal analogy between functions in logic and
procedures in a programming language.

2. Software must interact with its environment in order to be useful, but our
toy verification example above is a pure functional program, i.e., it is unable
to interact with its environment.

An overarching goal of the CakeML project2 [20] is to create a verification
framework that plugs both of these gaps, so as to maintain a small trusted com-
puting base (TCB) without sacrificing the convenience of working with shallow
embeddings. Our focus in this paper is how to plug the second gap. In particu-
lar, we are concerned with verifying impure functional programs in CakeML that
interact with their environment in ways typically required by console applica-
tions: programs that receive input via command-line arguments and stdin, read
from and write to the file system, and produce output via stdout and stderr.

The other components of this overarching story have largely been established
in previous work. Our proof-producing translation [26] allows us to generate
executable code from shallow embeddings for the pure parts of our code, so that
shallow verifications done at the algorithm level in HOL4 can be automatically
transferred to CakeML programs that implement the algorithm. Our program
logic [13] based on characteristic formulae (CF) [7] supports the verification of
the impure parts of CakeML programs. Finally, our verified compiler [33] allows
us to transport whatever properties we verified using translation and CF to
properties about concrete machine code for several mainstream architectures
(x86-64, ARMv6, ARMv8, RISC-V, MIPS).

Our specific contributions in this paper are:

– We enrich CakeML with a low-level programmer’s model of file I/O, which
goes far beyond our previous toy read-only file I/O model [13]. The new model
of read and write operations covers the non-determinism that is inherent in
the fact that e.g. writing n bytes to a stream may sometimes fail to write all
n bytes, or indeed any bytes at all.

– On top of this file I/O model, we write a verified TextIO library in CakeML
that abstracts away from the low-level details. Instead it exposes an interface
of familiar high-level functions for file handling, such as inputLine. These

2 https://cakeml.org/.

https://cakeml.org/

90 H. Férée et al.

functions do not expose the aforementioned non-determinism to the user, e.g.
inputLine is verified to always return the first line of the stream, provided
the file system satisfies a natural liveness property.

– We present a case study of a verified implementation of the diff and patch
command-line utilities.

The case study serves two main purposes. First, it shows that our approach
can be used to verify interesting programs. Second, it illustrates how our spe-
cific contributions fit into the bigger picture of our verification story. The bulk
of the verification effort is cast in terms of a shallow embedding of the core algo-
rithms, such as the auxiliary function longest above. Yet our file system model
and TextIO library, together with our proof-producing translation, CF program
logic, and verified compilation, allow us to transfer our theorems about the core
algorithm to theorems about the environmental interactions of the machine code
that implements the algorithm.

The end-result is a theorem with a remarkably small TCB: the HOL4 theorem
proving system3; a simple Standard ML program that writes the compiled bytes
of machine code into a file; the linker that produces the executable; the loading
and I/O facilities provided by the operating system as wrapped by the read,
write, open and close functions of the C standard library; our model of making
I/O system calls over our foreign function interface (FFI); and our machine code
semantics. Together, these constitute the whole formalisation gap. Notably, we
do not need to trust any code extraction procedure standing between the verified
model of each application and its code-level implementation, nor do we need to
trust the compiler and runtime system that bridge between source code and
machine code.

All of our code and proofs are contained in CakeML’s 2.1 release, available at
https://code.cakeml.org/. The example programs are in the examples directory,
and the file system model and library is in the basis directory. The examples
directory also contains verified implementations of cat, grep, and sort that we
have developed using the techniques and tools presented in this paper. For lack
of space we will not discuss these other examples further.

The CF-verified functions of the TextIO library, which is the topic of this
paper, have been used as opaque building blocks in a recent paper [15] on syn-
thesis of impure CakeML code.

2 Overview

In this section, we present an overview of how we achieved our results: we first
give background on how CakeML handles interaction with the outside world;
then explain how we instantiate the mechanism to a model of file I/O; and how
we build a verified TextIO library on top; and finally present a verification case
study that uses the new TextIO library.

3 https://hol-theorem-prover.org/.

https://code.cakeml.org/
https://hol-theorem-prover.org/

Program Verification in the Presence of I/O 91

CakeML supports interaction with the environment via a foreign function
interface (FFI) based on byte arrays that is very open-ended: the precise imple-
mentation of the FFI is an external—and thus potentially unverified—program
that must be linked with the output of the CakeML compiler.

At the source code level, CakeML programs may contain FFI calls, written
#(p) s ba, where p is the FFI port name, s is an (immutable) string argument,
and ba is a (mutable) byte array argument. The FFI call may read the contents
of s and ba, affect the state of the external environment, and relay information
back to the caller by writing to ba. After compilation this becomes a subroutine
call to, e.g., the label ffiwrite if the port name happens to be write. This
subroutine must be present in the FFI implementation we link with.

The semantics of the CakeML language is parameterised on an FFI oracle
that describes the effect of FFI calls on the outside environment. For each port
name used by the program under consideration, the FFI oracle provides an oracle
function of type:

byte list → byte list → ′state → (byte list × ′state) option

The semantics of the aforementioned FFI call #(p) s ba is then given by
p_oracle st s ba, where st is the current state of the external environment. If
p_oracle st s ba = Some (st ′,ba ′), the result is that the state of the environment
is updated to st ′ and the contents of ba ′ are written to ba. If the oracle returns
None, the FFI call fails.

The design described above allows us to enrich CakeML with our file system
model by instantiating, rather than modifying, its semantics: our file system
model is simply an FFI oracle. Specifically, the ′state type variable above is
instantiated to a concrete type that models the file system. It describes which
files are present and their contents, the set of file descriptors currently in use, and
a non-determinism oracle for modelling the possibility that reading and writing
may process fewer characters than expected. We define oracle functions for stan-
dard file system operations—write, read, open_in, open_out, and close—that
describe their expected behaviour in terms of state updates to the file system
model. (Sect. 3.2)

For each of the file system operations described above, we supply an imple-
mentation of the corresponding FFI call. These are simple C functions that are
responsible for unmarshalling the byte array it receives from CakeML into the
format that, e.g., the write standard library function expects. For the purposes
of our verification story, we trust that the behaviour of these C functions is cor-
rectly modelled by the oracle functions described above. Hence we have strived
to keep their implementations simple enough so that it is reasonable to assess
their correctness by inspection. (Sect. 3.1)

We implement and verify a TextIO library for CakeML and integrate it into
CakeML’s basis library. The library is written entirely in the CakeML language
and verified with respect to our file system model using the CF program logic.
We handle low-level details such as non-deterministic write failures and mar-
shalling of parameters to byte arrays in a way that does not expose them to the

92 H. Férée et al.

user during programming and verification. For example, the TextIO.inputLine
function takes a file descriptor as argument, and returns the first unread line in
the file as a string provided one exists and NONE otherwise. Its CF specification
is kept at the same level of abstraction as the preceding sentence. (Sect. 4)

As a case study, we develop a verified implementation of the diff command-
line tool. The core algorithm, i.e., computing a longest common subsequence of
two sequences and presenting their deviations from this subsequence in the diff
format, is developed and verified as a shallow embedding in HOL4. We verify
the correctness of this algorithm against a specification taken directly from the
POSIX standard description of diff. Thanks to the TextIO library described
above, and the CakeML translator and CF program logic described in previous
work, with minimal effort we can lift our theorems about a pure, shallowly
embedded HOL function on sequences, to theorems about the I/O behaviour
of a command-line tool. The main theorem says that the output produced on
stdout is the same as the diff computed by the shallow embedding, when given
as arguments two sequences corresponding to the contents of the files whose
names are given as command-line arguments, and that appropriate error or usage
messages are printed to stderr when called for. Thanks to the CakeML compiler
correctness theorem, we can further transfer this result to a theorem about the
I/O behaviour of the resulting binary. (Sect. 5)

3 File System Interaction

The Foreign Function Interface allows us to call foreign—and thus potentially
unverified—functions within CakeML programs. Each such function needs to be
modelled by a function in HOL (the FFI oracle), and to establish trust, they
should be carefully scrutinised for semantic equivalence. This is why we should
define as few of them as possible, and their code must be kept simple.

We have implemented in C a small set of foreign functions for command-line
arguments and file system operations, enough to write the examples which will
be described in Sect. 5 and AppendixA. In this section we present the file system
FFI, and describe how we model the file system itself.

3.1 File System Model

We want to be able to treat input and output operations in a uniform manner on
both conventional files, which are identified by a filename, and streams, especially
the standard streams stdin, stdout and stderr. The datatype inode models a file
system object as being either a file with an associated path, or a stream with an
associated name.

Datatype inode = UStream mlstring | File mlstring

Program Verification in the Presence of I/O 93

We model the state of the file system using the following record datatype:

IO_fs = <|

inode tbl : (inode, char list) alist;
files : (mlstring, mlstring) alist;
infds : (num, inode × num) alist;
numchars : num llist

|>

The first two fields are association lists which describe the file system’s contents:
files maps each filename with its inode identifier (meant to be an argument
of the File constructor); and inode_tbl associates each existing inode with its
contents. Then, infds maps each file descriptor (encoded as a natural number)
to an inode and an offset. The latter list could easily be extended to contain
more detailed attributes, such as the mode on which a file has been opened (read-
only, append mode, etc.). The last field is a non-determinism oracle modelled as
a lazy list of natural numbers, whose purpose will be explained shortly.

Remark 1. This model could be made more detailed in many ways and is meant
to grow over time. Its limitations can be understood as implicit assumptions on
the correctness of CakeML programs using our file system FFI. For example,
we assume that the program has exclusive access to the file system (i.e. no
concurrent program writes to the same files as ours); file permissions are ignored
(inode_tbl will need to be extended to take this into account); file contents are
assumed to be finite (infinite contents could have been used to model pipes fed by
another program running concurrently); streams are assumed to be distinct from
regular files, although in practice standard streams also correspond to named
files (e.g./dev/std* on Linux). There is also no representation of the directory
structure of the file system: the files field can be seen as a unique directory
listing all the existing files. This simple model is nonetheless sufficient to reason
about interesting examples (detailed in Sect. 5) and to show the feasibility of
more involved features.

Foreign function implementations form part of our trusted computing base,
so we want them to be small, simple and easily inspectable. Thus, the C imple-
mentation for the write operation—and respectively for read, open and close—will
be a simple wrapper around C’s write function. We choose write because it
is well specified (see POSIX standard [17, p. 2310]), and because it is the most
low-level entry point available to us that does not commit us to the particulars
of any one operating system.

The main issue with write is that it is not deterministic: given a number of
characters to write, it may not write all of them—and possibly none—depending
on various factors. Some factors are included in our model (e.g. whether the end
of the file is reached) but others like signal interruptions are not. This is the non-
determinism that we model with the numchars oracle. More precisely, numchars
is a lazy list of integers whose head is popped on each read or write operation
to bound the number of read/written characters.

94 H. Férée et al.

write fd n chars fs =
do
(ino,off) ← assoc fs.infds fd ;
content ← assoc fs.inode tbl ino;
assert (n ≤ length chars);
assert (fs.numchars = [||]);
strm ← lhd fs.numchars;
let k = min n strm
in
Some
(k ,
fsupdate fs fd 1 (off + k)
(take off content @ take k chars @ drop (off + k) content))

od

Fig. 1. Write operation on files in HOL

We can now specify basic operations on the file system, namely open, close,
read and write, in terms of our file system model. Here write is the most interesting
one and the rest of the section will mostly focus on it. We give the definition of
write in Fig. 1, which informally can be read: given a file descriptor, a number
of characters to write, a list of characters to write, and a file system state,
write looks up the inode and offset associated with the file descriptor, fetches
its contents, asserts that there are enough characters to write and that the lazy
list is not empty. Its head is then used to decide how many characters at most
will be written. Then, the number of written characters is returned, and the file
system is updated using fsupdate, which drops one element of the lazy list, shifts
the offset and updates the contents of the file accordingly.

3.2 File System FFI

We will now take a closer look at the C-side FFI implementation and its HOL
oracle, focusing again on the write operation. The C type of such a function is

void ffiwrite (unsigned char *c, long clen, unsigned char *a, long alen)

where clen and alen are the respective lengths of the arrays c of immutable
arguments and a of mutable arguments/outputs. On the HOL side, this corre-
sponds to an oracle function of type

byte list → byte list → ′state → (byte list × ′state) option

where the argument of type ′state represents a resource on which the function
has an effect—which in our case will be the file system state—and the inputs of
type byte list encode respectively the immutable argument c and the state of
the array a at the beginning of the call. The return type is an option type in

Program Verification in the Presence of I/O 95

order to handle malformed inputs, which returns the state of the array a after
the call, and the new state of the resource.

In the case of the write function, this corresponds to the HOL specification
shown in Fig. 2. It takes the file descriptor (encoded as eight bytes in c), the
number of characters to write as well as an offset from a (both encoded on two
bytes in the second array), and calls the write operation (defined in Fig. 1) on the
file system with these parameters. As write may fail to write all the requested
bytes, it may be necessary to call it several times successively on decreasing
suffixes of the data, which is why we use an offset to avoid unnecessary copying.
After this, the first byte of the array is updated with a return code (0 on success,
1 on failure) followed by the number of written bytes, encoded on two bytes.

ffi write c (a0::a1::a2::a3::a) fs =
do
assert (length c = 8);
fd ← Some (byte8 to int c);
n ← Some (byte2 to int [a0; a1]);
off ← Some (byte2 to int [a2; a3]);
assert (length a ≥ n + off);
do
(nw ,fs) ← write fd n (implode (drop off a)) fs;
Some (0w::int to byte2 nw @ a3::a,fs)

od ++ Some (1w::a1::a2::a3::a,fs)
od

Fig. 2. Oracle function for write. The ++ operator returns the first argument unless it
is None, and the second argument otherwise.

Note that the arbitrary, and fixed size of the inputs and outputs allow to
address 264 file descriptors and read/write 216 bytes at once, which has not been
a restriction in practice so far.

Now let’s see how this FFI call is implemented in C. The other file system
FFI functions are handled similarly. Note that we trust this implementation to
behave according to its specification, namely ffi write.

void ffiwrite (unsigned char *c, long clen, unsigned char *a, long alen){

assert(clen = 8);

int fd = byte8_to_int(c);

int n = byte2_to_int(a);

int off = byte2_to_int(&a[2]);

assert(alen >= n + off + 4);

int nw = write(fd, &a[4 + off], n);

if(nw < 0){ a[0] = 1; }

else{ a[0] = 0; int_to_byte2(nw,&a[1]); }

}

96 H. Férée et al.

All it does is the corresponding system call, and marshalling its inputs and
output between integers and fixed-sized sets of bytes using some easily-verifiable
marshalling functions (bytes*_to_int and int_to_bytes*).

4 A Verified TextIO Library

In this section, we illustrate how we built a standard library of high-level input-
output functions on top of the previously described foreign functions as well as
their specification. For this, we first need to reason about the file system, i.e.,
express separation logic properties about it. We are then able to write and prove
correctness properties about the file system operations in the CF program logic.

4.1 File System Properties

First, as we have seen in Sect. 3.2, when we make FFI calls from CakeML we
use a mutable byte array for carrying input and output. The following property
asserts that an array of length 2052 (i.e. 2048 plus 4 bytes to encode the two
two-byte arguments) is allocated at the address iobuff loc.

� IOFS iobuff = SEP EXISTS v . W8ARRAY iobuff loc v ∗ &(length v ≥ 2052)

Then, any program involving write will almost surely require the following
property on the file system’s non-determinism oracle:

� liveFS fs ⇐⇒
linfinite fs.numchars ∧
always (eventually (λ ll . ∃ k . lhd ll = Some k ∧ k
= 0)) fs.numchars

Indeed, according to Fig. 1, something can only be written if the head of
fs.numchars is non-zero. To write at least one character, one thus has to try
writing until it is actually done. This will succeed if the non-determinism oracle
list contains a non-zero integer, and is characterised by the following temporal
logic property:

eventually (λ ll . ∃ k . lhd ll = Some k ∧ k �= 0) fs.numchars

Then, to ensure that this property still holds after an arbitrary number of read
or write operations, we need to ensure that it always holds and that the lazy
list is infinite, hence the definition of liveFS. Another way to put it is that the
file system will never block a write operation forever, which is not a strong
assumption to make.

We wrap the previous property with other checks on the file system—namely
that its open file descriptors can be encoded into eight bytes, and that they (as
well as all valid filenames) are mapped to existing inodes—to state that the file
system is well-formed.

Program Verification in the Presence of I/O 97

� wfFS fs ⇐⇒
(∀ fd .

fd ∈ fdom (alist to fmap fs.infds) ⇒
fd ≤ maxFD ∧
∃ ino off .

assoc fs.infds fd = Some (ino,off) ∧
ino ∈ fdom (alist to fmap fs.inode tbl)) ∧

(∀ fname ino.
assoc fs.files fname = Some ino ⇒ File ino ∈ fdom (alist to fmap fs.inode tbl)) ∧

liveFS fs

Now here is the main property of file systems.

� IOFS fs = IOx fs ffi part fs ∗ IOFS iobuff ∗ &wfFS fs

It states that we have a buffer for file system FFI calls, and that the well-formed
file system fs is actually the current file system.

More precisely, IOx fs ffi part fs means that there is a ghost state encoding
a list of FFI calls whose successive compositions (like ffi_write from Fig. 2)
produce the file system fs.

The latter property was heavily used when specifying various low-level I/O
functions, but we need more convenient user-level properties. In particular, most
programs using I/O will use the standard streams. Thus we need to ensure that
they exist, are open on their respective file descriptors (i.e. 0, 1, and 2), and that
standard output and error’s offsets are at the end of the stream, all of which are
ensured by the stdFS property.

The following property asserts that this is the case for the current file system
and also abstracts away the value of fs.numchars.

� STDIO fs = (SEP EXISTS ns. IOFS (fs with numchars := ns)) ∗ &stdFS fs

Indeed, the value of this additional field is not relevant, and we only need to
know that it makes the file system “live”. It would otherwise be cumbersome to
specify it, as we would need to know how many read and write calls have been
made during the execution of the program, which itself depends on fs.numchars
(the smaller its elements are, the higher the number of calls).

We also define convenient properties such as stdout fs out (and respectively
for standard input and error), which states that the content of the standard
output stream is out (and similarly for the other two streams), as well as the
function add stdout fs out which appends the string out at the end of the stan-
dard output of the file system fs to out . The specifications of TextIO.output
and TextIO.print in Fig. 3 and of diff in Fig. 4 provide typical examples of
their usage.

98 H. Férée et al.

4.2 Library Implementation and Specifications

In the same way that a typical standard library is supposed to expose high-
level functions to the user and hide their possibly intricate implementation,
one of the main challenges of a verified standard library is to provide simple
and reusable specifications for these functions so that users can build high-level
verified programs on top of it. Once again, we take the write FFI call as a
running example and build a user-level function TextIO.output which will be
used in most of our examples in Sect. 5.

Now that we have an FFI call for write, we define (in CakeML’s concrete
syntax) a function writei which on file descriptor fd and integers n and i,
encodes these inputs properly for the write FFI call, and keeps trying to write
n bytes from the array iobuff from the offset i until it actually succeeds to
write at least one byte.

As it is a quite low-level function, its specification won’t be reproduced here,
but the key point is that it requires the file system to be well-formed, and thus
to verify the liveFS property. Its correctness, and especially termination, relies
on the fact that, according to the latter property, the file system will always
eventually write at least one byte. Its proof is mainly based on the following
derived induction principle over lazy lists:

� (∀ ll . P ll ∨ ¬P ll ∧ Q (the (LTL ll)) ⇒ Q ll) ⇒
∀ ll . ll
= [||] ⇒ always (eventually P) ll ⇒ Q ll

In words: in order to prove that Q holds for a non-empty lazy list such that
P always eventually holds, it suffices to prove a) that whenever P holds of a
lazy list, so does Q , and b) whenever P does not hold and Q holds of the list’s
tail, Q holds of the entire list. In the proof these get instantiated so that P is a
predicate stating that the next write operation will write at least one byte, and
Q is the CF Hoare triple for writei.

The writei function takes care of some part of the non-determinism induced
by the write system call. We can then use it to define a function write which
will actually write all the required bytes and whose outcome is thus fully deter-
ministic. But this is yet another intermediate function whose specification has
a fair number of hypotheses and whose Hoare triple is quite involved. We
thus define SML-like user-level functions like TextIO.output and TextIO.print
whose specifications involve the high-level property STDIO defined in Sect. 4.1.
The latter are given in Fig. 3, in the form app p f v args P (POSTv uv . Q) essen-
tially meaning that whenever the separation logic precondition P is satisfied, the
function named f , on arguments args (related to HOL values with relations like
FD, String or Unit) terminates on a value uv which satisfies the postcondition
Q .

From a user’s perspective, these theorems simply state that on a standard file
system, the return type of these functions is unit and they produce a standard
file system, modified as expected.

Program Verification in the Presence of I/O 99

FD fd fdv ∧ get file content fs fd = Some (content ,pos) ∧ String s sv ⇒
app p TextIO output v [fdv ; sv] (STDIO fs)
(POSTv uv .

&Unit () uv ∗
STDIO (fsupdate fs fd 0 (pos + strlen s) (insert atI (explode s) pos content)))

String s sv ⇒
app p TextIO print v [sv] (STDIO fs)
(POSTv uv . &Unit () uv ∗ STDIO (add stdout fs s))

Fig. 3. Specifications for TextIO.output and TextIO.print

5 Case Study: A Verified Diff

In this section, we present verified implementations of diff and patch, using the
method described in preceding sections. For space reasons the presentation here
will focus mostly on diff. The end product is a verified x86-64 binary, which is
available for download4. We focus on implementing the default behaviour. Hence
it falls somewhat short of being a drop-in replacement for, e.g., GNU diff: we do
not support the abundance of command-line options that full implementations
of the POSIX specification deliver.

At the heart of diff lies the notion of longest common subsequence (LCS).
A list s is a subsequence of t if by removing elements from t we can obtain s. s
is a common subsequence of t and u if it is a subsequence of both, and an LCS
if no other subsequence of t and u is longer than it.

lcs s t u ⇐⇒
common subsequence s t u ∧
∀ s ′. common subsequence s ′ t u ⇒ length s ′ ≤ length s

diff first computes an LCS of the two input files’ lines5, and then presents any
lines not present in the LCS as additions, deletions or changes as the case might
require.

We implement and verify shallow embeddings for a sequence of progressively
more realistic LCS algorithms: a naive algorithm that runs in exponential time
with respect to the number of lines; a dynamic programming version that runs
in quadratic time; and a further optimisation that achieves linear best-case per-
formance6.

On top of the latter LCS algorithm, we write a shallow embedding diff alg l l ′
that given two lists of lines returns a list of lines corresponding to the verbatim
output of diff. To give the flavour of the implementation, we show the main
loop that diff alg uses:

4 https://cakeml.org/vstte18/x86 binaries.zip.
5 The LCS is not always unique: both [a, c] and [b, c] are LCSes of [a, b, c] and [b, a, c].
6 There are algorithms that do better than quadratic time for practically interesting

special cases [3]; we leave their verification for future work.

https://cakeml.org/vstte18/x86_binaries.zip

100 H. Férée et al.

diff with lcs [] l n l ′ n ′ =
if l = [] ∧ l ′ = [] then [] else diff single l n l ′ n ′

diff with lcs (f ::r) l n l ′ n ′ =
let (ll ,lr) = split ((=) f) l ; (l ′l ,l ′r) = split ((=) f) l ′

in
if ll = [] ∧ l ′l = [] then
diff with lcs r (tl lr) (n + 1) (tl l ′r) (n + 1)

else
diff single ll n l ′l n ′ @
diff with lcs r (tl lr) (n + length ll + 1) (tl l ′r)
(n ′ + length l ′l + 1)

The first argument to diff_with_lcs is the LCS of l and l ′, and the numerical
arguments are line numbers. If the LCS is empty, all remaining lines in l and l ′

must be additions and deletions, respectively; the auxiliary function diff single
presents them accordingly. If the LCS is non-empty, partition l and l ′ around
their first occurrences of the first line in the LCS. Anything to the left is presented
as additions or deletions, and anything to the right is recursed over using the
remainder of the LCS.

We take our specification of diff directly from its POSIX standard descrip-
tion [17, p. 2658]:

The diff utility shall compare the contents of file1 and file2 and write
to standard output a list of changes necessary to convert file1 into file2.
This list should be minimal. No output shall be produced if the files are
identical.

For each sentence in the above quote, we prove a corresponding theorem about
our diff algorithm:

� patch alg (diff alg l r) l = Some r
� lcs l r r ′ ⇒

length (filter is patch line (diff alg r r ′)) =
length r + length r ′ − 2 × length l

� diff alg l l = []

The convertibility we formalise as the property that patch cancels diff. The
minimality theorem states that the number of change lines printed is precisely
the number of lines that deviate from the files’ LCS7.

We apply our synthesis tool to diff alg, and write a CakeML I/O wrapper
around it:

fun diff’ fname1 fname2 =

case TextIO.inputLinesFrom fname1 of

NONE => TextIO.print_err (notfound_string fname1)

| SOME lines1 =>

7 Note that this differs from the default behaviour of the GNU implementation of
diff, which uses heuristics that do not compute the minimal list if doing so would
be prohibitively expensive.

Program Verification in the Presence of I/O 101

case TextIO.inputLinesFrom fname2 of

NONE => TextIO.print_err (notfound_string fname2)

| SOME lines2 => TextIO.print_list (diff_alg lines1 lines2)

fun diff u =

case CommandLine.arguments () of

(f1::f2::[]) => diff’ f1 f2

| _ => TextIO.print_err usage_string

We prove a CF specification shown in Fig. 4 stating that: if an unused file descrip-
tor is available, and if there are two command-line arguments that are both
valid filenames, the return value of diff alg is printed to stdout; otherwise, an
appropriate error message is printed to stderr. Note that we have a separating
conjunction between the file system and command-line, despite the fact that
both conjuncts describe the FFI state. This is sound since they are about two
disjoint, non-interfering parts of the FFI state; for details we refer the reader
to [13].

diff sem cl fs =
if length cl = 3 then
if inFS fname fs (EL 1 cl) then
if inFS fname fs (EL 2 cl) then
add stdout fs
(concat
(diff alg (all lines fs (EL 1 cl))
(all lines fs (EL 2 cl))))

else add stderr fs (notfound string (EL 2 cl))
else add stderr fs (notfound string (EL 1 cl))

else add stderr fs usage string

hasFreeFD fs ⇒
app p diff v [Conv None []]
(STDIO fs ∗ CMDLN cl)
(POSTv uv .

&Unit () uv ∗
STDIO (diff sem cl fs) ∗
CMDLN cl)

Fig. 4. Semantics for diff (left) showing how it changes the file system state, and its
specification (right) as a CF Hoare triple.

For an indication of where the effort went in this case study, we can compare
the size of the source files dedicated to each part of the development. Definitions
and proofs for LCS algorithms are 1098 lines of HOL script, and definitions and
proofs for the diff and patch algorithms is 1270 lines. Translation of these algo-
rithms to CakeML, and definition and verification of the CakeML I/O wrapper
comprises 200 lines of proofs in total. Of these, 59 lines are tactic proofs for
proving the CF specification from Fig. 4. These proofs are fairly routine and
consist mostly of tactic invocations for unfolding the next step in the weakest
precondition computation; in particular, none of it involves reasoning about file
system internals. We conclude that our contributions in previous sections do
indeed deliver on their promise: almost all our proof effort was cast in terms of
shallow embeddings, yet our end product is a theorem about the I/O behaviour
of the binary code that actually runs, and at no point did we have to sweat the
small stuff with respect to the details of file system interaction.

102 H. Férée et al.

6 Related Work

There are numerous impressive systems for verifying algorithms, including
Why3 [11], Dafny [22], and F* [32] that focus on effective verification, but at
the algorithmic level only. Here we focus on projects whose goal includes either
generating code with a relatively small TCB, reasoning about file systems, or
verification of Unix-style utilities.

Small-TCB Verification. One commonly used route to building verified systems
is to use the unverified code extraction mechanisms that all modern interactive
theorem provers have. The idea is that users verify properties of functions inside
the theorem prover and then call routines that print the in-logic functions into
source code for some mainstream functional programming language outside the
theorem prover’s logic. This is an effective way of working, as can be seen in
CompCert [23] where the verified compile function is printed to OCaml before
running. The printing step leaves a hole in the correctness argument: there is
no theorem relating user-proved properties with how the extracted functions
compile or run outside the logic. There has been work on verifying parts of the
extraction mechanisms [12,24], but none of these close the hole completely. The
CakeML toolchain is the first to provide a proof-producing code extraction mech-
anism that gives formal guarantees about the execution of the extracted code
outside of the logic. In a slightly different way, ACL2 can efficiently execute code
with no trusted printing step, since their logic is just pure, first-order Common
Lisp. However, the Common Lisp compiler must then be trusted in a direct way,
rather than only indirectly as part of the soundness of the proof assistant.

The above code extraction mechanisms treat functions in logic as if they were
pure functional programs. This means that specifications can only make state-
ments relating input values to output values; imperative features are not directly
supported. The Imperative HOL [6] project addresses this issue by defining an
extensible state monad in Isabelle/HOL and augmenting Isabelle/HOL’s code
extraction to map functions written in this monadic style to the corresponding
imperative features of the external programming languages. This adds support
for imperative features, but does not close the printing gap.

The above approaches expect users to write their algorithms in the normal
style of writing functions in theorem provers. However, if users are happy to
adapt to a style supported by a refinement framework, e.g., the Isabelle Refine-
ment Framework [21] or Fiat [9], then significant imperative features can be
introduced through proved or proof-producing refinements within the logic. The
Isabelle Refinement Framework lets users derive fast imperative code by stepwise
refinement from high-level abstract descriptions of algorithms. It targets Imper-
ative HOL, which again relies on unverified code extraction. Fiat aims to be a
mostly automatic refinement engine that derives efficient code from high-level
specifications. The original version of Fiat required use of Coq’s unverified code
extraction. However, more recent versions seem to perform refinement all the way
down to assembly code [8]. The most recent versions amount to proof-producing
compilation inside the logic of Coq. Instead of proving that the compiler will

Program Verification in the Presence of I/O 103

always produce semantically compatible code, in the proof-producing setting,
each run of the tools produces a certificate theorem explaining that this compi-
lation produced a semantically compatible result.

The Verified Software Toolchain VST [4] shares many of the goals of our
effort here, and provides some of the same end-to-end guarantees. VST builds a
toolchain based on the CompCert compiler, in particular they place a C dialect,
which they call Verifiable C, on top of CompCert C minor and provide a power-
ful separation logic-style program logic for this verification-friendly version of C.
VST can deal with input and output and, of course, with highly imperative code.
Much like CakeML, VST supports using an oracle for predicting the meaning of
instructions that interact with the outside world [16], though to the best of our
knowledge this feature has not been used to reason about file system interaction.
VST can provide end-to-end theorems about executable code since verified pro-
grams can be compiled through CompCert, and CompCert’s correctness theorem
transfers properties proved at the Verifiable C level down to the executable. The
major difference wrt. the CakeML toolchain is that in VST one is always proving
properties of imperative C code. In contrast, with CakeML, the pure functional
parts can be developed as conventional logic functions in a shallow embedding,
i.e. no complicated separation logic gets in the way, while imperative features
and I/O are supported by characteristic formulae. We offer similar end-to-end
guarantees by composing seamlessly with the verified CakeML compiler.

The on-going CertiCoq project [2] aims to do for Coq what CakeML has done
for HOL4. CertiCoq is constructing a verified compiler from a deeply embedded
version of Gallina, the language of function definitions in the Coq logic, to the
C minor intermediate language in CompCert and from there via CompCert to
executable code. This would provide verified code extraction for Coq, that is
similar to CakeML’s partly proof-producing and partly verified code extraction.
In their short abstract [2], the developers state that this will only produce pure
functional programs. However, they aim for interoperability with C and thus
might produce a framework where pure functions are produced from CertiCoq,
and the imperative parts and I/O parts are verified in VST.

File Systems and Unix-Style Utilities. There is a rather substantial literature
on file system modelling and verification [1,5,10,14,30], but comparatively little
work on reasoning about user programs on top of file systems. An exception is
Ntzik and Gardner [28], who define a program logic for reasoning about client
programs of the POSIX file system. Their emphasis is on directory structure
and pathname traversal, which we do not consider on our model, but apart from
this, the two models are equivalent (our files field behaves as a single directory
containing all file names). The programs they consider are written in a simple
while language enriched with file system operations; this is sufficient for their
aims since their aim is to study the correctness of file system algorithms in the
abstract, not binary correctness of implementations as in the present paper. As
a case study they consider the rm -r algorithm, in which they expose bugs in
several known implementations.

104 H. Férée et al.

Kosmatov et al. [34] mention a verification of the Get_Line function in Spark
ADA [25].8 The file system is modelled by ghost variables that represent the file
contents and current position of the file under consideration. The fgets function
from libc is annotated with a contract that describes its behaviour in terms of
updates on the ghost variables, and is thus part of the TCB in the same way as
the system calls that we model by the FFI oracle is part of our TCB. This effort
uncovered several long-standing bugs in the implementation of Get_Line.

In terms of investigating diff from a formal methods point of view, Khanna
et al. [19] study the three-way diff algorithm and attempt to determine what
its specification is; the surprising conclusion is that it satisfies few, if any, of the
properties one might expect it to. It does not attempt to verify two-way diff,
which is the topic of the present paper; instead, it takes the properties of diff
that we prove in Sect. 5 as given.

Recently, Jeannerod et al. [18] verified an interpreter for a shell-like language
called CoLiS using Why3. The model of the underlying file system and the
behaviour of external commands is kept abstract, since the paper’s main focus
is on the CoLiS language itself. Verification of shell scripts that invoke verified
external commands such as our diff in, e.g., the setting of Jeannerod et al.
extended with a file system model, would be an interesting direction for future
work.

7 Conclusion

We have demonstrated that the CakeML approach can be used to develop imper-
ative programs with I/O for which we have true end-to-end correctness theorems.
The applications are verified down to the concrete machine code that runs on the
CPU, subject to reasonable, and documented, assumptions about the underlying
operating system. Verifying these applications demonstrates how it is possible
to separate the high-level proof task, such as proofs about longest common sub-
sequence algorithms, from the details of interacting with files and processing
command-line arguments. In this way, the proof task naturally mimics the mod-
ular construction of the code.

Acknowledgements. The first and fourth authors were supported by EPSRC Grant
EP/N028759/1, UK. The second and fifth authors were partly supported by the
Swedish Research Council. We would also like to thank the anonymous reviewers for
their constructive and insightful comments and corrections.

A Appendix: Further Example Programs

For the benefit of readers, we describe our verified implementations of the grep,
sort, and cat command-line utilities.

8 The verification is described in more detail in a blog post by Yannick Moy: https://
blog.adacore.com/formal-verification-of-legacy-code.

https://blog.adacore.com/formal-verification-of-legacy-code
https://blog.adacore.com/formal-verification-of-legacy-code

Program Verification in the Presence of I/O 105

A.1 Cat

A verified cat implementation was presented in our previous work on CF [13].
The cat implementation presented here differs in two respects: first, it is verified
with respect to a significantly more low-level file system model (see Sect. 3.1).
Second, it has significantly improved performance, since it is implemented in
terms of more low-level I/O primitives. Hence this example demonstrates that
reasonably performant I/O verified with respect to a low-level I/O model is
feasible in our setting. Here is the code:

fun pipe_2048 fd1 fd2 =
let val nr = TextIO.read fd1 2048 in

if nr = 0 then 0 else (TextIO.write fd2 nr 0; nr) end

fun do_onefile fd =
if pipe_2048 fd TextIO.stdOut > 0 then do_onefile fd else ();

fun cat fnames =
case fnames of

[] => ()
| f::fs => (let val fd = TextIO.openIn f in

do_onefile fd; TextIO.close fd; cat fs end)

The difference over the previous implementation is pipe_2048, which gains
efficiency by requesting 2048 characters at a time from the input stream, rather
than single characters as previously. We elide its straightforward CF specifica-
tion, which essentially states that the output produced on stdout is the con-
catenation of the file contents of the filenames given as command line argu-
ments. The cat implementation above does not handle exceptions thrown by
TextIO.openIn; hence the specification assumes that all command line argu-
ments are valid names of existing files.

A.2 Sort

The sort program reads all of the lines in from a list of files given on the
command-line, puts the lines into an array, sorts them using Quicksort, and
then prints out the contents of the array. The proof that the printed output
contains all of the lines of the input files, and in sorted order, is tedious, but
straightforward.

We do not use an existing Quicksort implementation, but write and verify one
from scratch. Unlike the various list-based Quicksort algorithms found in HOL,
Coq, and Isabelle, we want an efficient array-based implementation of pivoting.
Hence we implement something more akin to Hoare’s original algorithm. We
sweep two pointers inward from the start and end of the array, swapping ele-
ments when they are on the wrong side of the pivot. We stop when the pointers
pass each other. Note that we pass in a comparison function: our Quicksort is
parametric in the type of array elements.

106 H. Férée et al.

fun partition cmp a pivot lower upper =

let

fun scan_lower lower =

let val lower = lower + 1 in

if cmp (Array.sub a lower) pivot

then scan_lower lower

else lower end

fun scan_upper upper = ...

fun part_loop lower upper =

let

val lower = scan_lower lower

val upper = scan_upper upper in

if lower < upper

then let val v = Array.sub a lower in

(Array.update a lower (Array.sub a upper);

Array.update a upper v;

part_loop lower upper)

end

else upper end in

part_loop (lower - 1) (upper + 1) end;

Because this is intrinsically imperative code, we do not use the synthesis tool, but
instead verify it with CF directly. The only tricky thing about the proof is work-
ing out the invariants for the various recursive functions, which are surprisingly
subtle, for an algorithm so appealingly intuitive.

Our approach to verifying the algorithm is to assume a correspondence
between the CakeML values in the array, and HOL values that have an appro-
priate ordering on them. The Quicksort algorithm needs that ordering to be a
strict weak order. This is a less restrictive assumption than requiring it to be a
linear order (strict or otherwise). Roughly speaking, this will allow us to assume
that unrelated elements are equivalent, even when they are not equal. Hence,
we can sort arrays that hold various kinds of key/value pairs, where there are
duplicate keys which might have different values.

strict weak order r ⇐⇒
transitive r ∧ (∀ x y . r x y ⇒ ¬r y x) ∧
transitive (λ x y . ¬r x y ∧ ¬r y x)

Even though we are not using the synthesis tool, we do use its refinement invari-
ant combinators to maintain the CakeML/HOL correspondence. This enforces a
mild restriction that our comparison function must be pure, but greatly simpli-
fies the proof by allowing us to reason about ordering and permutation naturally
in HOL.

The following is our correctness theorem for partition. We assume that there
is a strick weak order cmp that corresponds to the CakeML value passed in
as the comparison. We also assume some arbitrary refinement invariant a on
the elements of the array. The _ → _ combinator lifts refinement invariants to
functions.

Program Verification in the Presence of I/O 107

� strict weak order cmp ∧ (a → a → Bool) cmp cmp_v ∧
pairwise a elems2 elem_vs2 ∧ elem_vs2
= [] ∧
Int (&length elem_vs1) lower_v ∧
Int (&(length elem_vs1 + length elem_vs2 − 1)) upper_v ∧
(pivot ,pivot_v) ∈ set (front (zip (elems2,elem_vs2))) ⇒
app ffi_p partition v [cmp_v ; arr_v ; pivot_v ; lower_v ; upper_v]
(ARRAY arr_v (elem_vs1 @ elem_vs2 @ elem_vs3))
(POSTv p_v .

SEP EXISTS part1 part2.
ARRAY arr_v
(elem_vs1 @ part1 @ part2 @ elem_vs3) ∗

&partition pred cmp (length elem_vs1) p_v pivot
elems2 elem_vs2 part1 part2)

We can read the above as follows, starting in the conclusion of the theorem.
Partition takes 5 arguments cmp_v , arr_v , pivot_v , lower_v , and upper_v , all
of which are CakeML values. As a precondition, the array’s contents can be
split into 3 lists of CakeML values elems_vs1, elems_vs2, and elems_vs3.9 Now
looking at the assumptions, the length of elem_vs1 must be the integer value for
the lower pointer. A similar relation must hold for the upper pointer, so that
elem_vs2 is the list of elements in-between the pointers, inclusive. We also must
assume that the pivot element is in segment to be partitioned (excluding the
last element).

The postcondition states that the partition code will terminate, and that
there exists two partitions. The array in the heap now contains the two partitions
instead of elem_vs2. The partition pred predicate (definition omitted), ensures
that the two partitions are non-empty, permute elem_vs2, and that the elements
of the first are not greater than the pivot, and the elements of the second are not
less. These last two points use the shallowly embedded cmp and elems2, rather
than cmp_v and elems_vs2.

A.3 grep

grep <regex> <file> <file>... prints to stdout every line from the files that
matches the regular expression <regex>. Unlike sort, diff and patch which
need to see the full file contents before producing output, grep can process lines
one at a time and produce output after each line. The main loop of grep reads
a line, and prints it if it satisfies the predicate m:

fun print_matching_lines m prefix fd =
case TextIO.inputLine fd of NONE => ()
| SOME ln => (if m ln then (TextIO.print prefix; TextIO.print ln)

else ();
print_matching_lines m prefix fd)

9 @ appends lists.

108 H. Férée et al.

For each filename, we run the above loop if the file can be opened, and print an
appropriate error message to stderr otherwise:

fun print_matching_lines_in_file m file =
let val fd = TextIO.openIn file
in (print_matching_lines m (String.concat[file,":"]) fd;

TextIO.close fd)
end handle TextIO.BadFileName =>

TextIO.print_err (notfound_string file)

The latter function satisfies the following CF specification (eliding stderr out-
put):

� cf let (Some “a”) (cf con None [])
(cf let (Some “b”)

(cf app p (Var (Long “Commandline” (Short “arguments”)))
[Var (Short “a”)])

(cf let (Some “c”)
(cf app p (Var (Long “List” (Short “hd”))) [Var (Short “b”)])
(cf let (Some “d”)

(cf app p (Var (Long “IO” (Short “inputLinesFrom”)))
[Var (Short “c”)]) . . .))) st (CMDLN cl ∗ STDIO fs)

(POSTv uv)

The postcondition states that the output to stdout is precisely those lines in f
that satisfy m, with f and a colon prepended to each line. The three assumptions
mean, respectively: that f is a string without null characters, and fv is its corre-
sponding deeply embedded CakeML value; that our view of the file system has
a free file descriptor; and that m is a fully specified (i.e., lacking preconditions)
function of type char lang and mv is the corresponding CakeML closure value.

The main function of grep is as follows:

fun grep u =
case CommandLine.arguments () of

[] => TextIO.print_err usage_string
| [_] => TextIO.print_err usage_string
| (regexp::files) =>

case parse_regexp (String.explode regexp) of
NONE => TextIO.print_err (parse_failure_string regexp)

| SOME r =>
List.app (fn file => print_matching_lines_in_file

(build_matcher r) file) files

parse_regexp and build_matcher are synthesised from a previous formalisation
of regular expressions by Slind [31], based on Brzozowski derivatives [29].

Program Verification in the Presence of I/O 109

The semantics of grep is given by the function grep sem, which returns a
tuple of output for stdout and stderr, respectively.

grep sem (v0::regexp::filenames) fs =
if null filenames then (“”,explode usage string)
else
case parse regexp regexp of
None ⇒ (“”,explode (parse failure string (implode regexp)))

| Some r ⇒
let l =

map (grep sem file (regexp lang r) fs)
(map implode filenames)

in (flat (map fst l),flat (map snd l))
grep sem v2 = (“”,explode usage string)

regexp_lang is a specification of build_matcher due to Slind, and grep_sem_-
file is a semantics definition for print_matching_lines_in_file. The final
CF specification states that the output to the std* streams are as in grep sem,
and has two premises: that there is an unused file descriptor, and that Brzozowski
derivation terminates on the given regular expression 10.

References

1. Amani, S., et al.: Cogent: verifying high-assurance file system implementations.
In: Conte, T., Zhou, Y. (eds.) Proceedings of the Twenty-First International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2016, Atlanta, GA, USA, 2–6 April 2016, pp. 175–188. ACM (2016).
https://doi.org/10.1145/2872362.2872404

2. Anand, A., et al.: CertiCoq: a verified compiler for Coq. In: Coq for Programming
Languages (CoqPL) (2017)

3. Apostolico, A., Galil, Z. (eds.): Pattern Matching Algorithms. Oxford University
Press, Oxford (1997)

4. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,
vol. 6602, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19718-5 1

5. Arkoudas, K., Zee, K., Kuncak, V., Rinard, M.: Verifying a file system imple-
mentation. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 373–390. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30482-1 32

6. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71067-7 14

10 Finding a termination proof for the kind of Brzozowski derivation we use is an open
problem that is not addressed by Slind’s work nor by the present paper. See, e.g.,
Nipkow and Traytel [27] for a discussion.

https://doi.org/10.1145/2872362.2872404
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-540-30482-1_32
https://doi.org/10.1007/978-3-540-30482-1_32
https://doi.org/10.1007/978-3-540-71067-7_14

110 H. Férée et al.

7. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: Proceeding of the 16th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2011, pp. 418–430 (2011). https://doi.org/10.
1145/2034773.2034828

8. Chlipala, A., et al.: The end of history? Using a proof assistant to replace language
design with library design. In: Summit on Advances in Programming Languages
(SNAPL). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://doi.
org/10.4230/LIPIcs.SNAPL.2017.3

9. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: deductive synthesis of
abstract data types in a proof assistant. In: Principles of Programming Languages
(POPL), pp. 689–700. ACM (2015). https://doi.org/10.1145/2676726.2677006

10. Ernst, G., Schellhorn, G., Haneberg, D., Pfähler, J., Reif, W.: Verification of a
virtual filesystem switch. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013.
LNCS, vol. 8164, pp. 242–261. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54108-7 13

11. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

12. Glondu, S.: Vers une certification de lextraction de Coq. Ph.D. thesis, Universit
Paris Diderot (2012)

13. Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified characteristic for-
mulae for CakeML. In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 584–610.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-1 22

14. Heisel, M.: Specification of the Unix file system: a comparative case study. In:
Alagar, V.S., Nivat, M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 475–488. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60043-4 72

15. Ho, S., Abrahamsson, O., Kumar, R., Myreen, M.O., Tan, Y.K., Norrish, M.:
Proof-producing synthesis of CakeML with I/O and local state from monadic HOL
functions. In: International Joint Conference on Automated Reasoning (IJCAR)
(2018, to appear)

16. Hobor, A.: Oracle Semantics. Princeton University, Princeton (2008)
17. IEEE Computer Society, The Open Group: The open group base specifications

issue 7. IEEE Std 1003.1, 2016 Edition (2016)
18. Jeannerod, N., Marché, C., Treinen, R.: A formally verified interpreter for a shell-

like programming language. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017. LNCS,
vol. 10712, pp. 1–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72308-2 1

19. Khanna, S., Kunal, K., Pierce, B.C.: A formal investigation of Diff3. In: Arvind,
V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 485–496. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-77050-3 40

20. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: POPL 2014: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 179–191. ACM Press,
January 2014

21. Lammich, P.: Refinement to Imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 253–269. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22102-1 17

22. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4
20

https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.4230/LIPIcs.SNAPL.2017.3
https://doi.org/10.4230/LIPIcs.SNAPL.2017.3
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1007/978-3-642-54108-7_13
https://doi.org/10.1007/978-3-642-54108-7_13
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/3-540-60043-4_72
https://doi.org/10.1007/978-3-319-72308-2_1
https://doi.org/10.1007/978-3-319-72308-2_1
https://doi.org/10.1007/978-3-540-77050-3_40
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

Program Verification in the Presence of I/O 111

23. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009)

24. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6 39

25. McCormick, J.W.: Building High Integrity Applications with Spark ADA. Cam-
bridge University Press, Cambridge (2015)

26. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into
pure and stateful ML. J. Funct. Program. 24(2–3), 284–315 (2014)

27. Nipkow, T., Traytel, D.: Unified decision procedures for regular expression equiv-
alence. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 450–466.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6 29

28. Ntzik, G., Gardner, P.: Reasoning about the POSIX file system: local update and
global pathnames. In: Aldrich, J., Eugster, P. (eds.) Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh,
PA, USA, 25–30 October 2015, pp. 201–220. ACM (2015). https://doi.org/10.1145/
2814270.2814306

29. Owens, S., Reppy, J.H., Turon, A.: Regular-expression derivatives re-
examined. J. Funct. Program. 19(2), 173–190 (2009). https://doi.org/10.1017/
S0956796808007090

30. Ridge, T., Sheets, D., Tuerk, T., Giugliano, A., Madhavapeddy, A., Sewell, P.:
SibyLFS: formal specification and oracle-based testing for POSIX and real-world
file systems. In: Miller, E.L., Hand, S. (eds.) Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, 4–7 October
2015, pp. 38–53. ACM (2015). https://doi.org/10.1145/2815400.2815411

31. Slind, K.L.: High performance regular expression processing for cross-domain sys-
tems with high assurance requirements. Presented at the Third Workshop on For-
mal Methods And Tools for Security (FMATS3) (2014)

32. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: 43rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pp. 256–270. ACM, January 2016. https://www.fstar-lang.org/papers/
mumon/

33. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: A new
verified compiler backend for CakeML. In: ICFP 2016: Proceedings of the 21th
ACM SIGPLAN International Conference on Functional Programming, pp. 60–73.
ACM Press, September 2016

34. Kosmatov, N., Marché, C., Moy, Y., Signoles, J.: Static versus dynamic verification
in Why3, Frama-C and SPARK 2014. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9952, pp. 461–478. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47166-2 32

https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1007/978-3-319-08970-6_29
https://doi.org/10.1145/2814270.2814306
https://doi.org/10.1145/2814270.2814306
https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1145/2815400.2815411
https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1007/978-3-319-47166-2_32
https://doi.org/10.1007/978-3-319-47166-2_32

TWAM: A Certifying Abstract Machine
for Logic Programs

Rose Bohrer(B) and Karl Crary

Carnegie Mellon University, Pittsburgh, PA 15213, USA
crary@cs.cmu.edu

Abstract. Type-preserving (or typed) compilation uses typing deriva-
tions to certify correctness properties of compilation. We have designed
and implemented a typed compiler for an idealized logic programming
language we call T-Prolog. The crux of our approach is a new certifying
abstract machine which we call the Typed Warren Abstract Machine
(TWAM). The TWAM has a dependent type system strong enough
to show programs obey a semantics based on provability in first-order
logic (FOL). We present a soundness metatheorem which (going beyond
the guarantees provided by most typed compilers) constitutes a partial
behavior correctness guarantee: well-typed TWAM programs are sound
proof search procedures with respect to a FOL signature. We argue why
this guarantee is a natural choice for significant classes of logic programs.
This metatheorem justifies our design and implementation of a certifying
compiler from T-Prolog to TWAM.

1 Introduction

Compiler verification is important because compilers are essential and because
compiler bugs are easy to introduce, yet often difficult to catch. Most work on
compiler verification has been done in the setting of imperative or functional
programming; little has been done for logic programming. The most success-
ful compilers [16,17] use an approach we will call direct verification, showing
that compilation of any valid program results in a refinement thereof. Multiple
approaches have been tried for logic programming, but none have resulted in a
executable verified compiler for logic programs.

Compiler verification is an equally interesting problem in the case of logic
programming. Logic programs are often easier to write correctly than programs
in other paradigms, because a logic program is very close to being its own spec-
ification. However, the correctness advantages of logic programming cannot be
fully realized without compiler verification. Beyond the intellectual interest in
compiler correctness, there is a practical concern for correctness of logic program
compilation: practical implementations can be large. For example, SWI-Prolog is
estimated at over 600,000 lines of code [36]. While our certifying compiler is much
smaller, it provides a natural first step toward production-scale verification.

c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 112–134, 2018.
https://doi.org/10.1007/978-3-030-03592-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_7&domain=pdf
http://orcid.org/0000-0001-5201-9895
http://orcid.org/0000-0002-1556-2183
https://doi.org/10.1007/978-3-030-03592-1_7

TWAM: A Certifying Abstract Machine for Logic Programs 113

Certifying compilation [23] is an approach to verification wherein the com-
piler outputs a formal certificate (in our case, type annotations) that the com-
piled program satisfies some desired property. Certifying compilation, unlike
direct verification, has the advantage that the certificates can be distributed
with the compiled code and checked independently by third parties, which is
useful, e.g., for ascertaining trust in code downloaded from the Web. Additional
engineering advantages include the ability to write multiple independent checkers
for improved confidence, to share a certificate language between multiple com-
pilers for the same language, or even to share the certificate language between
compilers for different languages so long as the target language and specification
language are suitable for both (e.g. they have similar dynamic semantics but dif-
ferent static semantics). The flip side is that compiler bugs are not found until
the compiler sees a program that elicits the bug. In the worst case, bugs might
be found by the compiler’s users, rather than its developers.

Traditionally, the other cost of certifying compilation [23] is that only type
and memory safety are certified, not dynamic correctness. In contrast, we cer-
tify search soundness, which is a non-trivial dynamic correctness property. This
leap has only been made recently in the context imperative and functional lan-
guages [6,14]. We provide their logic programming counterpart. The sense in
which we do so is made precise in Theorem 1.

Theorem 1 (Search Soundness): Let P be a logic program and Q a query
formula. If query ?- Q. succeeds on program P , then P � σ(Q) is derivable in
first-order (minimal) logic for some substitution σ.

We choose not to certify completeness with respect to, e.g., Prolog’s depth-
first semantics. For important classes of programs (typecheckers, proofcheckers,
expert systems), soundness is fundamental: Checkers should accept only valid
programs and valid proofs, while expert systems should provide only justified
advice. Otherwise, a user might run an unsafe program, believe an untrue state-
ment, or take unreasonable actions. Theorem 1 says that all such guarantees
which hold of the source transfer to the compiled code. While completeness is
desirable, soundness is our priority because preventing undesired behavior is
often more impactful than ensuring desired behavior.

Ignoring completeness is valuable because it allows us to use provability as
the semantics of logic programs, abstracting over operational details like proof
search order. This imprecision is sometimes a feature, e.g. when we wish to let
the compiler reorder clauses for performance.

In Theorem 1, the logic programs are programs in our T-Prolog language. In
order to keep the correspondence with first-order logic close, T-Prolog enforces
the occurs check and removes cut and negation-as-failure1. T-Prolog also sup-
ports (simple) inductive data types. Since untyped Prolog is most familiar, our
examples are untyped Prolog, or equivalently all terms have the same type term.

The heart of this work is the development of our compilation target, the
Typed Warren Abstract Machine (TWAM), a dependently-typed certifying
1 See Sect. 6 for how these features might be supported.

114 R. Bohrer and K. Crary

abstract machine for logic programs, inspired by the Warren Abstract Machine
(WAM) [35]. TWAM diverges from WAM in several ways to simplify our formal
development: (1) we use continuation-passing style (CPS) for success continu-
ations instead of a stack and (2) we sometimes replace compound instructions
(such as those for managing backtracking) with a smaller set of simpler, more
orthogonal instructions. As formalized and proved in Sect. 3, soundness of the
TWAM type system says that well-typed programs are sound proof search proce-
dures for their first-order logic (FOL) signature. We have implemented a compiler
from T-Prolog to TWAM and an interpreter for TWAM code, which we have
tested on a small library of 468 lines. The result is a certifying compiler with a
special-purpose proof checker as its trusted core: the TWAM typechecker.

Background: Dependent Types and Proof Terms. Our type system integrates
first-order (minimal) logic (FOL) to specify the semantics of logic programs. We
use the variable M to range over FOL terms, D to range over FOL proofs, a to
range over (simple) types, and A to range over propositions. The type-theoretic
analog of the quantifier ∀x:a. φ is the dependent function type Πx:a.τ . When
the name x is not referenced in τ , this is equivalent to the simple function type
a ⇒ τ . We borrow some notations from the logical framework LF [13], a type
system corresponding to first-order minimal logic. Our proof language is mini-
malistic, consisting of constants, modus ponens, instantiation, abstraction, and
variables. More information about proof terms for first-order logic is available
in Sørensen [32, Chap. 8]. We refer to proof terms D as just “proofs” to avoid
confusion with simply-typed FOL terms M . We use juxtaposition D D to indi-
cate modus ponens and D M for universal quantifier instantiation. Abstraction
λx. D can range over either proofs x:A or term x:a. We write λx:α. D wherever
both abstraction over proofs and abstraction over individuals are permissible.
Similarly, we write θ where both terms M and proofs D may appear.

FOL propositions A ::= c | ∀x : a. A | A ⇒ A | A M
FOL terms M ::= x | c | M M
FOL proofs D ::= x | c | D θ | λx : α. D

In Sect. 2 we will extract a constant c for each type, constructor, and clause of
a program. This collection of constant declarations is called a FOL signature,
written Σ. The compiler generates a FOL signature from an arbitrary T-Prolog
program. This signature provides a precise formal specification of what it means
for proof search to find a valid proof.

While we attempt to introduce key WAM concepts as we go, unfamiliar
readers will benefit from reading Aı̈t-Kaci [1]. A gentler version of this paper with
extended proofs, definitions, and a simply-typed variant of WAM is available [4].

2 Certifying Compilation in Proof-Passing Style

We briefly demonstrate (Fig. 1) the T-Prolog source syntax and the extraction of
a FOL signature Σ from a T-Prolog program. We consider addition on the Peano
naturals as a running example, i.e., a predicate plus(N 1,N 2,N 3) that holds
when N1 +N2 = N3. We write 0 and 1+ for the Peano natural constructors. We

TWAM: A Certifying Abstract Machine for Logic Programs 115

also write, e.g., 1 as shorthand for 1+ 0. A T-Prolog program consists of standard
Prolog syntax plus optional type annotations. Throughout the paper, we write
vectors in bold, e.g.; a below. Throughout, a ranges over simple (inductive) types
while A is ranges over propositions in FOL. All terms in the untyped fragment
of T-Prolog have a distinguished simple type, term.

– A type a in T-Prolog translates to a FOL type a.
– A term constructor c : a → a translates to a FOL term constructor of the

same type. For untyped c, the result and all arguments translate to term.
– A predicate p : a → type translates to a FOL constant P : a → B where B is

the type of booleans.
– A clause C of form G :- SG1, . . . ,SGn. translates to a FOL proof constructor

c : ∀FV(C). SG → G where FV(C) is the set of free variables of clause C and
SG consists of one argument for each subgoal. This is the universal closure
of the Horn clause SG → G.

– The query ?- Q is translated to a distinguished predicate named Query with
one proof constructor QueryI : ∀FV(Q). Q → Query2.

0: term
(no type declarations) 1+ : term ⇒ term

Plus : term ⇒ term ⇒ term ⇒ B

plus(0,N,N). Plus-Z : (∀N : term. Plus 0 N N)
plus(1+(N_1),N_2,1+(N_3)) :- Plus-S : ∀N1 : term. ∀N2 : term. ∀N3 : term.

plus(N_1,N_2,N_3). Plus N1 N2 N3 →
Plus (1+ N1) N2 (1+ N3)

)

?- plus(N_1, 0, 1+(0)). QueryI :(∀N1 : term. Plus N1 0 1 → Query)

Fig. 1. Example T-Prolog program and FOL signature

The TWAM certification approach can be summed up in a slogan:

Typed Compilation + Programming As Proof Search = Proof-Passing Style

Typed compilation uses the type system of the target language to ensure that
the program satisfies some property. Previous work [34] has used typed compi-
lation to ensure intermediate languages are safe (do not segfault). One of our
insights is that by combining this technique with the programming-as-proof-
search paradigm that underlies logic programming, our compiler can certify a
much stronger property: search soundness (Theorem 1).

A TWAM program must contain enough information that the TWAM type-
checker can ensure that a proof of the query exists for each terminating runs of
the program. We achieve this by statically ensuring that whenever each proof

2 Note that Query has no free variables. This simplifies the proof of Theorem 1 because
it depends heavily on substitution reasoning.

116 R. Bohrer and K. Crary

search procedure p returns, the corresponding predicate P will have a proof in
FOL. This amounts to (1) annotating each return point with the correspond-
ing FOL proof and (2) reasoning statically about constraints on T-Prolog terms
with dependent singleton types S(M : a) containing exactly the values that
represent some FOL term M of simple type a3. Singleton typing information is
needed to typecheck almost any FOL proof term. For example, an application of
Plus-Z only checks whether we statically know that the first argument is 0 and
that the second and third arguments are equal, all of which are learned during
unification.

This proof-passing style of programming is a defining feature of the TWAM
type system. It is worth noting that these proofs never need to be inspected
at runtime and thus can be (and in our implementation, are) erased before
execution. In the following syntax, we annotate all erasable type annotations
and subterms with square brackets. The Simply-Typed WAM [4] shows how
TWAM works after erasure. Because proofs are only performed during type-
checking, they have no (direct) runtime overhead, compared to runtime proof
computations, which are expensive. At the same time, we do simplify WAM (e.g.
with heap-allocated environments) in order to make developing a type system
more feasible. For this reason, we do not expect our current implementation to
be competitive with production compilers.

3 The Typed WAM (TWAM)

In this section, we develop the main theoretical contributions of the paper: the
design and metatheory of the TWAM. We begin by introducing the syntax and
operational semantics of TWAM by example. We then develop a type system for
TWAM which realizes proof-passing style. We give an outline of the metatheory,
culminating in a proof (Sect. 3.5) of Theorem 1.

3.1 Syntax

We begin by presenting the syntaxes for TWAM program texts, machine states
(as used in the operational semantics), and typing constructs, which are given
in Fig. 2. We call the formal representation of a TWAM program text a code
section C. Each basic block in the program has its own identifier
C ; the code
section maps identifiers to code values, which we range over with variable vC .
Code values are always of the form [λx : α.]code[Γ](I) where I is a basic block
(instruction sequence), λx : α (possibly empty) specifies any FOL (term and/or
proof) parameters of the basic block, and Γ is a register file type specifying the
expected register types at the beginning of the basic block. Recall that the square
brackets above indicate that λ-abstractions and type annotations are needed only
for certification and that because they do not influence the operational semantics,

3 Our running example is untyped (a = term throughout) because untyped Prolog is
well-known, but we will still present the typing rules in their full generality.

TWAM: A Certifying Abstract Machine for Logic Programs 117

basic block I ::= succeed[D : Query] | jmp op | mov rd, op; I
| put str c, r; I | unify var r, [x : a.] I | unify val r, [x : a]. I
| get val r1, r2; I | get str c, r; I | put var r, [x : a.] I
| close rd, re, (�C [θ]); I | push bt re, (�C [θ]); I
| put tuple rd, n; I | set val r; I | proj rd, rs, i; I

operands op ::= � | r | op [θ] | [λx : α.] op

trails T :: 〈〉 | (tf :: T)
trail frames tf ::= (wcode, wenv, tr)
traces tr ::= 〈〉 | (x:a@�H) :: tr
code section,heap C ::= {�C1 �→ vC

1 , . . . , �Cn �→ vC
n } H ::= {�H1 �→ vH

1 , . . . , �Hn �→ vH
n }

heap values vH ::= FREE[x : a] | BOUND �H | c〈�H1 , . . . , �Hn 〉
| close(wcode, wenv) | (w)

code values vC ::= [λx : α.]code[Γ](I)
word values w ::= �C | �H | w [M] | w [D] | [λx : a.] w | [λx : A.] w
register files R ::= {r0 �→ w0, . . . , rn �→ wn}
machines m ::= (Δ, T, C, H, R, I) | write(Δ, T, C, H, R, I, c, �, �)

| read(Δ, T, C, H, R, I, �) | twrite(Δ, T, C, H, R, I, r, n, w)

value types τ ::= S(M : a) | Πx : α.¬Γ | x[τ]
register file types Γ ::= {r0 : τ0, . . . , rn : τn}
heap, code types Ψ ::= {�H1 : τ1, . . . , �

H
n : τn} Ξ ::= {�C1 : τ1, . . . , �

C
n : τn}

spine types J ::= Γ | Πx : a. J Jt ::= a ⇒ {rd : τ}
signatures Σ ::= · | Σ, c : ∀x : a. A → A | Σ, c : a1 ⇒ · · · ⇒ an ⇒ a

Fig. 2. TWAM instructions, machine states, typing constructs

they can be type-erased before execution. Note that when the λ-abstractions are
type erased, their matching (FOL) function applications will be as well. Brackets
also appear in the syntax of machine states (e.g., FREE[x : a]): these too are
erased because they are used only in the metatheory and are not required at
runtime. Recall also that Π is a dependent function type, which is analogous to
the quantifier ∀x. φ.

3.2 Example: Code Section for Plus

We continue the running example: we present a code section which contains
the implementation of the plus proof search procedure, consisting of two code
values named plus-zero/3 and plus-succ/3. Like all TWAM code, it is writ-
ten in continuation-passing style (CPS): code values never return, but rather
return control to the caller by invoking a success continuation passed in to the
callee through a register. The code section also includes an implementation of an
example query, plus(N, 0, 1+(0)), consisting of a code value named query/0.
When the query succeeds, it invokes the top-level success continuation, which is
a code value named init-cont/0.

As is typical in continuation-passing-style, code values have no return type
because they never return. The type of a code value is written Πx:α. ¬Γ , where
x:α records any FOL terms and proofs passed as static arguments, while Γ
records any heap values passed at runtime through the register file.

118 R. Bohrer and K. Crary

Example 1 (Implementing plus)

Entry point to plus, implements

case plus(0,N,N) and tries

plus-succ/3 on failure

plus-zero/3 �→ [λN1N2N3 : term.]code[
{A1 : S(N1), A2 : S(N2), A3 : S(N3),

ret : ((Plus N1 N2 N3) ⇒ ¬{})}](
put tuple X1, 4;

set val A1;
set val A2;
set val A3;
set val ret;

push bt X1, (plus-succ/3 [N1 N2 N3]);
get str A1, 0;
get val A2, A3;
jmp (ret [(Plus − Z N2)]))

plus(1+(N_1), N_2, 1+(N_3))

:- plus(N_1,N_2,N_3).

plus-succ/3 �→ [λN1N2N3 : term.]code[
{env : x[S(N1),S(N2),S(N3),

((Plus N1 N2 N3) ⇒ ¬{})]}](
proj A1, env, 1;
proj A2, env, 2;
proj A3, env, 3;
proj ret, env, 4;
get str A1, 1+;
#Set arg 1 of rec. call to N_1-1

unify var A1, [NN1 : term.]
get str A3, 1+;
#Set arg 3 of rec. call to N_3-1

unify var A3, [NN3 : term.]
#tail-call optimization: add

#Plus-S constructor when called

mov ret, [(λD : Plus NN1 N2 NN3 .]
ret [(Plus-S NN1 N2 NN3 D)]);

jmp (plus-zero/3 [NN1 N2 NN3]))

Example 2 (Calling plus)

init-cont/0 �→
[λN : term. λD : (Plus N 0 (1+ 0)).]
code[{}](succeed[(QueryI N D):Query])

plus(N, 0, 1+(0))

query/0 �→ code[{}](
put var A1, [N : term].
put tuple X1, 0;
close ret, X1, (init-cont/0 [N]);
put str A2, 0;
put str A3, 1+;

unify val A2, [: term.]
jmp (plus-zero/3 [N 0 (1+ 0)]))

The query entry point is query/0. The plus entry point is plus-zero/3,
which is responsible for implementing the base case A1 = 0. Its type annotation
states that the argument terms N1 through N3 are passed in arguments A1

through A3. The success continuation (return address) is passed in through ret,
but may only be invoked once Plus N1 N2 N3 is proved.

The instructions themselves are similar to the standard WAM instructions.
plus-zero/3 is implemented by attempting to unify A1 with 0 and A2 with A3. If
the plus-zero/3 case succeeds, we return to the location stored in ret, proving
Plus N1 N2 N3 in FOL with the Plus-Z rule. If the case fails, we backtrack to
plus-succ/3 to try the Plus-S case. plus succ/3 in turn makes a recursive call
to plus-zero/3 to prove the subgoal NN1 +N2 = NN3 , where NN1 and NN3 are
the predecessors of N1 and N3. The mov instruction implements proof-passing
for tail-calls. Dynamically speaking, we should not need to define a new success
continuation because we are making a tail call. However, while Plus NN1 N2 NN3

implies Plus N1 N2 N3, deriving the latter also requires applying Plus-S after

TWAM: A Certifying Abstract Machine for Logic Programs 119

proving the former. This mov instruction simply says to apply Plus-S (statically)
before invoking ret. Because only the proof changes, the mov can be erased
before executing the program.

Machines. As shown in Fig. 2, the state of a TWAM program is formalized as
a tuple m = (Δ,T,C,H,R, I) (or a special machine read or write: see, e.g.,
Sect. 3.3). Here T is the trail, the data structure that implements backtracking.
The trail consists of a list of trail frames (tf), each of which contains a failure
continuation (location and environment) and a trace (tr), which lists any bound
variables which would have to be made free to recover the state in which the
failure continuation should be run. In WAM terminology, each frame implements
one choice point. The heap H and code section C have types notated Ψ and
Ξ, R : Γ is the register file, and I represents the program counter as the list
of instructions left in the current basic block. Typical register names are Ai

for arguments, Xi for temporaries, ret for success continuations, and env for
environments. Δ contains the free term variables of H; it is used primarily in
Sect. 3.5. The heap H contains the T-Prolog terms. Heap value FREE[x : a]
is a free variable x of type a and c〈
1, . . . ,
n〉 is a structure, i.e., a functor (cf.
constructor in FOL) c applied to arguments 〈
1, . . . ,
n〉. As in WAM, the heap
is in disjoint-set style, i.e. all free variables are distinct and pointers BOUND

can be introduced when unifying variables; BOUND
 and
 represent the same
FOL term. TWAM heaps are acyclic, as ensured by an occurs check. The heap
also contains success continuation closures close(wcode, wenv) and n-ary tuples
(w) (used for closure environments), which do not correspond to T-Prolog terms.

3.3 Operational Semantics

We give the operational semantics by example. Due to space constraints, see
the extended paper [4] for formal small-step semantics (judgements m �−→∗ m′

and m done). Those judgments which will appear in the metatheory are named
in this section. We give an evaluation trace of the query ?- plus(N,0,1+(0)).
For each line we describe any changes to the machine state, i.e. the heap, trail,
register file, and instruction pointer. As with the WAM, the TWAM uses special
execution modes read and write to destruct or construct sequences of arguments
to a functor (we dub this sequence a spine). When the program enters read mode,
we annotate that line with the list
s of arguments being read, and when the
program enters write mode we annotate it with the constructor c being applied,
the destination location
 and the argument locations
s. If we wish, we can view
the final instruction of a write-mode spine as two evaluation steps (delimited by
a semicolon), one of which constructs the last argument of the constructor and
one of which combines the arguments into a structure. We write H{{
H �→vH}}
for heap H extended with new location
H containing vH , or H{
H �→ vH} for
updating an existing location. R{r �→ w} is analogous. Updates H{
H �→ vH}
are only guaranteed to be acyclic when the occurs check passes (should the
occurs check fail, we backtrack instead). Below, all occurs checks pass, and are
omitted for brevity. Spines, backtracking, and no-ops are marked in monospace.

120 R. Bohrer and K. Crary

query/0 �→ code[{}](Outcome:
1 put var A1, [N :term]. H←H{{�1 �→FREE[N :term]}}, R←R{A1 �→�1}
2 put tuple X1, 0; H←H{{�2 �→()}}, R←R{X1 �→�2};
3 close ret, X1, (init-cont/0 [N]); H←H{{�3 �→close(init-cont/0 [N], �2)}},

R←R{ret �→�3};
4 put str A2, 0; H←H{{�4 �→0}}, R←R{A2 �→�4}
5 put str A3, 1+; H←H{{�5 �→FREE[: term]}},

R←R{A3 �→�5}, c = 1+; � = �5, �s = 〈〉
6 unify val A2, [: term.] �s←〈�4〉;H←H{�5 �→1 + 〈�4〉}
7 jmp plus-zero/3[· · ·] I←(C(plus-zero/3) [N 0 (1+ 0)])

plus-zero/3 : ([λN1N2N3 : term.]
code[{A1 : S(N1), A2 : S(N2), A3 : S(N3), ret : ((Plus N1 N2 N3) ⇒ ¬{})}](

8 put tuple X1, 4; �s = 〈〉, n = 4
9 set val A1; �s = 〈�1〉
10 set val A2; �s = 〈�1, �4〉
11 set val A3; �s = 〈�1, �4, �5〉
12 set val ret; �s = 〈�1, �4, �5, �3〉;

H←H{{�6 �→(�1, �4, �5, �3)}}, R←R{X1 �→�6}
13 push bt X1, (plus-succ/3[· · ·]); T←(plus-succ/3[N1 N2 N3], �6, 〈〉) :: 〈〉
14 get str A1, 0; WRITE:H←H{�1 �→0},

T←(plus-succ/3[N1N2N3], �6, 〈�1〉) :: 〈〉
15 get val A2, A3; BT:T←〈〉, I←plus-succ/3 . . . ,

H←H{�1 �→FREE[N : term]}
plus-succ/3 �→ [λN1N2N3 : term.]
code[{env : x[S(N1),S(N2),S(N3), (Plus N1 N2 N3) ⇒ ¬{}]](

16 proj A1, env 1; R←R{A1 �→�1}
17 proj A2, env 2; R←R{A2 �→�4}
18 proj A3, env 3; R←R{A3 �→�5}
19 proj ret, env, 4; R←R{ret �→�3}
20 get str A1, 1+; WRITE:c = 1+, � = �1, �s = 〈〉
21 unify var A1, [NN1 : term.] H←H{{�7 �→FREE[NN1 : term]}}

R←R{A1 �→�7}, �s = 〈�7〉;
H←H{�1 �→1+ 〈�7〉}

22 get str A3, 1+; READ:�s = 〈�4〉
23 unify var A3, [NN3 : term.] R←R{A3 �→�4}
24 mov ret, [(λD : (Plus NN 1 N2 NN 3).]ret[(Plus − S NN1 N2 NN3 D)]);

NOP:R←R{{ret �→[(λD:(Plus NN 1 N2 NN 3).]
�3[(Plus − S NN1 N2 NN3 D)])}}

25 jmp (plus-zero/3 [· · ·])); I←C(plus-zero/3) [NN1 N2 NN3]

plus-zero/3 �→ [λN1N2N3 : term.]
code[{A1 : S(N1), A2 : S(N2), A3 : S(N3), ret : ((Plus N1 N2 N3) ⇒ ¬{})}](

26 put tuple X1, 4; �s = 〈〉, n = 4
27 set val A1; �s = 〈�7〉
28 set val A2; �s = 〈�7, �4〉
29 set val A3; �s = 〈�7, �4, �4〉
30 set val ret; �s = 〈�7, �4, �4, λ . . . �3〉;

H←H{{�8 �→(�7, �4, �4, λ . . . �3)}}
R←R{X1 �→�8}

31 push bt X1, (plus-succ/3 [· · ·]); T←(plus-succ/3 [N1 N2 N3], �8, 〈〉) :: 〈〉
32 get str A1, 0; READ: �s = 〈〉, � = �7;H←H{�7 �→0}
33 get val A2, A3; NOP:R(A2) = R(A3)
34 jmp (ret(Plus − Z N2)); I←C(R(ret)) (Plus − Z N2)

= C(init-cont/0) [0 N2 N3

(Plus − S 0 N2 NN 3 (Plus − Z N2))])

35 init-cont/0:[λN :term D:(Plus N 0 1).]code[{}](succeed[(QueryI N D):Query])

TWAM: A Certifying Abstract Machine for Logic Programs 121

All top-level queries follow the same pattern of constructing arguments, set-
ting a success continuation, then invoking a search procedure. Line 1 constructs
a free variable. Line 2 creates an empty environment tuple which is used to cre-
ate a success continuation on Line 3. This means that if proof search succeeds,
we will return to init-cont/0, which immediately ends the program in success.
Line 4 allocates the number 0 at
4. Lines 5–6 are a write spine that constructs
1+ 0. Because A2 already contains 0, we can eliminate a common subexpression,
reusing it for 1+ 0. This is an example of an optimization that is possible in the
TWAM. Line 7 invokes the main Plus proof search.

Lines 8–12 pack the environment in a tuple. Line 13 creates a trail frame
which executes plus-succ/3 if plus-zero/3 fails. Its trace is initially empty:
from this point on, the trace will be updated any time we bind a free variable.
Line 14 dynamically checks A1, observes that it is free and thus enters write
mode. On line 14, we also bind A1 to 0 and add it to the trace. Note that this
is the first time we add a variable to the trace because we only do so when
trail contains at least one frame. The trace logic is formalized in a judgement
update trail. When the trail is empty, backtracking would fail anyway, so there
is no need to track variable binding.

Line 15 tries and fails to unify (judgement unify) the contents of A2 and A3,
so it backtracks to plus-succ/3 (judgement backtrack).

Backtracking consists of updating the instruction pointer, setting all trailed
locations to free variables, and loading an environment. The plus-succ/3 case
proceeds successfully: the first get str enters write mode because A1 is free, but
the second enters read mode because A3 is not free. On Line 26 we enter the 0
case of plus with arguments A1 = A2 = A3 = 0. All instructions succeed, so we
reach Line 34 which jumps to line 35 and reports success.

3.4 Statics

This section presents the TWAM type system. The main typing judgement
Δ;Γ � IΣ;Ξ ok says that instruction sequence I is well-typed. We omit the sig-
nature Σ and code section type Ξ when they are not used. A code section is
well-typed if every block is well-typed. The system contains a number of aux-
iliary judgments, which will be introduced as needed. Note that the judgement
Δ;Γ � IΣ;Ξ ok is not parameterized by the query directly; instead, the query
is stored as Σ(Query). The typing rule for succeed then looks up the query in
Σ to confirm that proof search proved the correct proposition. Below, the nota-
tion Ψ{
 : τ} denotes the heap type Ψ with the type of
 replaced by τ whereas
Ψ{{
 : τ}} denotes Ψ extended with a fresh location
 of type τ .

Success. We wish to prove that a program only succeeds if a proof D of the
Query exists in FOL. We require exactly that in the typing rule:

Δ � D : Query
Δ;Γ � succeed[D : Query]; I ok

Succeed

122 R. Bohrer and K. Crary

The succeed rule is simple, but deceptively so: the challenge of certifying com-
pilation for TWAM is how to satisfy the premiss of this rule. The proof-passing
approach says we satisfy this premiss by threading FOL proofs statically through
every predicate: by the time we reach the succeed instruction, the proof of the
query will have already been constructed.

Proof-Passing. The jmp instruction is used to invoke and return from basic
blocks. When returning from a basic block, it (statically) passes a FOL proof
to the success continuation. These FOL proofs are part of the jmp instruction’s
operand op:

Δ;Γ � op : ¬Γ ′ Δ � Γ ′ ≤ Γ

Δ;Γ � jmp op, I ok
Jmp

Here Δ � Γ ′ ≤ Γ means that every register of Γ ′ appears in Γ with the same
type.

The operands consist of locations, registers, FOL applications, and FOL
abstractions:

operands op ::=
 | r | op [θ] | [λx : α.] op
Operand typechecking is written Δ;Γ � op : τ and employs standard rules for

checking FOL terms. Brackets indicate that argument-passing and λ-abstraction
are type-erased. The mov instruction is nearly standard. It supports arbitrary
operands, which are used in our implementation to support tail-call optimization,
as seen in Line 24 of the execution trace.

Δ;Γ � op : τ Δ;Γ{rd : τ} � I ok

Δ;Γ � mov rd, op; I ok
Mov

Continuation-Passing. Closures are created explicitly with the close instruc-
tion: close rd, re,

C [θ] constructs a closure in rd which, when invoked, executes
the instructions at
C using FOL arguments θ and environment re. The envi-
ronment is an arbitrary value which is passed to
C [θ] in the register env. The
argument (
C [θ]) is an operand, syntactically restricted to be a location applied
to arguments.

Γ (re) = τ Δ;Γ{rd : Πx : α. ¬Γ ′} � I ok

Δ;Γ � (
C [θ]) : (Πx : α. ¬Γ ′{env : τ})

Δ;Γ � close rd, re, (
C [θ]); I ok
Close

Trail frames are similar, but they are stored in the trail instead of a register:

Δ;Γ � I ok Γ (re) = τ Δ;Γ � (
C [θ]) : ¬{env : τ}
Δ;Γ � push bt re, (
C [θ]); I ok

BT

Singleton Types. The Putvar rule introduces a FOL variable x of simple type
a, corresponding to a T-Prolog unification variable. Statically, the FOL variable

TWAM: A Certifying Abstract Machine for Logic Programs 123

is added to Δ. Dynamically, the TWAM variable is stored in r, so statically we
have r : S(x : a), i.e., r contains a representation of variable x.

Δ,x : a;Γ{r : S(x : a)} � I ok

Δ;Γ � put var r, [x : a.] I ok
Putvar

Singleton typing knowledge is then exploited in proof-checking FOL proofs.

Unification. However, put var alone does not provide nearly enough constraints
to check most proofs. Almost every FOL proof needs to exploit equality con-
straints learned through unification. To this end, we introduce a static notion
of unification M1
 M2, allowing us to integrate unification reasoning into our
type system and thus into FOL proofs. We separate unification into a judgement
Δ � M1
 M2 = σ which computes a most-general unifier of M1 and M2 (or ⊥
if no unifier exists) and capture-avoiding substitution [σ]Δ. We also introduce
notation [[σ]]Δ standing for [σ]Δ with variable substituted by σ removed, since
unification often removes free variables which might located arbitrarily within
Δ. All unification in T-Prolog is first-order, for which algorithms are well-known
[18,29]. One such algorithm is given in the extended paper [4].

The get val instruction unifies its arguments. If no unifier exists, get val
vacuously typechecks: we know statically that unification will fail at runtime
and, e.g., backtrack instead of executing I. This is one of the major subtleties of
the TWAM type system: all unification performed in the type system is hypo-
thetical. At type-checking time we cannot know what arguments a function will
ultimately receive, so we treat all arguments as free variables. The trick (and key
to the soundness proofs) is that this does not disturb the typical preservation of
typing under substitution. For example, after substituting concrete arguments
at runtime, the result will still typecheck even if unification fails, because failing
unifications typecheck vacuously.

Δ � M1
 M2 = ⊥
Γ (r1) = S(M1 : a) Γ (r2) = S(M2 : a)

Δ;Γ � get val r1, r2; I ok
Getval-⊥

Γ (r1) = S(M1 : a) Γ (r2) = S(M2 : a)
Δ � M1
 M2 = σ [[σ]]Δ; [σ]Γ � [σ]I ok

Δ;Γ � get val r1, r2; I ok
Getval

Tuples and Simple Spines. Tuples are similar to structures, except that they
cannot be unified, may contain closures, and do not have read spines. The proj
instruction accesses arbitrary tuple elements i:

Γ (rs) = x[τ]Γ{rd : τi} � I ok (where 1 ≤ i ≤ |τ |)
Δ;Γ � proj rd, rs, i; I ok

Proj

New tuple creation is started by put tuple. Elements are populated by a tuple
spine containing set val instructions. We check the spine using an auxilliary
typing judgement Δ;Γ �Σ;Ξ I:Jt where Jt is a tuple spine type with form

124 R. Bohrer and K. Crary

τ2 ⇒ {rd:x[τ1τ2]}. A tuple spine type encodes both the expected types of all
remaining arguments τ2 and a postcondition: when the spine completes, register
rd will have type x[τ1τ2]. The typing rules check each set val in sequence, then
return to the standard typing mode Δ;Γ � I ok when the spine completes.

Δ;Γ � I : (τ → {rd : x[τ]})(where n = |τ |)
Δ;Γ � put tuple rd, n; I ok

PutTuple

Γ (r) = τΓ � I:Jt

(Δ;Γ � set val r; I) : (τ → Jt)
TSpine-SetVal

Δ;Γ{rd : τ} � I ok

Δ;Γ � I : {rd : τ} TSpine-End

Dependent Spines. While the get val instruction demonstrates the essence of
unification, much unification in TWAM (as in WAM) happens in special-purpose
spines that create or destruct sequences of functor arguments. Because spinal
instructions are already subtle, the resulting typing rules are as well.

We introduce an auxiliary judgement Γ � IΣ;Ξ : J and dependent functor
spine types J . As above, they encode arguments and a postcondition, but here the
postcondition is the unification of two terms, and the arguments are dependent.

The base case is J ≡ (M1
 M2), meaning that FOL terms M1 and M2 will
be unified if the spine succeeds. When J has form Πx:a. J ′, the first instruction
of I must be a spinal instruction that handles a functor argument of type a
(recall that the same instructions are used for both read and write mode, as we
often do not know statically which mode will be used). The type J ′ describes
the type of the remaining instructions in the spine, and may mention x. The
spinal instruction unify var unifies the argument with a fresh variable, while
unify val unifies the argument with an existing variable.

Γ (r) = S(M : a) Δ;Γ � [M/x]I : [M/x]J
Δ;Γ � unify val r, [x : a.]I : (Πx : a. J) Unifyval

Δ,x : a;Γ{r : S(x : a)} � I : J

Δ;Γ � unify var r, [x : a.]I : (Πx : a. J) Unifyvar

The instruction get str unifies its argument with a term c M1 · · · Mn by
executing a spine as described above. The put str instruction starts a spine
that (always) constructs a new structure.

Σ(c) = a → a Γ (r) = S(M : a)
Δ;Γ � I : (Πx : a.(M
 c x))

Δ;Γ � get str c, r; I ok
Getstr

Σ(c) = a → a
Δ, x : a;Γ{r : S(x : a)} � I : (Πx : a.(x
 c x))

Δ;Γ � put str c, r; I ok
Putstr

This completes the typechecking of TWAM instructions.

TWAM: A Certifying Abstract Machine for Logic Programs 125

Machine Invariants. Having completed instruction checking, we prepare for the
metatheory by considering the invariants on validity of machine states, which
are quite non-trivial. Consider first the invariant for non-spinal machines:

Δ � C:Ξ Δ;Γ � I ok Δ � H:Ψ Δ;Ψ � R : Γ Δ;C;H � T ok

· � (Δ,T,C,H,R, I) ok
Mach

Recall that machines include a context Δ containing the free variables of the
heap H. We can4 identify variables of Δ with heap locations, trivially ensuring
that each variable appears exactly once in the heap. Premisses Δ � C:Ξ and
Δ;Γ � I ok and Γ ;Ψ � R : Γ simply say the code section, current basic block,
and register file typecheck.

Premiss Δ � H:Ψ says that all heap values obey their types and that the
heap is acyclic. The encoding of acyclic heaps is subtle: while both the heap H
and its type Ψ are unordered, the typing derivation is ordered. The rule for non-
empty heaps H{{
H �→vH}} says that the new value v may refer only to values
that appear earlier in the ordering:

Δ � H : ΨΔ;Ψ � vH : τ
H /∈ Dom(H)

Δ � H{{
H �→vH}} : Ψ{{
H : τ}}
Thus, the derivation exhibits a topological ordering of the heap, proving that it is
acyclic. Section 3.5 shows this invariant is maintained because we only bind vari-
ables when the occurs check passes. The code section has no ordering constraint,
in order to support mutual recursion.

Heap values for T-Prolog terms have singleton types:

Δ(x) = a

Δ;Ψ � FREE[x : a] : S(x : a)

Δ;Ψ �
H : S(M : a)

Δ;Ψ � BOUND
H : S(M : a)
Σ(c) = a → aΔ;Ψ �
H

i : S(Mi : ai)(for all i)

Δ;Ψ �Σ;Ξ c〈
H
1 , . . . ,
H

n 〉 : S(c M : a)

Premiss Δ;C;H � T ok says the trail is well-typed. The empty trail 〈〉 checks
trivially. A non-empty trail is well-typed if the result of unwinding the trace tr
(i.e. making the traced variables free again), is well-typed.

unwind(Δ,H, tr) = (Δ′,H ′) Δ; (C,H ′) � T ok

Δ � H ′ : Ψ ′ Ψ ′ � wenv : τ Δ;Ψ ′ �
C θ : ¬{env : τ}
Δ;C;H � (
C [θ], wenv, tr) :: T ok

Trail-Cons

This completes the invariants for non-spinal machines.
Each of the typing invariant rules for spinal machines has an additional pre-

miss, either Δ;Ψ � � reads Πx : a.(c M M ′
 c M x) (for a read spine) or
Δ;Ψ � (�H ,
H , c) writes Πx : a2. x′
 c M x (for a write spine). These are
4 While this approach is preferable for the proofs, it is quite unreadable, so we used

readable names in our presentation of the example instead.

126 R. Bohrer and K. Crary

some of the most complex rules in the TWAM. Nonetheless, their purpose can
be explained naturally at a high level. For a read spine, the types a expected by
the spine type must agree with the types of remaining arguments �. For a write
spine, the types of all values written so far must agree with the functor arguments
and the destination must agree with functor result. Naturally, the yet-unwritten
arguments must also agree with the functor type, but that is already ensured by
the typing judgement Δ;Γ � I:J .

Δ; Ψ � � : S(M ′ : a)

Δ; Ψ � � reads Πx : a. (c M M ′ � c M x)
Δ � C : Ξ Δ � H : Ψ Δ; Γ � I : J

Δ; Ψ � � reads J Δ � T ok Δ; Ψ � R : Γ

· �Σ;Ξ read(Δ, T, C, H, R, I, �) ok

Ψ(�H) = S(x′ : a) Σ(c) = a1 → a2 → a Δ; Ψ � �H : S(M : a1)

Δ; Ψ � (�H , �H , c) writes Πx : a2. x′ � c M x
Δ � C : Ξ Δ � H : Ψ Δ; Γ � I : J

Δ; Ψ � (�H , �, c) writes J Δ � T ok Δ; Ψ � R : Γ

· �Σ;Ξ write(Δ, T, C, H, R, I, c, �H , �) ok

The case for tuple spines is similar to the write case.

3.5 Metatheory

Proofs of metatheorems are in the extended paper [4]. Here, we state the major
theorems and lemmas. As expected, TWAM satisfies progress and preservation:

Theorem (Progress). If Δ � m ok then either m done or m fails or m �−→ m′.

Theorem (Preservation). If Δ � m ok and m �−→ m′ then · � m′ ok.

Here m fails means that a query failed in the sense that all proof rules have been
exhausted—it does not mean the program has become stuck. m done means a
program has succeeded. Search Soundness (Theorem1) is a corollary:

Theorem 1 (Search Soundness). If · �Σ;Ξ m ok and m �−→∗ m′ and m′ done
then there exists a context of term variables Δ and substitution σ such that
Δ � σ(Q) in FOL where Σ(QueryI) = ∀FV(Q)(Q → Query).

Proof (Sketch). By progress and preservation, m′ ok. By inversion on m done,
have Δ � Query for Δ = FV(H) where H is the heap from m′. By inversion on
QueryI , have some σ such that Δ � σ(Q).
�

We overview major lemmas, including all those discussed so far:

– Static unification computes most-general unifiers.
– Language constructs obey their appropriate substitution lemmas, even in the

presence of unification.
– Dynamic unification is sound with respect to static unification.

TWAM: A Certifying Abstract Machine for Logic Programs 127

– When the occurs check passes, binding a variable does not introduce cycles.
– Updating the trail maintains trail invariants and backtracking maintains

machine state invariants.

Our notion of correctness for static unification follows the standard correct-
ness property for first-order unification: we compute the most general unifier,
i.e., a substitution which unifies M1 with M2 and which is a prefix of all unifiers.

Lemma (Unify Correctness). If Δ � M : a and Δ � M ′ : a and Δ � M
M ′ = σ,
then:

– [σ]M = [σ]M ′

– For all substitutions σ′, if [σ′]M = [σ′]M ′ then there exists some σ∗ such that
σ′ = σ∗, σ up to alpha-equivalence.

While this lemma is standard, it is essential to substitution. While we
have numerous substitution lemmas (e.g. for heaps), we mention the lemma
for instruction sequences here because it is surprisingly subtle.

Lemma (I-Substitution). If Δ1, x:α,Δ2;Γ � I ok and Δ1 � θ:α then we can
derive Δ1, [θ/x]Δ2; [θ/x]Γ � [θ/x]I ok.

The most challenging cases are those involving unification. Unification is not
always preserved under substitution; in this case, [θ/x]I is vacuously well-typed
as discussed in Sect. 3.4. In the case where unification is preserved, we exploit
the fact that the derivation for I computed the most general unifier, which is
thus a prefix of the unifier from [θ/x]I. At a high level, this suffices to show all
necessary constraints were preserved by substitution.

The progress and preservation cases for unification instructions need to know
that dynamic unification unify is in harmony with static unification.

Lemma (Soundness of unify). If Δ � M1 : a and Δ � M2 : a and Δ � H : Ψ and
Δ;C;H � T ok and Δ;Ψ �
1 : S(M1 : a) and Δ;Ψ �
2 : S(M2 : a) then

– If Δ � M1
 M2 = ⊥ then have unify(Δ,H, T,
1,
2) = ⊥
– If Δ � M1
 M2 = σ then have unify(Δ,H, T,
1,
2) = (Δ′,H ′, T ′) where

Δ′ = [σ]Δ and [σ]Δ � H ′ : [σ]Ψ and Δ′, (C,H ′) � T ′ ok.

The Heap Update lemma says that when the occurs check passes, the result
of binding a free variable is well-typed (with the new binding reflected by a
substitution into the heap type Ψ). Because the typing invariant implies acyclic
heaps, this lemma means cycles are not introduced.

Lemma (Heap Update). If Δ � H : Ψ and Ψ(
1) = S(x : a) then

(a) If Ψ(
2) = S(M : a) and
1 /∈H
2, (the occurs check passes) then Δ �
H{
1 �→ BOUND
2} : [M/x]Ψ.

(b) If for all i, Ψ(
′
i) = S(Mi : ai) and
1 /∈H
′

i and Σ(c) = a → a, then
Δ � H{
1 �→ c〈
′

1, . . . ,

′
n〉} : [c M]Ψ.

128 R. Bohrer and K. Crary

This lemma is more subtle than its statement suggests, and demonstrates the
subtle relationship between heaps, heap types, and heap typing derivations.
Recall that heaps and heap types are unordered: the typing derivation itself
exhibits a topological ordering as a witness that there are no cycles. The proof
of Heap Update is constructive and proceeds by induction on the derivation: an
algorithm can be given which computes a new topological ordering for the result-
ing heap. Introducing free variables and binding free variables both preserve the
validity of the trail:

Lemma (Trail Update). If Δ;C;H � T ok then

(a)If H(
H) = FREE[x : a] then

Δ;H{
H �→ w} � udate trail(x : a@
H , T) ok.

(b)If
H fresh and x fresh then Δ;H{{
H �→FREE}}[x : a] � T ok.

Claim (a) says that if we bind a free variable x to a term and add x to the
trail (notated x : a@
H to indicate a variable x of type a was located at
H),
the resulting trail is well-typed. The trail update trail(x : a@
H , T) is well-typed
under the heap H{
H �→ w} iff unwinding it results in a well-typed heap. Thus
proving (a) amounts to showing that unwinding update trail(x : a@
H , T) gives
us the original heap, which we already know to be well-typed.

Claim (b) is a weakening principle for trails, which comes directly from the
weakening principle for heaps (a heap H : Ψ is allowed to contain extra unreach-
able locations
 which do not appear in Ψ). This claim shows that the trail does
not need to be modified when a fresh variable is allocated, only when it is bound
to a term. It relies on the following subclaim, which holds by induction on the
trace tr contained in tf.

Claim. unwind((Δ,x:a),H{{
H �→FREE[x:a]}}, tr)=(Δ,H ′{{
H �→FREE[x:a]}})
for some heap H ′.

Recall that the typing rule for trails simply says whatever heap results from
unwinding must be well-typed. This simplifies the proofs significantly: showing
that an update preserves validity consists simply of showing that it does not
change the result of backtracking (modulo perhaps introducing unused values).

Soundness of the backtracking operation simply says the resulting machine
is well-typed. The proof is direct from the premisses of the trail typing invariant.

Lemma (Backtracking Totality). For all trails T, if Δ � C : Ξ, Δ � H : Ψ,
and Δ;C;H �Σ;Ξ T ok then either backtrack(Δ,C,H, T) = m′ and · � m′ ok or
backtrack(Δ,C,H, T) = ⊥.

While the full proof contains several dozen other lemmas, those discussed
above demonstrate the major insights into why the TWAM type system is sound
and why it enables certification for TWAM programs.

TWAM: A Certifying Abstract Machine for Logic Programs 129

4 Implementation

Implementing a compiler from T-Prolog to TWAM, a TWAM runtime, and
a TWAM typechecker allows us not only to execute T-Prolog programs, but
crucially to validate the TWAM design. For example, implementation increased
our confidence that the static and dynamic semantics are exhaustive. Testing
the compiler and checker provides informal evidence that they are sufficiently
complete in practice. Testing the checker also tests its soundness, validating
simultaneously that it is faithful to the dynamics and that Theorem 1 holds of
the implementation.

The proof-of-concept implementation, which consists of 5,000 lines of Stan-
dard ML, is available from the first author upon request. The TWAM type-
checker, which constitutes the trusted core, is about 400 lines. The large major-
ity of the core is implemented by straightforward (manual) translation of the
TWAM typing rules into ML code. This is a small fraction of the code (less than
10%) and compares favorably with the trusted cores of general-purpose proof
checkers. Our test suite has 23 test files totaling 468 lines, the largest of which
is a library for unary and decimal arithmetic. Other files stress-test edge cases
of T-Prolog and TWAM execution.

The tests showed that the TWAM checker often catches compiler bugs in
practice. Many of these bugs centered around placing a value into the wrong
register or wrong position of a tuple. Singleton types are effective at catching
these bugs because distinct terms always have different singleton types. Prior
typed intermediate languages are less certain to catch these bugs because they
permit distinct terms to have the same type.

Not only did our implementation greatly increase confidence in the theory,
but we believe that it demonstrates TWAM’s potential for catching real bugs.

5 Related Work

We are the first to build a full certifying (or verified, in general) compiler for
a Prolog-like language. In contrast, full compilers for imperative (C [17]) and
functional (ML [16]) languages have been verified directly in proof assistants.
The latter project also yielded a compiler from higher-order logic [21] to ML.

Compiler verification for Prolog has been explored, but past attempts did
not yield a full compiler. Paper proofs were written for both concrete [30] and
abstract [3,5] compiler algorithms. Some (but not all) passes of Prolog compilers
were verified in Isabelle [28] and KIV [31]. Prolog source semantics have also
been formalized, e.g., in Coq [15]. Compiling all the way from Prolog to WAM
with proof has been noted explicitly [31] as a challenge. Previous formalized
proofs reported 6 person-month development times, the same time that it took
to develop our theory, proofs, and implementation. While the comparison is not
direct because many details of the projects differ, we find it promising.

Certifying compilation includes type-preserving compilation [34] and proof-
carrying code (PCC) [23]. In type-preserving compilation, the certificates are

130 R. Bohrer and K. Crary

type annotations, while in PCC they are proofs in logic. Type-preserving compi-
lation is typically more concise while PCC is typically more flexible. Certifying
compilation has recently been applied to the Calculus of Constructions [6] and
LLVM passes [14]. A significant fragment of the proof checker for LLVM is ver-
ified in Coq for reliability. Applying this approach to TWAM is non-trivial, but
possible in theory. Their experience supporting optimizations suggest we could
do the same for TWAM, with proportional verification effort.

Translation validation [27] is a related approach, with post-hoc, black-box
(but still automatic) construction of certificates. Its black-box nature means it
might support multiple compilers, but is also often brittle.

The first-order logic we used can be embedded in the logical framework
LF [13]; We have chosen FOL over LF for the simple reason that it is much
better known. LF is also the foundation of the programming language Elf [25]
and proof checker Twelf [26]. A comparison of our approach with Elf is fruitful:
Elf instruments execution to produce LF proofs, whereas we instrument compi-
lation to produce a proof that obviates the need for execution to produce proofs,
which is amenable to higher performance. Singleton types, which are featured
prominently in TWAM, are not new [38], but we are the first to support unifi-
cation on singletons.

TWAM is also a descendant of typed assembly language (TAL) [7–9,19,20].
Dependent types and TAL have been combined in DTAL [37], but DTAL employs
a lightweight, restrictive class of dependent types in order to, e.g., eliminate array
bounds checks when compiling DML [38]. Our class of dependent types is more
expressive. DTAL typechecking also requires complex non-syntactic constraint
generation and solving. While TWAM’s unification constraints are non-trivial,
they are syntactic and thus more likely to scale.

Abstraction interpretation for Prolog [33] provides another view on our work.
The abstraction interpretation literature distinguishes between goal-dependent
analyses which must be performed again for every query and goal-independent
ones which are reusable across queries. Our type system is compositional, so
most of the work is reusable across queries. When a new query is provided, on
the query itself (and success continuation) must be checked again. This is true
in large part because procedure typechecking is static and need not know what
arguments will be supplied at runtime.

6 Future Work

Our proof-of-concept implementation has shown that the certifying compilation
approach is viable for logic programs. What remains is to exploit this potential
by building a production-quality optimizing compiler for a widely-used language.
Full Prolog is a natural target: a first step can be achieved easily by reintroduc-
ing cuts and negations as failure into the language but leaving them out of
the certification spec. That is, it is straightforward to support compilation of
cut and negation while only providing a formal correctness guarantee for the
“pure” subgoals. It is less obvious how to certify full Prolog precisely. The deep-
est challenge is that provability semantics are insufficient to certify non-logical

TWAM: A Certifying Abstract Machine for Logic Programs 131

Prolog features, so a more complex approach using operational semantics may
be needed.

Logic languages other than Prolog may benefit from certifying compilation,
especially certification of search soundness. Lambda-Prolog [22] and Elf [24,25]
can both be easily interpreted with a provability semantics and have both been
used in theorem-proving [11,26] where soundness of proof checking is essential.
It is expected that these languages could be supported by using a stronger logic
for specifications. Certifying compilation for Datalog might be especially fruitful
given Datalog’s commercial successes [2,12] and given that it is a subset of
Prolog, one which typically omits cut and negation. The main challenge there
would not be extending the specification language, but replacing our WAM-like
design with a relational algebra-based forward-chaining interpreter as is typically
used for Datalog.

The challenge of runtime performance should also not be ignored. TWAM’s
proximity to WAM and purely compile-time approach show promise for runtime
efficiency. However, the WAM supports a well-known set of optimizations that
have a significant impact in practice [1] and many of which we did not implement.
Some of the most important optimizations, such as careful register allocation
and common subexpression elimination, are already possible in TWAM. Many
of the other important optimizations, such as jump-tables, are implemented with
custom instructions, which we believe could be added to TWAM with modest
effort. In short, the future work is to use the lessons learned from a proof-of-
concept implementation for a simplified language to build a production-quality
implementation for a production-quality language.

Acknowledgements. We thank the many collaborators and friends who read earlier
drafts of this work, including Jean Yang, Jan Hoffman, Stefan Muller, Chris Martens,
Bill Duff, and Alex Podolsky. We thank all of our anonymous reviewers, especially
for their infinite patience with the technical details of the paper. Special thanks to
the VSTTE organizers for allowing us additional space. The first author was partially
supported by the NDSEG Fellowship.

References

1. Aı̈t-Kaci, H.: Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press,
Cambridge (1991)

2. Aref, M., et al.: Design and implementation of the LogicBlox system. In: Sellis,
T.K., Davidson, S.B., Ives, Z.G. (eds.) Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria, Australia,
31 May - 4 June, 2015, pp. 1371–1382. ACM (2015). http://doi.acm.org/10.1145/
2723372.2742796

3. Beierle, C., Börger, E.: Correctness proof for the WAM with types. In: Börger, E.,
Jäger, G., Kleine Büning, H., Richter, M.M. (eds.) CSL 1991. LNCS, vol. 626, pp.
15–34. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023755

4. Bohrer, R., Crary, K.: TWAM: a certifying abstract machine for logic programs.
CoRR abs/1801.00471 (2018). http://arxiv.org/abs/1801.00471

http://doi.acm.org/10.1145/2723372.2742796
http://doi.acm.org/10.1145/2723372.2742796
https://doi.org/10.1007/BFb0023755
http://arxiv.org/abs/1801.00471

132 R. Bohrer and K. Crary

5. Börger, E., Rosenzweig, D.: The WAM–definition and compiler correctness. In:
Logic Programming: Formal Methods and Practical Applications, pp. 20–90 (1995)

6. Bowman, W.J., Ahmed, A.: Typed closure conversion for the calculus of construc-
tions. In: Foster and Grossman [10], pp. 797–811. https://doi.org/10.1145/3192366.
3192372

7. Crary, K.: Toward a foundational typed assembly language. In: Aiken, A., Mor-
risett, G. (eds.) Conference Record of POPL 2003: The 30th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, New Orleans, Louisisana,
USA, 15–17 January 2003, pp. 198–212. ACM (2003). https://doi.org/10.1145/
640128.604149

8. Crary, K., Sarkar, S.: Foundational certified code in the Twelf metalogical frame-
work. ACM Trans. Comput. Log. 9(3), 16:1–16:26 (2008). https://doi.org/10.1145/
1352582.1352584

9. Crary, K., Vanderwaart, J.: An expressive, scalable type theory for certified code.
In: Wand, M., Jones, S.L.P. (eds.) Proceedings of the Seventh ACM SIGPLAN
International Conference on Functional Programming (ICFP 2002), Pittsburgh,
Pennsylvania, USA, 4–6 October 2002, pp. 191–205. ACM (2002). https://doi.
org/10.1145/581478.581497

10. Foster, J.S., Grossman, D. (eds.): Proceedings of the 39th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2018, Philadel-
phia, PA, USA, 18–22 June 2018. ACM (2018). https://doi.org/10.1145/3192366

11. Gacek, A.: System description: Abella - a system for reasoning about computations.
CoRR 2008 (2008). http://arxiv.org/abs/0803.2305

12. Hajiyev, E., et al.: Keynote address: QL for source code analysis. In: Seventh
IEEE International Working Conference on Source Code Analysis and Manipu-
lation (SCAM 2007) (SCAM), pp. 3–16, October 2007. https://doi.org/10.1109/
SCAM.2007.31

13. Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. J. ACM
40(1), 143–184 (1993). https://doi.org/10.1145/138027.138060

14. Kang, J., et al.: Crellvm: verified credible compilation for LLVM. In: Foster and
Grossman [10], pp. 631–645. https://doi.org/10.1145/3192366.3192377

15. Kriener, J., King, A., Blazy, S.: Proofs you can believe in: proving equivalences
between prolog semantics in Coq. In: Peña, R., Schrijvers, T. (eds.) 15th Interna-
tional Symposium on Principles and Practice of Declarative Programming, PPDP
2013, Madrid, Spain, 16–18 September 2013, pp. 37–48. ACM (2013). https://doi.
org/10.1145/2505879.2505886

16. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implementa-
tion of ML. In: POPL 2014, pp. 179–191 (2014). https://doi.org/10.1145/2535838.
2535841

17. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) Proceedings of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2006, Charleston, South Carolina, USA, 11–13 January 2006, pp.
42–54. ACM (2006). https://doi.org/10.1145/1111037.1111042

18. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Trans. Pro-
gram. Lang. Syst. 4(2), 258–282 (1982). https://doi.org/10.1145/357162.357169

19. Morrisett, J.G., Crary, K., Glew, N., Walker, D.: Stack-based typed assembly
language. J. Funct. Program. 13(5), 957–959 (2003). https://doi.org/10.1017/
S0956796802004446

https://doi.org/10.1145/3192366.3192372
https://doi.org/10.1145/3192366.3192372
https://doi.org/10.1145/640128.604149
https://doi.org/10.1145/640128.604149
https://doi.org/10.1145/1352582.1352584
https://doi.org/10.1145/1352582.1352584
https://doi.org/10.1145/581478.581497
https://doi.org/10.1145/581478.581497
https://doi.org/10.1145/3192366
http://arxiv.org/abs/0803.2305
https://doi.org/10.1109/SCAM.2007.31
https://doi.org/10.1109/SCAM.2007.31
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1145/2505879.2505886
https://doi.org/10.1145/2505879.2505886
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/357162.357169
https://doi.org/10.1017/S0956796802004446
https://doi.org/10.1017/S0956796802004446

TWAM: A Certifying Abstract Machine for Logic Programs 133

20. Morrisett, J.G., Walker, D., Crary, K., Glew, N.: From system F to typed assembly
language. ACM Trans. Program. Lang. Syst. 21(3), 527–568 (1999). https://doi.
org/10.1145/319301.319345

21. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into
pure and stateful ML. J. Funct. Program. 24(2–3), 284–315 (2014). https://doi.
org/10.1017/S0956796813000282

22. Nadathur, G., Miller, D.: An overview of Lambda-PROLOG. In: Kowalski, R.A.,
Bowen, K.A. (eds.) Logic Programming, Proceedings of the Fifth International
Conference and Symposium, Seattle, Washington, USA, 15–19 August 1988, vol.
2, pp. 810–827. MIT Press (1988)

23. Necula, G.C., Lee, P.: The design and implementation of a certifying compiler.
In: Davidson, J.W., Cooper, K.D., Berman, A.M. (eds.) Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Language Design and Implementation
(PLDI), Montreal, Canada, 17–19 June 1998, pp. 333–344. ACM (1998). https://
doi.org/10.1145/277650.277752

24. Pfenning, F.: Elf: A language for logic definition and verified metaprogramming.
In: Proceedings of the Fourth Annual Symposium on Logic in Computer Science
(LICS 1989), Pacific Grove, California, USA, 5–8 June 1989, pp. 313–322. IEEE
Computer Society (1989). https://doi.org/10.1109/LICS.1989.39186

25. Pfenning, F.: Logic programming in the LF logical framework. In: Logical Frame-
works, pp. 149–181. Cambridge University Press, New York (1991). http://dl.acm.
org/citation.cfm?id=120477.120483

26. Pfenning, F., Schürmann, C.: System description: Twelf—a meta-logical framework
for deductive systems. In: CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7 14

27. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054170

28. Pusch, C.: Verification of compiler correctness for the WAM. In: Goos, G., Hart-
manis, J., van Leeuwen, J., von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs
1996. LNCS, vol. 1125, pp. 347–361. Springer, Heidelberg (1996). https://doi.org/
10.1007/BFb0105415

29. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965). https://doi.org/10.1145/321250.321253

30. Russinoff, D.M.: A verified prolog compiler for the warren abstract machine. J. Log.
Program. 13(4), 367–412 (1992). https://doi.org/10.1016/0743-1066(92)90054-7

31. Schellhorn, G., Ahrendt, W.: Reasoning about abstract state machines: the WAM
case study. J. UCS 3(4), 377–413 (1997). https://doi.org/10.3217/jucs-003-04-0377

32. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism, vol.
149. Elsevier, Amsterdam (2006)

33. Spoto, F., Levi, G.: Abstract interpretation of prolog programs. In: Haeberer, A.M.
(ed.) AMAST 1999. LNCS, vol. 1548, pp. 455–470. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-49253-4 32

34. Tarditi, D., Morrisett, J.G., Cheng, P., Stone, C.A., Harper, R., Lee, P.: TIL: a
type-directed optimizing compiler for ML. In: PLDI, pp. 181–192. ACM (1996)

35. Warren, D.H.: An Abstract Prolog Instruction Set, vol. 309. Artificial Intelligence
Center, SRI International Menlo Park, California (1983)

36. Wielemaker, J.: SWI-Prolog OpenHub Project Page (2018). https://www.
openhub.net/p/swi-prolog. Accessed 28 Apr 2018

https://doi.org/10.1145/319301.319345
https://doi.org/10.1145/319301.319345
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1145/277650.277752
https://doi.org/10.1145/277650.277752
https://doi.org/10.1109/LICS.1989.39186
http://dl.acm.org/citation.cfm?id=120477.120483
http://dl.acm.org/citation.cfm?id=120477.120483
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0105415
https://doi.org/10.1007/BFb0105415
https://doi.org/10.1145/321250.321253
https://doi.org/10.1016/0743-1066(92)90054-7
https://doi.org/10.3217/jucs-003-04-0377
https://doi.org/10.1007/3-540-49253-4_32
https://www.openhub.net/p/swi-prolog
https://www.openhub.net/p/swi-prolog

134 R. Bohrer and K. Crary

37. Xi, H., Harper, R.: A dependently typed assembly language. In: Pierce, B.C. (ed.)
Proceedings of the Sixth ACM SIGPLAN International Conference on Functional
Programming (ICFP 2001), Florence, Italy, 3–5 September 2001, pp. 169–180.
ACM (2001). https://doi.org/10.1145/507635.507657

38. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Appel, A.W.,
Aiken, A. (eds.) POPL 1999, Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Antonio, TX, USA,
20–22 January 1999, pp. 214–227. ACM (1999). https://doi.org/10.1145/292540.
292560

https://doi.org/10.1145/507635.507657
https://doi.org/10.1145/292540.292560
https://doi.org/10.1145/292540.292560

A Java Bytecode Formalisation

Patryk Czarnik, Jacek Chrz ↪aszcz, and Aleksy Schubert(B)

Institute of Informatics, University of Warsaw, ul. S. Banacha 2, 02–097 Warsaw,
Poland

{czarnik,chrzaszcz,alx}@mimuw.edu.pl

Abstract. This paper presents the first Coq formalisation of the full
Java bytecode instruction set and its semantics. The set of instructions
is organised in a hierarchy depending on how the instructions deal with
the runtime structures of the Java Virtual Machine such as threads,
stacks, heap etc. The hierarchical nature of Coq modules neatly rein-
forces this view and facilitates the understanding of the Java bytecode
semantics. This approach makes it possible to both conduct verification
of properties for programs and to prove metatheoretical results for the
language. Based upon our formalisation experience, the deficiencies of
the current informal bytecode language specification are discussed.

Keywords: Formalisation · Coq · Semantics · Java bytecode

1 Introduction

Although originally designed as a target compilation language for Java, the
Java bytecode becomes more and more useful for other languages such as Scala
or Kotlin. Consequently multi-language applications executed on the common
ground of a Java Virtual Machine gain in popularity. One way to ensure security
of such mixed applications is to develop tools and techniques which work directly
at the bytecode level.

Conception of such tools requires thorough understanding of bytecode and
its semantics. They are described in natural language in the specification doc-
ument [21] which leaves certain margin to the language implementers. As a
result, real implementations usually differ in their operation, which is the result
of particular implementation decisions (e.g. they can use a different scheduler). A
formal specification of semantics, on the other hand, can be faithful to the spec-
ification document and hence it can serve as a common platform for expressing
properties of many implementations.

This effort creates also an opportunity to systematically review the natu-
ral language specification of the Java Virtual Machine Language (JVML) [21].
As a result, certain assumptions made in the specification become explicit and
inconsistencies are pointed out and resolved. This can be beneficial for future

This work was partially supported by the Polish NCN grant no 2013/11/B/ST6/01381.

c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 135–154, 2018.
https://doi.org/10.1007/978-3-030-03592-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_8

136 P. Czarnik et al.

releases of the natural language specification document: it can gain better struc-
ture, more precise phrasing, less ambiguities and better consistency. The last
point is especially appealing since the large size of a real programming language
leads to big semi-formal description and maintaining its consistency becomes a
challenging task.

For many programming languages the effort of formalisation can be done
for a small core sublanguage so that the rest of the language is reducible to
it through a desugaring translation. In this way full formalisation consists of
two parts, a translation to the core language and a formalisation of the core
itself. This approach was taken for instance for SML [23] and JML [18,31]. This
method is not adequate for Java bytecode since JVML is the ultimate form that
is executed by real machines. To cope with this difficulty we defined an abstract
set of instructions following the design in [6] and then formalised it in Coq [9].
These abstractions are hierarchical in the sense that the lower the level, the
closer the abstractions are to the actual JVM mnemonics.

In our design of the hierarchy, we rigorously took the approach to examine
the way instructions use the runtime structures of the Java Virtual Machine such
as threads, heap, method stack, operand stack etc. Each instruction operates on
some selected runtime structures, e.g. the integer arithmetic instructions manip-
ulate only the local operand stack, object field access uses the operand stack and
the heap etc. This way of abstracting the instructions has important advantages
such as:

– Hierarchical approach makes it possible to express elements of functionality
on higher levels in the hierarchy; as a result numerous parts of formalisation
need not be repeated.

– The hierarchy singles out particular submodels for the language for which
interesting and useful metalanguage properties can be proved (e.g. to consider
single-threaded Java one has to take the part of the hierarchy that avoids
threads).

– The structure of metatheoretical proofs resembles the hierarchic structure of
the definition of semantics; therefore proofs become easier to follow.

To obtain a manageable and general formalisation, we used the following
techniques. First, the semantics is formalised as a relation. In this way it can be
non-deterministic in places where the original description leaves certain freedom
to implementations. This would be impossible in case of a formalisation as a com-
putable function, which would correspond to a single implementation. Second,
the whole semantics is written in the small-step fashion. It is more appropriate
since the specification expressed in the natural language is in most cases also
formulated in the small-step fashion. Moreover, many metatheoretic properties
(e.g. immutability, purity etc.) are easier to formulate in this style. Third, our
development uses the hierarchical nature of the Coq module system [5,33] (see
Fig. 1) to separate different aspects of the virtual machine and to reflect our hier-
archy of instructions and their semantics. In this way, the formal semantics is
naturally divided into consistent fragments and is therefore easier to understand.

A Java Bytecode Formalisation 137

Fig. 1. Module dependencies in CoJaq.

The same hierarchical structure of modules can be used for proofs of metatheo-
retical properties of the JVML semantics: in this way, the structure of the proof
follows the structure of the entity on which the proof is done and therefore it
becomes clear and comprehensive.

In this paper we present a formalisation of the Java Virtual Machine language
semantics for all 200 bytecode instructions. It is done within a Coq project, called
CoJaq1. A long-term goal of this project is to create a platform to attain two
objectives: to get the possibility to verify real programs and to prove metatheo-
retical properties of the bytecode language. The current paper presents a major
step towards this goal.
The key achievements of the presented formalisation are:

– Full Java bytecode instruction set as fixed by The Java Virtual Machine Spec-
ification, Second Edition [21] together with a small-step operational semantics
has been modelled in Coq. The formalisation groups the instructions accord-
ing to their handling of the JVM runtime structures2.

– A static semantic based upon types of values is developed. This static seman-
tics is proved to be sound and complete with regard to the dynamic one.

– We proved a general theorem that locally operating programs for which
Hoare-style logic rules apply at each step are partially correct.

1 Available at http://cojaq.mimuw.edu.pl. Intermediate report appeared in [10].
2 This does not include native method calls.

http://cojaq.mimuw.edu.pl

138 P. Czarnik et al.

– The semantics is also a case study in mechanising of metatheory of program-
ming languages in the spirit of POPLmark challenge [2]. This time the ability
of proof assistants technology to formalise big languages is checked.

– The formalisation gives an opportunity to discuss design choices that were
made during the creation of the bytecode language as well as to analyse the
way the informal semantics is laid down.

In our formalisation we adopted a post-linking view : CoJaq only handles
complete programs and hence is not able to deal with dynamic linking and class
initialisation.

The paper is structured as follows. Section 2 presents the motivations for a
hierarchical formalisation. The hierarchical definition of the JVML semantics
is presented in Sect. 3. A proof that a simple type system for JVML is correct
is presented in Sect. 4. The account of program verification in our semantics is
presented in Sect. 5. This is followed in Sect. 6 by a discussion on the design of
the Java bytecode language and its informal specifications. In Sect. 7 we report
the related work and we conclude in Sect. 8.

2 The Need for Hierarchy of Instructions

Java bytecode consists of 200 mnemonics and their organisation in the natural
language specification lacks almost any structure. A computerised formalisation
performed in the same flat fashion would suffer from two main issues. First of
all, a lot of code fragments would need to be repeated for many instructions.
Almost every step in the semantics requires the same operations such as selection
of a thread to execute and identification of the current instruction to execute.
Secondly, with a flat definition consisting of so many cases it is difficult to con-
duct any kind of analytic work. Usually a metatheoretical proof requires a lot of
proofs by induction over the subject language.

There are numerous situations where it is easy to recognise common patterns
that make it possible to group instructions together. Here are some examples:

1. A set of instructions performing the same operation for different data types.
This is the case of iload, fload, aload, and so on. Each instruction loads a
local variable value and pushes it on the operand stack, but a single instruc-
tion is applicable only to a particular value types (int, float, and ‘refer-
ence’, respectively). A natural generalisation of this set of instruction is one
load instruction parametrised with data type.

2. “Shorthand instructions” are defined for some most widely used argument val-
ues. For example, the meaning of iload_0, iload_1, iload_2, and iload_3

is the same as iload with a suitable parameter. Taking also the conclusions
of the previous point into account, the ultimate form of load is one instruction
with two arguments: a variable index and a value type. This single instruction
stands for 25 original JVML mnemonics.

3. Instructions related to arithmetic and comparison often behave in a similar
way and differ only in the arithmetic operator. For example, iadd, isub,

A Java Bytecode Formalisation 139

imul, idiv, and imod all perform binary arithmetic operations on integers.
They all pop two operands from the stack and push back one resulting value.
It is convenient to group them in one metainstruction “binary arithmetic
operation” parametrised with an actual operator. The semantics on structural
level can now be defined in one place, and only the semantics of arithmetic
operators needs to be defined separately simply as a function of type int ×
int → int. Unfortunately, division operators idiv and imod destroy such
a clear image as they throw ArithmeticException in case of division by zero.
Summing up, a binary arithmetic operation is parametrised with a type and
an operator.

Fig. 2. Hierarchy of instruction abstractions

These examples of instruction groups, used e.g. in [27], and also hinted by
JVM specification in Table 3.2 [21], are very efficient in reducing the number of
instructions. They are very natural, still, they are rather ad hoc. Therefore, we
decided to go one step further and complement the above structuring by finding
an inherent principle, according to which the instructions can be combined into
a comprehensive structure. This principle, which led us to the hierarchy in Fig. 2
is:

Instructions grouped together in one slot use the same runtime structures.

3 Hierarchical Definition of Semantics

The structural organisation of instructions is naturally reflected by the organisa-
tion of semantics. It can already be seen in a “big picture” view of Coq modules

https://docs.oracle.com/javase/specs/jvms/se6/html/Overview.doc.html#37356

140 P. Czarnik et al.

from our formalisation, Fig. 1, where the structure of modules implementing
semantics to some extent reflects the hierarchy of instructions. The hierarchy is
inspired by the tree-like structure of the JVM state. In this way the relations
defining semantics of abstract instructions which are lower in the instruction
hierarchy operate on a smaller fragment of the JVM state—exactly the one
which is accessed by the real instructions represented by the abstract ones.

Let us present and explain the hierarchy of semantic relations on the example
of if_icmpge 19 instruction, whose CoJaq representation is:

I Frame (FI Cond (CI Cmp KInt CmpOp ge offset19))

where offset19 represents the target address 19.
Let us assume that the virtual machine is in a state consisting of a single

thread and a heap. The frame at the top of the call stack contains a local variable
table, an operand stack, and a program counter (PC), pointing to the instruction
of interest.

We start with presenting three relations step, stepThread, and semInstr from
the Semantics module. These relations define the semantics on the top level of
our instructions hierarchy, but they focus on different aspects of execution. The
entry point is the relation step defined as:

Inductive step (p: TProgram): TJVM → TJVM → Prop :=
| Step thread: forall ...,

selectedThread jvm th →
stepInThread p (th, h) (th ’, h’) →
oneThreadAndHeapChanged (th, h) (th’, h’) jvm jvm’ →

step p jvm jvm’.

The relation has three arguments TProgram, TJVM and TJVM (the result kind
Prop indicates that this is a relation). It holds if for a given program p and a
virtual machine state a transition to another state is possible. The only case of
its definition says that step holds if and only if a thread th can be selected for
execution, a step in this single thread is possible (stepInThread), and it results in
a potential change of the thread internal state (th to th’) and the heap (h to h’).
The auxiliary relation oneThreadAndHeapChanged applies these partial changes
to the whole JVM state. This relation makes it possible for this semantics to
work in memory models that offer sequential consistency only.

CoJaq supports mutithreading by means of non-deterministic choice. For a
given input state, step may assign more than one output states, one for each
possible choice of a thread. Similarly, in case when no thread can be chosen
because of monitor state, i.e. when the program went to deadlock, the relation
would not hold at all.

In the case of our example the only possibility for the relation to hold is that
the relation stepInThread holds for the sole thread of the machine.

Inductive stepThread (p: TProgram):
(TThread ∗ THeap) → (TThread ∗ THeap) → Prop :=

| StepInThread instruction ok: forall ...,
th = threadMake thid null ((cm, fr) :: frs) →

http://cojaq.mimuw.edu.pl/cojaq/doc/Semantics.html

A Java Bytecode Formalisation 141

getMethodBodyFromProgram p (cmQName cm) = Some code →
getInstruction code (frameGetPC fr) = Some instr →
semInstr p code instr (th, h) (Result (th ’, h’)) →

stepInThread p (th, h) (th ’, h’)

The type of the relation illustrates the fact that a step within a thread may affect
its internal state and the heap, but the state of the other threads is not even
taken into account. The definition consists of five inductive cases handling normal
and exceptional execution. The first case, given above, describes a step starting
from a non-exceptional state and executing a single instruction. The first three
premises select the current method code and the instruction to execute. Next, we
refer to another relation semInstr to obtain the details of the single instruction
execution. In this case we require that the instruction completes with a normal
Result, i.e. without an exception. Finally, if the conditions are met, we prescribe
that stepInThread holds for the given input state and the result state obtained
from semInstr.

Another case concerns the situation when the instruction completes with an
exception described in the specification, like NullPointerException.

| StepInThread instruction exn: forall ...,
th = threadMake thid null ((cm, fr) :: frs) →
getMethodBodyFromProgram p (cmQName cm) = Some code →
getInstruction code (frameGetPC fr) = Some instr →
semInstr p code instr (th, h) (Exception ecn) →
systemException ecn h h’ eloc →
th’ = threadMake thid eloc ((cm, fr’) :: frs) →

stepInThread p (th, h) (th ’, h’)

Analogously to the style in which the natural language specification [21] describes
standard exceptions, we specify only the class (ecn) of such exceptions in descrip-
tions of particular instructions. Lower levels of the semantics hierarchy use a
special type TResultOrException, being in fact a disjoint union of normal results
and exception class names, to provide information about normal or exceptional
instruction completion in an elegant way. Here, at the top level of the semantics,
the exceptional case is handled so that a proper exception object is actually
thrown.

The last three cases of the relation stepThread (skipped here) specify handling
an exception that has been thrown earlier: either catching the exception, which
results in a jump to an appropriate handler; passing uncaught exception to the
outer method, which terminates the current one; or throwing another exception
in case of an illegal monitor state.

Execution of a single instruction is formalised in the relation semInstr of Coq
type

TProgram → TCode → TInstruction → (TThread∗THeap)

→ TResultOrException (TThread∗THeap) → Prop.
Its second and third arguments are the current method’s code and the cur-
rent instruction, already extracted form the program and the thread’s state by
stepThread. We can see here that the hierarchical design of the semantics helps

142 P. Czarnik et al.

to separate the concerns (threads, exceptions, actual instruction execution) and
to avoid code duplications, as otherwise we would have to repeat the presented
premises of step and stepThread cases in each case of semInstr or describe the allo-
cation of exception objects in each place where an exception should be thrown.
The relation is defined by 10 cases which correspond to 5 instructions at the top
level of the hierarchy (I Frame, I Heap, and so on) multiplied by the fact that an
instruction can complete normally or with an exception.

Coming back to our example, as the instruction is from the I Frame category,
two of the 10 cases are relevant here:

| SemInstr frame: forall ...,
th = threadMake thid null ((cm, fr) :: frs) →
th’ = threadMake thid null ((cm, fr’) :: frs) →
M Sem Frame.semFrame code finstr fr (Result fr’) →

semInstr p code (I Frame finstr) (th, h) (Result (th ’, h))
| SemInstr frame exn: forall ...,

th = threadMake thid null ((cm, fr) :: frs) →
M Sem Frame.semFrame code finstr fr (Exception ecn) →

semInstr p code (I Frame finstr) (th, h) (Exception ecn)

Both cases decompose the input state of the thread to obtain the frame at the
top of the call stack, refer to semFrame relation which gives the detailed semantics
of this frame instruction. The first case applies the change in the frame state (fr

to fr ’) to the state of the whole thread. The heap and the rest of the call stack
remain unchanged. The second case simply propagates the exception. Cases for
instructions in other categories are similar but, as our principle governs, they
affect different fragments of the state.

The semFrame relation, from the Sem Frame module, specifies the semantics
of frame instructions. Its type

TCode → TFrameInstr → TFrame → TResultOrException TFrame → Prop

shows us that instructions from this category operate on a single frame. Also the
program as a whole is not required here, only the code of the current method.
As before, the relation is determined by cases according to the particular frame
instruction, i.e. FI Stackop, FI Var, FI Cond, FI Jsr, FI Ret. Most instructions are
handled in single cases, only FI Stackop may raise exceptions and it requires an
additional case to handle. For our example instruction FI Cond only one case
applies:

| SemFrame cond: forall ...,
M Sem Cond.semCond op vs vs’ off opt → stackTopValues vs vs’ sk sk’ →
pc’ = calculatePC off opt code pc →

semFrame code (FI Cond op) (frameMake vars sk pc)
(Result (frameMake vars sk’ pc’))

In this code fragment the parameter op denotes the special variant of FI Cond

instruction, which is CI Cmp KInt CmpOp gt offset19. For the case to hold, it is
required that another specialised relation semCond holds for op. Together with
the auxiliary relation stackTopValues it says that it permits the transformation of
values at the top of the operand stack from vs to vs’ and optionally generates a

http://cojaq.mimuw.edu.pl/cojaq/doc/Sem_Frame.html

A Java Bytecode Formalisation 143

jump to off opt . Lastly, the equation for pc’ calculates the proper next instruction
according to off opt and the current position. The last line clearly explains that
the instruction affects only two fields of a frame state: the operand stack sk and
the PC, and it does not change local variables.

The precise semantics of the FI Cond instruction does not interact with the
whole frame, but only with the parts it really needs, i.e. the top values from the
stack. The actual effect of the instruction on the values from the operand stack
is implemented in the semCond relation (from the Sem Cond module) of type
TCondInstr → list TValue → list TValue → option TOffset → Prop, which, given
the conditional instruction details (denoted as op in the previous paragraph),
should be understood as a partial function from a list of values (popped from
the operand stack) to the list of values (to be pushed back on the operand stack)
and optional jump address. It is realised as an inductive relation with branches
determined by the conditional instruction details op. Usually there is more than
one branch per one type of conditional instruction, depending on whether the
condition is met or not. Out of 9 cases that define the relation, two correspond
to the instruction from our example:

| SemCond cmp true: forall ...,
let arithmetic := arithmeticForKind k in
M ArithmeticTypes.arithCmpValues arithmetic cmpop arg1 arg2 true →
semCond (CI Cmp k cmpop off) [arg2;arg1] [] (Some off)

| SemCond cmp false: forall ...,
let arithmetic := arithmeticForKind k in
M ArithmeticTypes.arithCmpValues arithmetic cmpop arg1 arg2 false →
semCond (CI Cmp k cmpop off) [arg2;arg1] [] None

The actual work is delegated to the Arithmetic module which does the com-
parison.3 Since operations on different data types are structurally similar, dif-
ferent arithmetic modules are grouped together and selected according to the
type (“kind”) k by the function arithmeticForKind. In both cases two values are
popped from the operand stack and no value is returned. Depending on the
boolean result of the comparison a jump is triggered or not—in the latter case
the program will simply go to the next instruction.

The hierarchical structure of semantics has a number of advantages. First
of all, it prevents code duplication, as otherwise the step relation e.g. for all
the I Frame instructions would have almost identical premises corresponding to
extracting the suitable fragment of the JVM state. Another advantage is the
possibility to develop some proof techniques like VCGen, Hoare logic etc. only
for fragments of the semantics, if the whole semantics is too complex to cover.
The hierarchical structure of the semantics provides a natural delineation of frag-
ments to do and to ignore. The approach to prove program properties (Sect. 5),
together with the appropriate support in the ProgramAssertions module can
serve as an example here, as it covers code fragments that use only instruc-

3 The integer arithmetic was taken, in its major part, from Bicolano [27] by David
Pichardie. The specification of floats was taken from the Coq contribution IEEE754
by Patrick Loiseleur.

http://cojaq.mimuw.edu.pl/cojaq/doc/Sem_Cond.html
http://cojaq.mimuw.edu.pl/cojaq/doc/Arithmetic.html
http://cojaq.mimuw.edu.pl/cojaq/doc/ProgramAssertions.html

144 P. Czarnik et al.

tions from the I Frame category and operate within a single method. Finally, the
hierarchical organisation of proofs corresponding to the design of the semantics
helps to comprehend and manage them. The correctness of the static semantics
described in the next part is an example of such proof.

4 Static Semantics

The correct operation of the semantics in the JVML strongly relies on the
assumption that bytecode instructions have arguments of appropriate types.
Therefore, the specification of each instruction is accompanied in JVM seman-
tics [21] by a careful description of the types for its input and results. Revising
the approach proposed in our earlier work [6], in CoJaq we decided to exclude
explicit type conditions from the primary semantic rules. The type informa-
tion can be, in fact, deduced from the form of the values manipulated by the
instructions, but it is not given directly. Instead, we accompany definitions of the
“dynamic” semantics with “static” semantics relations which operate at the level
of types. In particular, the conditional instruction operation defined through

semCond: TCondInstr → list TValue → list TValue → option TOffset → Prop

is accompanied by the relation

staticSemCond: TCondInstr → list TKind → list TKind → option TOffset →
Prop

which says that the operation in question given an operand stack with top ele-
ments of types enumerated in the first list returns a stack with the top elements
replaced with values of types enumerated in the second list and optionally moves
PC by the given offset. Note that both properties are relations so we can easily
describe more than one allowed behaviour for a given input state. In this static
semantics and other places where the term kind is used in the formalisation, we
mean a simplified type information where all reference types (object types, array
types etc.) are considered to be a single type KRef of references. This is the way
type requirements are given in the majority of instruction specifications.

The consistency of the static and the dynamic view is proved through two
properties which correspond to soundness and completeness properties of proof
systems. First, we show that every possible step in the dynamic semantics has
a counterpart in the static semantics. For semCond the fact is expressed by a
property of the following form:

forall op off opt vs vs ’, semCond op vs vs’ off opt →
staticSemCond op (kindOfValues vs) (kindOfValues vs’) off opt.

Second, we demonstrate that every step in the static semantics is motivated by
a corresponding step in the dynamic one:

forall op off opt ks ks ’, staticSemCond op ks ks’ off opt →
exists vs vs ’, kindOfValues vs = ks ∧ kindOfValues vs’ = ks’

∧ semCond op vs vs’ off opt.

A Java Bytecode Formalisation 145

Full definitions and proofs are in the Sem Cond module. Analogous properties
and proofs are provided for other instructions from the I Frame category (FI Var,
FI Stackop etc.), and for I Frame itself, which corresponds to 160 mnemonics.
Beside potential applications for simplified analysis where actual values are not
important, the proofs serve also as an assurance that the semantics has no
anomalies. Moreover, this is an example of a large proof organised according
to the hierarchy of instructions. In particular, the proof for I Frame makes use
of lemmas proved for FI Cond, FI Stackop, etc. Our experience shows us benefits
of such a structural layout. Each of the lemmas defined for lower levels of the
hierarchy is focused on a particular fragment of the state while at higher levels
we can manage a whole branch at once. In this way we avoid a frequent obstacle
in proof management for systems with sizeable number of constants where the
proof context contains a big number of assumptions with a large size, which
makes the process of proof development critically hard to get through. In our
case, it proved especially useful as we gradually added new instructions during
the development of CoJaq and the proof usually required changes only in one of
the lemmas.

5 Program Verification

One of the design goals of the project was to build a formalisation applicable
to real programs. Although the intended role of CoJaq itself is rather to be a
base reference model for other tools, direct verification of a program in Coq
is the most straightforward application and the first step to ensure that the
formalisation is usable.

Fig. 3. An example of a method. (a) The Java source code of a method, (b) the
corresponding bytecode, and (c) the control flow graph of the bytecode.

http://cojaq.mimuw.edu.pl/cojaq/doc/Sem_Cond.html

146 P. Czarnik et al.

Fig. 4. Crucial fragments of the method code from Fig. 3 translated to our formalisation

A systematic process of JVML program verification can be performed as
follows

1. We describe in Coq states between every two consecutive bytecode instruc-
tions.

2. Then for each instruction we prove that starting from a state satisfying the
formula before an instruction if the semantic step of the instruction is taken
then the resulting state satisfies the formula after the instruction. Special care
must be taken for conditional jump instructions and the points of program
where separate branches of the control flow join together.

3. When all transitions are described in this way, we can prove by induction
that the program will always stay within the set of specified states, which is
a form of partial correctness property.

Consider the program given in Fig. 3. It consists of initial assignments of
constants to local variables and a loop that calculates the sum of first n odd
numbers, which is equal to n2. Its CoJaq counterpart is given in Fig. 4. First of
all, note that labels in bytecode are positions in bytes, whereas in the Coq coun-
terpart they are consecutive numbers. Second, the CoJaq code is parametrised
by n, while in Java and JVML n is replaced by a concrete constant 50. The proof
of program correctness is of course done for arbitrary (but small enough) n.

The proof process starts with proving a number of auxiliary lemmas about
properties of int32 numbers. After that we define properties describing the state
before given instructions, e.g.:
Definition s8_prop frame :=
pcToPosition (frameGetPC frame) = 8%nat

∧ exists i, exists r, stack_values frame [n; i] ∧ var_value frame var0 i
∧ var_value frame var1 n ∧ var_value frame var2 r ∧ r = i*i ∧ 0 <= i ∧ i <= n.

A Java Bytecode Formalisation 147

The above definition says (i) that the program counter of the current frame
is at position 8, (ii) that the values on the operand stack correspond to the
values of appropriate local variables, and (iii) that the abstract loop invariant is
satisfied, i.e. r=i∗i, where i is in the appropriate range.

Once the state properties are defined, we prove lemmas about their transi-
tions, e.g.
Lemma trans_7_8: forall frame frame’,
s7_prop frame → SF.stepFrame code frame frame’ → s8_prop frame’.

After proving transition lemmas, one can establish that reachable program
states are described by the aforementioned state properties. Hence, one can show
the partial correctness of the program, i.e., when it is started in the initial state
and arrives after instruction 19 then the operand stack contains n2:
Theorem partial_correctness: forall frameF,
pcToPosition (frameGetPC frameF) = 20%nat →
SF.stepsFrame code frame0 frameF → exists res,
frameGetLocalStack frameF = [(VInt res)] ∧ Num.toZ res = (n * n).

The same proof methodology can be applied to different programs. In module
ProgramAssertions we provide relevant infrastructure and a general theorem that
code blocks for which our Hoare-like logic apply at each step are partially correct.
This is available for instructions from the I Frame category.

6 Discussion on Bytecode Design

Efforts associated with the formalisation lead inevitably to reflections on the
design of the natural language specification. We present here our main obser-
vations. We assume that some of them could be integrated easily into future
releases of natural language specifications [15,21], but some would require total
rewrite of the documents, which we perceive as not only difficult, but also very
risky since many people learned to read the documents in the current structure.
Still, we find the remarks useful for the design of future low-level languages and
their descriptions.

Missing Descriptions. Some of the issues concerning the design of JVM are
nowhere described in the specification document [21]. The most prominent exam-
ple here is the multithreading semantics, which is documented in the Java speci-
fication itself [15]. This would be acceptable if appropriate links were provided in
the JVM description to the Java one, but many such links are missing. The reader
is referred few times to [15, Chap. 17] as a general account for multithreading,
but this is not reflected at the level of instruction description even though it is
crucial for understanding the semantics of several instructions. In particular this
concerns the word tearing feature allowed by the Java multithreading behaviour,
but nowhere mentioned in the JVM specification.

To counterbalance the aforementioned poor description of some aspects, the
operation of instructions in terms of monitors is described in a very detailed way
in the JVM specification document. This shows again that the large size of the

http://cojaq.mimuw.edu.pl/cojaq/doc/ProgramAssertions.html

148 P. Czarnik et al.

specification is inconsistent with regard to which facets of the description should
be covered and which omitted.

Flat Structure of Specification. The specification of the instructions
(Sect. 6.5 of [21]) is written in the spirit of traditional assembly languages
documentation, where each instruction is described separately. This approach
inevitably results in many duplications of text, which engineering practice
instructs us to avoid. Beside literal duplications of large text fragments, which
we mention below, we can observe that in many cases whole descriptions of
instructions differ only in

– the type for which an instruction is defined, which is the case of e.g. iaload,
faload, laload, daload, and aaload instructions;

– short snippets of text appearing only in selected cases, which is the case of
e.g. baload instruction when compared to the above group.

Summarising all such cases, we found 17 schemes of instruction descriptions that
serve to create as many as 61 actual descriptions. Even if having a complete
description of an instruction in one place is clearly an advantage, the reader
should be advised of a common pattern to which the specification of the given
instruction adheres and, which is even more important, clearly warned about
cinstruction.

Copy and Paste Caveats. By an analysis of the specification document we
found several duplications of large fragments of text. For instance

– two paragraphs of text describing run-time exceptions related to the monitor
state on method completion, which is repeated for all 6 return instructions
and, in its major part, for athrow instruction,

– large fragments of text in descriptions of method invocation instructions.
In our formal design we provide separate definitions for operations such as
dynamic method lookup or passing arguments to a method, which helps us
to avoid such duplications. In our opinion it would be reasonable to apply a
similar approach in the text specification at least for those complex operations
which require long descriptions.

In two cases the pasted text has been partially modified, leading to an error or
confusion.

– Reference subtyping rules are repeated in descriptions of aastore,
checkcast, and instanceof with small differences (e.g. “can be cast to
TC by these run-time rules” vs “can be cast to TC by recursive application
of these rules”). This may lead the reader to a confusion whether the differ-
ences are substantial, or whether there is a common ground and the different
descriptions relate it from different perspectives, or it is just a result of a
stylistic adjustments.

– Descriptions of imul, lmul, and lsub contain a note describing the case of
arithmetic overflow. They incorrectly refer to sum instead of the appropriate
operation—multiplication and subtraction, respectively.

A Java Bytecode Formalisation 149

Inconsistencies in the Instruction Set. The particular choice of instructions
is in many places strange and results in numerous special cases that must be
handled in an implementation and formalisation. These are natural sources of
error in implementation of the bytecode and in many cases constitute obstacles
to code reuse. Here are the most important deficiencies of the current design:

– Basically, the load and store instructions have different instances for different
types. However, the address store instruction astore can be used both for
reference types and for the returnAddress type, used by the subroutine
mechanism. Surprisingly, the corresponding aload instruction is only allowed
to load references.

– An asymmetry related to the above can also be found in case of jsr and ret.
The former starts a subroutine by storing the return address on the operand
stack while the latter fetches it directly from the local variables array. The
address put on the stack by jsr is moved to a variable by the aforementioned
astore instruction. Although it is acceptable that the address is kept in a
variable, it would be more consistent to use the same schema, either a direct
one or one with an intermediate stack step, to store the address and to retrieve
it again.

– Integer division instructions idiv, ldiv, irem, and lrem throw ArithmeticEx-

ception on division by zero. At the same time their floating point counterparts
handle this situation locally. The latter choice is the result of the IEEE 754
specification, but these two diverging approaches could be unified.

– There is only one instruction that operates directly on local variables without
the need to refer to the operand stack, namely iinc. This creates a single
special case that requires separate handling in formalisation and implemen-
tation.

– The instructions checkcast and instanceof bring virtually the same primi-
tive, but offer only a minimally different interface. This results in duplication
of large parts in their descriptions and may be the source of errors.

– The specification provides cases for special handling of interface types (e.g.
in the description of instanceof or checkcast). However, we could not find
any way an object of an interface type could actually occur in the heap.

7 Related Work

A systematic reduction of a large set of JVML instructions to a small one by
means of abstraction was given by Yelland [36]. He proposed a language µJVM
with a modest set of instructions that transform program continuations. Next,
a translation was provided for the actual bytecode instructions. In fact, one
can view the work as a continuation style denotational semantics for the JVML
written in Haskell, which makes it immediately modular and executable. One
important advantage of the formalisation is that the Haskell type system cor-
responds there to type correctness verification. In our approach we formalise
the language in small step fashion and the correctness proof for static check-
ing in similar fashion is done separately. Moreover, µJVM works on a different

150 P. Czarnik et al.

level of abstraction—instructions in CoJaq correspond in a hierarchical way to
instructions in the JVML, while in the case of µJVM a translation is required.

The semantics of Java and the JVML was given on paper in a notable book
by Stark et al. [34]. A number of formal accounts of the JVML are available,
which was summarised by Hartel and Moreau [17] and Freund and Mitchell [14].
We present here a brief overview of those realised in mechanised frameworks.

Formal Accounts of the Java Bytecode. There is a number of bytecode
semantics done on paper. One of them is the already mentioned work of Stark
et al. [34].

An early effort in this direction was done by Sata and Abadi [35]. They
proposed a type based method of ensuring the correctness for the Java bytecode
verification procedure with subroutines. The approach did not include objects
and method calls. The work was further refined by Hagiya and Tozawa [16] so
that separate variable access analysis was eliminated. Another variant of the
Sata and Abadi work was given by O’Callahan [26] where continuations and
polymorphic recursion were employed to extend the applicability of the original
type system.

Bertelson [3] proposed a detailed dynamic semantics for over 60 instructions,
although no formal properties of the system were shown.

Rose [32] proposed a framework of lightweight bytecode verification in the
spirit of Leroy [20] (see below for a more extensive description), which is more
general and based upon the principles of the proof-carrying code paradigm. She
proved that checking of a lightweight certificate on device gives guarantees that
are as strong as the ones provided by traditional bytecode verification procedure.

Freund and Mitchell [14] proposed a type system for a bytecode abstract
language that consists of 22 instructions. As far as the works on paper are con-
cerned, their effort covers probably the biggest number of important aspects
of the language including classes, interfaces, constructors, methods, exceptions,
and bytecode subroutines. They provided an operational semantics for the lan-
guage and proved the soundness of their type system. At last they developed a
program that conducts Java classes verification and uses the type system.

A notable review of the Java Virtual Machine specification [21] was presented
by Coglio in [8], but the author focused on the bytecode verification algorithm.

Mechanised Formalisations of the JVML. Probably the earliest effort
to mechanically formalise the JVML was done by Pusch [29]. She did it in
Isabelle/HOL by direct representation of general instructions that group byte-
code operations. The language covered low-level control flow, integer types,
classes, methods, and arrays. She proved the correctness of the JVML verifier.
The formalisation largely corresponds to an earlier formalisation on paper done
by Qian [30], which was also formalised in Specware [7].

Bertot validated in Coq [4] the correctness of soundness proofs for the frag-
ment of the JVML concerned with object initialisation. This work was based
upon an early version of the work by Freund and Mitchell [13].

A Java Bytecode Formalisation 151

An important formalisation was proposed by Leroy [20]. This formalisation
is focused on the JavaCard version of JVML and offers a Coq formal proof that
the JVML verifier is correct and that a preverified type information can serve
to guarantee type correctness after a type checking procedure is executed.

The group of Klein and Nipkow [19] proposed probably the most extensive
work concentrated on the JVML verification. They provided a model of Java
called Jinja and a formalisation of the JVM language model with 15 instructions
that includes such aspects of the JVML as low-level control flow, integer numeric
operations, classes, arrays, methods, exceptions, casts, and bytecode subroutines.
They constructed a verified compiler of Jinja to their model of JVM as well as
a JVML verifier. All the verification of the procedures was done in the proof
assistant Isabelle/HOL. As a result they obtained a unified model for the source
language, the virtual machine, and the compiler, which was later extended to
cover Java Memory Model [22].

A considerable fragment (138 instructions) of JVML was formalised in an
executable form in ACL2 [25]. The formalisation did not include exceptional
behaviour nor floating point operations. Another big portion of the instruction
set (over 70 instructions) was modelled by Pichardie [27] in Coq. The work was
similar in spirit to the one of Bertelsen [3] and modelled directly the instructions.
The semantics was done both in the small-step and big-step fashion and the
two were proved equivalent. This was probably the most ambitious and largely
successful attempt to make a formal account of the full bytecode instruction set.
However, the drawback of this approach was such that the number of instructions
made the formalisation unwieldy in the context of proving metatheorems for
JVML e.g. that a JVML verification algorithm is correct.

Another attempt to formalise JVML was done by Atkey [1] in Coq. The most
important feature of the attempt is that it uses the Coq program extraction to
make possible extraction of OCaml programs that work as a JVM. In this way
it is possible to efficiently validate the operational semantics encoded in Coq
against real JVMs and test if the results obtained in the two environments agree.

Demange et al. [11] presented yet another formalisation of the JVML. The
authors present a semantics of a chosen set of bytecode instructions in Coq
and a translation of bytecode to a stackless representation to make a basis for
formal analysis of bytecode compilation and its optimisation to native code in
JIT or standard compilers. Moreover, a semantics in Coq is given for the target
language. In this way they obtain two semantic accounts of the bytecode and
they prove that they are equivalent.

Not only interactive theorem provers were used to formalise JVM. A formal-
isation in Maude rewriting system was proposed by Farzan et al. [12].

An interesting exercise in formal methods was proposed by Posegga and
Vogt [28]. They showed how model checking can be applied to verify functional
properties of a JVML program.

152 P. Czarnik et al.

8 Conclusions

In working with complex systems, people usually are unable to think and act
with complete system view in mind. They focus only on chosen aspects of pro-
gram execution. In case of a machine that executes a program, this often agrees
with the assumption that the state of certain runtime structures that govern
the machine (in our case JVM) is irrelevant for the operation of the particular
instruction while for others it is relevant. We took this view and hierarchised
the JVML instructions based upon the way they operate on the runtime struc-
tures. In this way we obtained a decomposition of the whole set of 200 bytecode
instructions [21] and formalised it in Coq. As a result we obtained a unique, hier-
archical view of the Java virtual machine specification structure that is based
on the runtime structure access patterns and that was hidden before. Based
upon this formalisation, the natural language description can benefit from bet-
ter organisation of the material and more precise phrasing. In addition, future
descriptions of other low-level languages could benefit from these structuring
ideas in a similar way, resulting in a more uniform presentation of mechanisms
offered by the language.

References

1. Atkey, R.: CoqJVM: an executable specification of the Java virtual machine using
dependent types. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007.
LNCS, vol. 4941, pp. 18–32. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-68103-8 2

2. Aydemir, B.E., et al.: Mechanized metatheory for the masses: the PoplMark
challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp.
50–65. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868 4

3. Bertelsen, P.: Dynamic semantics of Java bytecode. Future Gener. Comput. Syst.
16(7), 841–850 (2000)

4. Bertot, Y.: Formalizing a JVML verifier for initialization in a theorem prover. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 14–24.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 3

5. Chrza̧szcz, J.: Modules in Coq are and will be correct. In: Berardi, S., Coppo,
M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 130–146. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24849-1 9

6. Chrz ↪aszcz, J., Czarnik, P., Schubert, A.: A dozen instructions make Java bytecode.
ENTCS 264(4), 19–34 (2011)

7. Coglio, A., Goldberg, A., Qian, Z.: Toward a provably-correct implementation of
the JVM bytecode verifier. In: Proceedings DARPA Information Survivability Con-
ference and Exposition, 2000. DISCEX 2000, vol. 2, pp. 403–410. IEEE Computer
Society (2000)

8. Coglio, A.: Improving the official specification of Java bytecode ver-
ification. Concurr. Comput.: Pract. Exp. 15(2), 155–179 (2003).
http://dblp.uni-trier.de/db/journals/concurrency/concurrency15.html#Coglio03

9. Coq development team: the Coq proof assistant reference manual V8.4. Technical
Report 255, INRIA, France, March 2012. http://coq.inria.fr/distrib/V8.4/refman/

https://doi.org/10.1007/978-3-540-68103-8_2
https://doi.org/10.1007/978-3-540-68103-8_2
https://doi.org/10.1007/11541868_4
https://doi.org/10.1007/3-540-44585-4_3
https://doi.org/10.1007/978-3-540-24849-1_9
http://dblp.uni-trier.de/db/journals/concurrency/concurrency15.html#Coglio03
http://coq.inria.fr/distrib/V8.4/refman/

A Java Bytecode Formalisation 153

10. Czarnik, P., Chrz ↪aszcz, J., Schubert, A.: CoJaq: a hierarchical view on the Java
bytecode formalised in Coq. In: Swacha, J. (ed.) Advances in Software Develop-
ment, pp. 147–157. Polish Information Processing Society (2013)

11. Demange, D., Jensen, T., Pichardie, D.: A provably correct stackless intermediate
representation for Java bytecode. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol.
6461, pp. 97–113. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
17164-2 8

12. Farzan, A., Chen, F., Meseguer, J., Roşu, G.: Formal analysis of Java programs in
JavaFAN. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 501–505.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 46

13. Freund, S.N., Mitchell, J.C.: The type system for object initialization in the Java
bytecode language. ACM Trans. Program. Lang. Syst. 21(6), 1196–1250 (1999)

14. Freund, S.N., Mitchell, J.C.: A type system for the Java bytecode language and
verifier. J. Autom. Reason. 30(3–4), 271–321 (2003). https://doi.org/10.1023/A:
1025011624925

15. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification. The
Java Series, 3rd edn. Addison Wesley, Boston (2005)

16. Hagiya, M., Tozawa, A.: On a new method for dataflow analysis of Java virtual
machine subroutines. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 17–32.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49727-7 2

17. Hartel, P.H., Moreau, L.: Formalizing the safety of Java, the Java virtual machine,
and Java card. ACM Comput. Surv. 33(4), 517–558 (2001)

18. Jacobs, B., Poll, E.: A logic for the Java modeling language JML. In: Hussmann,
H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 284–299. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45314-8 21

19. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine, and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619–695 (2006)

20. Leroy, X.: Bytecode verification on Java smart cards. Softw. Pract. Exper. 32(4),
319–340 (2002)

21. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn.
Addison-Wesley Professional, Boston (1999). Specification available at https://
docs.oracle.com/javase/specs/jvms/se6/html/VMSpecTOC.doc.html

22. Lochbihler, A.: A Machine-Checked, Type-Safe Model of Java Concurrency : Lan-
guage, Virtual Machine, Memory Model, and Verified Compiler. Ph.D. thesis, Karl-
sruher Institut für Technologie, Fakultät für Informatik, July 2012

23. Milner, R., Harper, R., MacQueen, D., Tofte, M.: The Definition of Standard ML
- Revised. The MIT Press, Cambridge (1997)

24. MOBIUS Consortium: Deliverable 3.1: bytecode specification language and pro-
gram logic (2006). http://mobius.inria.fr

25. Moore, J.S.: Proving theorems about Java and the JVM with ACL2. In: Broy, M.,
Pizka, M. (eds.) Models, Algebras and Logic of Engineering Software, pp. 227–290.
IOS Press, Amsterdam (2003)

26. O’Callahan, R.: A simple, comprehensive type system for Java bytecode subrou-
tines. In: Proceedings of POPL1999, pp. 70–78. ACM (1999)

27. Pichardie, D.: Bicolano - Byte Code Language in Coq (2006). http://mobius.inria.
fr/bicolano. Summary appears in [24]

28. Posegga, J., Vogt, H.: Byte code verification for Java smart cards based on
model checking. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D.
(eds.) ESORICS 1998. LNCS, vol. 1485, pp. 175–190. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055863

https://doi.org/10.1007/978-3-642-17164-2_8
https://doi.org/10.1007/978-3-642-17164-2_8
https://doi.org/10.1007/978-3-540-27813-9_46
https://doi.org/10.1023/A:1025011624925
https://doi.org/10.1023/A:1025011624925
https://doi.org/10.1007/3-540-49727-7_2
https://doi.org/10.1007/3-540-45314-8_21
https://docs.oracle.com/javase/specs/jvms/se6/html/VMSpecTOC.doc.html
https://docs.oracle.com/javase/specs/jvms/se6/html/VMSpecTOC.doc.html
http://mobius.inria.fr
http://mobius.inria.fr/bicolano
http://mobius.inria.fr/bicolano
https://doi.org/10.1007/BFb0055863

154 P. Czarnik et al.

29. Pusch, C.: Proving the soundness of a Java bytecode verifier specification in
Isabelle/HOL. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 89–
103. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 7

30. Qian, Z.: A formal specification of JavaM virtual machine instructions for objects,
methods and subroutines. In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of
Java. LNCS, vol. 1523, pp. 271–311. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48737-9 8

31. Raghavan, A.D., Leavens, G.T.: Desugaring JML method specifications. Technical
Report TR #00-03d, Iowa State University, March 2000

32. Rose, E.: Lightweight bytecode verification. J. Autom. Reason. 31, 303–334 (2003)
33. Soubiran, E.: Développement modulaire de théories et gestion de l’espace de nom

pour l’assistant de preuve Coq. Ph.D. thesis, Ecole Polytechnique (2010)
34. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,

Verification, Validation. Springer, Heidelberg (2001). https://doi.org/10.1007/978-
3-642-59495-3

35. Stata, R., Abadi, M.: A type system for Java bytecode subroutines. ACM Trans.
Program. Lang. Syst. 21(1), 90–137 (1999)

36. Yelland, P.M.: A compositional account of the Java virtual machine. In: Proceed-
ings of POPL1999, pp. 57–69. ACM (1999)

https://doi.org/10.1007/3-540-49059-0_7
https://doi.org/10.1007/3-540-48737-9_8
https://doi.org/10.1007/3-540-48737-9_8
https://doi.org/10.1007/978-3-642-59495-3
https://doi.org/10.1007/978-3-642-59495-3

Formalising Executable Specifications
of Low-Level Systems

Paolo Torrini(B), David Nowak, Narjes Jomaa, and Mohamed Sami Cherif

CRIStAL, CNRS & University of Lille, Lille, France
{p.torrini,d.nowak,n.jomaa}@univ-lille.fr, mohamedsami.cherif@yahoo.com

Abstract. Formal models of low-level applications rely often on the dis-
tinction between executable layer and underlying hardware abstraction.
This is also the case for the model of Pip, a separation kernel formalised
and verified in Coq using a shallow embedding. DEC is a deeply embed-
ded imperative typed language with primitive recursion and specified in
terms of small-step semantics, which we developed in Coq as a reified
counterpart of the shallow embedding used for Pip. In this paper, we
introduce DEC and its semantics, we present its interpreter based on
the type soundness proof and extracted to Haskell, we introduce a Hoare
logic to reason about DEC code, and we use this logic to verify properties
of Pip as a case study, comparing the new proofs with those based on
the shallow embedding. Notably DEC can import shallow specifications
as external functions, thus allowing for reuse of the abstract hardware
model (DEC can be found at https://github.com/2xs/dec.git [1]).

1 Introduction

Formal modelling and verification of OS kernels involve different aspects of the-
orem proving: realistic modelling of low-level systems, scalable verification of
program behaviour with respect to abstract specifications, executable models,
generation of efficient, certified low-level code. Models have often complex struc-
tures in terms of components and levels of abstraction [2–4]. A natural distinction
arises between the mathematical modelling of low-level requirements, typically
associated with an abstract model of the platform, and the executable model of
the platform-independent application which we also call the service layer. Pri-
marily, the abstract model needs to be extensible with respect to concrete models
of specific architectures, whereas the executable model needs to be translated
to an efficient implementation language. Working with a theorem prover such
as Coq [5] or Isabelle [6], this is a difference that matters for the choice of the
representation in the base language.

A deep embedding of an object language captures its abstract syntax in
terms of abstract datatypes, therefore providing a reified representation that
supports manipulation, notably translations, as well as operational specifica-
tions of behaviour, thus allowing for a naturally executable characterisation of
control flow. However, reasoning about abstract datatypes involves a significant

c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 155–176, 2018.
https://doi.org/10.1007/978-3-030-03592-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_9&domain=pdf
https://github.com/2xs/dec.git
https://doi.org/10.1007/978-3-030-03592-1_9

156 P. Torrini et al.

overhead in relation to the pervasive use of constructors and destructors. More-
over, conventional datatypes are not extensible. A shallow embedding consists of
defining semantically the constructs of the object language in the base language,
hence providing their characterisation in terms of denotational semantics, thus
not only keeping the maths as simple as possible, but also allowing for extensi-
bility in a non-problematic way. On the other hand, a shallow embedding does
not provide any direct way to manipulate language constructs, and it makes it
hard to separate object execution from evaluation in the base language.

Going back to our problem, we would generally like to associate the exe-
cutable model with a deep embedding and the abstract platform model with a
shallow one. Our approach consists in deeply embedding an object language that
allows importing specifications written in the metalanguage as external function
calls. We call the object language thus formalised a deeply embedded language
extension (DLE). A DLE can be thought of as a domain specific extension of
the base language, taking it closer to the target domain in the sense of syntax
(i.e. with language constructs close to the instructions to be modelled) and of
behavioural specification (i.e. with an operational semantics close to its model
of execution).

2 Motivation

In this paper, we focus on the development of a specific DLE in connection
with the formal development of the Pip protokernel [4,7–9]. Separation kernels
[10] are systems designed to provably ensure noninterference properties with
respect to distinct applications running on the same machine [2,3,11]. Usually a
separation kernel is based on a formal model that is verified with respect to its
security policy and translated to a low-level language for efficiency.

Pip is a separation kernel in which the kernel functionalities are reduced
to a minimum needed to allow for efficient memory management and context
switching (hence its characterisation as protokernel) [4]. It provides a service API
allowing for partitions to be created, allocated memory and removed at runtime
according to a hierarchical model. Partitions form a tree and each partition
manages its own subpartitions. The security policy of Pip is based on three
memory access properties: the parent partition can access the memory of its
children (vertical sharing), sibling partitions cannot share memory with each
other (horizontal isolation), and no partition can access kernel memory (kernel
isolation). The Pip system is implemented in C and assembly, relying on a
model written in Coq, the structure of which is shown in Fig. 1. The executable
model, corresponding to the service API, is built on top of an abstract platform
model that covers hardware abstraction layer (HAL) and hardware, the former in
terms of the high-level specification of low-level, platform-specific C and assembly
functions, the latter in terms of an abstract model of the physical memory and
the MMU.

The service layer of Pip relies on a fragment of C that can be represented as
a comparatively simple imperative language, one that is not difficult to capture

Formalising Executable Specifications 157

ABSTRACT
manual

HAL (C and ASM)
implementation

MODEL

automated

specification

 SERVICE API (C)translation

PLATFORM−
DEPENDENT

abstract

MODEL (COQ)

HAL

HARDWARE HARDWARE

SERVICE LAYER (IL)

Fig. 1. The design of Pip: the system and its model

in functional terms. This fragment, which we call IL here, corresponds to a
typed first-order sequential language with call-by-value, primitive recursion and
mutable references. Crucially, we do not need to return pointers, to use call by
reference, structures or arrays. Non-termination can always be ruled out relying
on hardware parameters.

The executable model has been formalised in Coq on top of hardware abstrac-
tion using a shallow embedding of IL based on its monadic semantics, and the
verification of the security properties, presented in [4], has been carried out
directly on the MC code using an associated Hoare logic, without going through
a higher-level model of the service layer. The service layer is about 1300 lines
of what we specifically call monadic code (MC), semantically corresponding to
IL, while the HAL is about 300 lines of monadic specification. The verification
involves rather long proofs [9] (several tens of thousands of lines), of which over
ten thousands for the abstract platform model.

Modelling Pip at the shallow level has made it possible to focus on system
development from the start, independent of any work on language development.
However, translation to a low-level language is mandatory for efficiency. The
closeness of IL to a fragment of C made it possible to carry out automatically
the translation of MC to C source code. Such translation, defined on Gallina
abstract syntax, has been implemented in Haskell [12] and it returns efficient,
yet unverified code. Unfortunately, verifying code obtained in this way seems
rather hard, as it would involve comparing semantically two large languages
such as C and Gallina.

We would like to obtain a certified translation at a comparatively lower cost,
by focusing on a smaller source language, building a reified representation of
our object language, and by targeting an existing formalisation of C such as
CompCert C [13], defining a verified translator in Coq. For this reason, we have
developed in Coq a DLE that we call DEC [1,14], as an object-level counterpart
of IL. As a deep embedding, DEC can be the source of a translation function
defined in Coq by pattern matching on the abstract syntax. Unlike MC, DEC
has an interpreter based on its small-step operational semantics. This makes it

158 P. Torrini et al.

possible to analyse the control flow in Coq, and it could help significantly in
comparing formally the behaviour of a program with that of its translation to
another language. Although in practice it is difficult to run the interpreter in
Coq, it is possible to rely on the extraction mechanism to obtain an efficient
program based specifically on the operational semantics of DEC rather than on
generic Gallina evaluation.

(shallow embedding)
verification
Plan A:

C implementation

 translation (in Haskell)

model
MC executable

verification
Plan B:

(deep embedding)

DEC executable
model formal translation

formal translation

platform model

Fig. 2. Two verification plans: A and B

Given DEC, there are indeed two distinct possibilities for the verification of
Pip, as shown in Fig. 2. Both plans involve translating the MC model to DEC.
Plan A consists additionally in proving the semantic equivalence between the
two models, relying for the rest on the verification of the security properties in
the shallow embedding as presented in [4]. Plan B, on the other hand, consists
in verifying properties directly on the DEC model. In this case, given the large
size of the existing verification based on MC, one of the main priorities is to
maximise its reuse in verifying DEC code. This can be achieved particularly
for the abstract platform model, relying on the DLE character of DEC. In this
paper we focus on the distinctive part of plan B, i.e. on DEC and on verification
in the deep embedding, omitting the translation to C (which is ongoing work).
Our contribution (beyond the semiformal characterisation of IL) consists in two
aspects that are essential to our verification approach: the development of DEC
as DLE (ca. 10,000 lines code), and the development of an appropriate Hoare
logic for DEC (ca. 2,000 lines code), allowing for syntax-driven, compositional
proofs and reuse of the abstract platform model. We applied our approach to a
case study (ca. 2,000 lines code on top of a significant amount of reuse), proving
auxiliary invariants of Pip functions in their translation to DEC.

In Sect. 3 we give a preliminary overview of IL, characterising it mathemati-
cally in terms of its operational semantics. In Sect. 4 we present the development
of DEC, with its interpreter (Sect. 5) and the associated Hoare logic (Sect. 6).
Section 7 presents the verification of Pip invariants based on DEC code, and
compares it with their verification based on MC. In Sect. 8 we discuss related
work, in Sect. 9 conclusions and further work.

Formalising Executable Specifications 159

3 Preliminaries

We start with a semiformal, mathematical specification of IL, the language we
use to illustrate succinctly the operational semantics DEC is based on, and to
connect it with MC through a mathematical specification of its denotational
semantics. IL is parametric in the primitive types Typ (ranged over by t), in the
state type W, and in the actions Act, ranged over by a, associated with side effects
and used to represent external functions. Values of primitive types are informally
regarded as a set Val ranged over by v. Function types, ranged over by ft, are each
defined by a tuple of primitive types for the parameters, and a primitive type
for the return value. The syntax of IL is constituted of intrinsically well-typed
expressions Exp and functions Fun (ranged over by e and f respectively). We rely
on higher-order abstract syntax (HOAS), treating identifiers as formal variables
and programs as closed terms, thus avoiding the need for environments. For
brevity, we represent tuples as heterogeneous lists, which we treat as typed by
type lists (denoted Typs), extending to them a standard list notation (including
map). We use the Haskell convention for naming lists.

Exp (t : Typ) := val t | cond (Exp Bool) (Exp t) (Exp t)
| binds (t′ : Typ) (Exp t′) (t′ → Exp t)
| call (ts : Typs) (Fun t ts) (Exps ts) | xcall (ts : Typs) (Act t ts) (Exps ts)

Exps (ts : Typs) := map Exp ts

Fun (t : Typ) (ts : Typs) := fun (ts → Exp t) ((ts → Exp t) → ts → Exp t) Nat

Act (t : Typ) (ts : Typs) := ts → W → (W ∗ t)

We specify the small-step transition relation using configurations defined as pairs
(s,X) where s : W is a state and X may be either an expression or a list of them.
We make the presentation more concise by giving only the reduction rules and
relying on evaluation contexts to specify call-by-value. Evaluation contexts allow
us to compute the redex at each step. As usual [15], we write [] to denote the hole
in which to plug the redex in, and C[e] to denote the splitting of an expression
into context and redex.

Ctx := [] | binds Ctx (Exp) | binds Val Ctx | cond Ctx (Exp) (Exp)
| call (Fun) Ctxs | xcall (Act) Ctxs

Ctxs := Ctx :: (Exps) | Val :: Ctxs

〈 s � e 〉 −→ 〈 s′ � e′ 〉
〈 s � C[e] 〉 −→ 〈 s′ � C[e′] 〉

〈 s � binds (val v) e 〉 −→ 〈 s � e v 〉
〈 s � cond (val true) e1 e2 〉 −→ 〈 s � e1 〉
〈 s � cond (val false) e1 e2 〉 −→ 〈 s � e2 〉

〈 s � call (fun e0 e1 0) (map val vs) 〉 −→ 〈 s � e0 vs 〉

160 P. Torrini et al.

〈 s � call (fun e0 e1 (S n)) (map val vs) 〉 −→ 〈 s � e1 (fun e0 e1 n) vs 〉
〈 s � xcall ts a (map val vs) 〉 −→ 〈 s′ � val v 〉 where a vs s = (s′, v)

Notice that val simply lifts values to expressions, and the final value can be
obtained by unlifting from an expression of form val v. The denotational seman-
tics of IL can be defined along the lines of the monadic translation in [16], using
a state monad with state W (see Appendix A). The result corresponds to the
shallow embedding used in the formalisation of Pip [4].

4 The Deep Embedding

DEC [1] is a strongly normalising, functional imperative language with primitive
recursion, implemented in Coq as an DLE based on IL, parametric in the type
of the mutable state. The constructs of DEC are internally specified as func-
tional ones. Nonetheless, Coq functions can be imported as external functions,
and these can be stateful, although the totality requirement of the metalan-
guage ensures that they are terminating. In this sense, DEC is a functional
language that can be extended with generic effects, as well as a deeply embed-
ded functional interface which can be used to extend a stateful model. Unlike the
HOAS-style presentation of IL, DEC relies on environments, on explicit typing
relations, and on a semantic representation which uses propagation rules rather
than evaluation contexts, following an approach closer to [17] and to the origi-
nal presentation of structural operational semantics (SOS) [18], a choice made
to allow for explicit manipulation of identifiers without the need to implement
α-renaming. As a distinctive computational feature, DEC has typing relations
with inductive principles which are strong enough to carry the weight of the type
soundness proof, while minimising type annotation.

Relying on Coq modules, the definition of DEC is parametric in the type of
the mutable state W and in the type of the identifiers Id, the latter required to
have decidable equality. We model environments as homogeneous lists, and to
this purpose, unlike in HOAS, we need to introduce a deep embedding of object
types and values. Our object types (i.e. deep types) are lifted Gallina types (i.e.
shallow ones). Their type could be treated as trivial hiding, i.e. Σ(λX:Type,X), but
we prefer to rely on a type class ValTyp:Type→Prop to ensure lifting is explicitly
allowed, hence defining our type VTyp of value types as ΣValTyp, with associated
lifting function vtyp: Type → VTyp. Deep values are defined by lifting shallow
values, hiding their type, and their type Value is defined as ΣValueI, where
Inductive ValueI (T: Type) : Type := Cst (v: T).

and lifting is cst: ∀ T:Type, T → Value. Value environments and value typing con-
texts are then given types list(Id*Value) and list(Id*VTyp), respectively abbrevi-
ated as valEnv and valTC. The value typing relation ValueTyping:Value→VTyp→Type

reduces to extracting and equating the shallow types of the two arguments,
whereas the identifier typing relation IdTyping:valTC→Value→VTyp→Type relies on
the application of the lookup function findE.

Formalising Executable Specifications 161

From the deep typing point of view, DEC is intended as a first-order language,
therefore it would not be strictly necessary to allow for the body of program
expressions to contain occurrences of function definitions, as opposed to function
variables. However, allowing function definitions to be syntactical subexpressions
leads to a stronger built-in induction principle. Partly for this reason, DEC is
essentially designed as first-order fragment of a higher-order language. The deep
type of function types
Inductive FTyp : Type := FT (prms_type: valTC) (ret_type: VTyp).

ensures the first-order restriction, requiring that parameters are deep datavalues.
Function environments (funEnv) and function typing contexts (funTC) are defined
as lists, in analogy to valEnv and valTC. The namespace distinction between value
identifiers and function identifiers is enforced at the level of head normal forms,
here called q-values and q-functions.
Inductive QValue : Type := Var (x: Id) | QV (v: Value).

The inductive type of expressions is mutually defined with functions, q-functions,
and lifted expression lists that represent parameters.

The function constructor FC represents an iterate-style construct, where tenv

gives the list of the formal parameters with their types, n is a natural number
that represents fuel, is the function body for , e1 is the function body for

, x is the function identifier used in recursive calls, and fenv is the local func-
tion environment. Constructors Var and FVar lift identifiers to the corresponding
head-normal forms. Similarly QV and QF lift normal forms. PS lifts expression
lists to parameters. Concerning expressions, Val and Return are lifting construc-
tors, IfThenElse represents conditional branching, BindN sequencing and BindS local
binding of identifiers to expressions (i.e. let-style binding). BindMS allows for mul-
tiple binding of identifiers to normal forms, i.e. for local environments, and it is
needed for internal processing in our environment-based representation. Apply

represents application of recursive functions. Modify represents application of
external one-argument functions, where the function type is T1→T2. Modify works
as a constructor of generic effects, handled by the stateful functions associated
with the corresponding record of type

162 P. Torrini et al.

For example, generic read and write actions can be defined as follows
Definition xf_read {T: Type} (f: W → T) : XFun unit T := {|

x_mod := fun x _ ⇒ (x, f x) |}.

Definition xf_write {T: Type} (f: T → W) : XFun T unit := {|

x_mod := fun _ x ⇒ (f x, tt) |}.

Read and write instructions can then be defined, given UnitVT:ValTyp unit (here
@ is used to make implicit arguments explicit).
Definition Read {T: Type} (VT: ValTyp T) (f: W → T) : Exp :=

@Modify unit T UnitVT VT (xf_read f) (QV (cst unit tt)).

Definition Write {T: Type} (VT: ValTyp T) (f: T → W) (x: T) : Exp :=

@Modify T unit VT UnitVT (xf_write f) (QV (cst T x)).

Notice that function definitions are meant to represent closed terms, as they
may occur as subterms in expressions. For this reason, a function definition is
defined as a closure with respect to its function identifiers, by including fenv as
local function environment. This measure prevents variable capture and suffices
to ensure we can type check recursive functions without annotating them with
their return type.

The typing relations on expressions, functions, q-functions and parameters
are defined by mutual induction, where MatchEnvs maps a binary relation over
two lists.1

Inductive ExpTyping : funTC→valTC→funEnv→Exp→VTyp→Type := ...

| Apply_Typing : ∀ (ftenv: funTC) (tenv fps: valTC) (fenv: funEnv)

(q: QFun) (ps: Prms) (pt: PTyp) (t: VTyp),

pt = PT (map snd fps) → MatchEnvs FunTyping fenv ftenv →
QFunTyping ftenv fenv q (FT fps t) →
PrmsTyping ftenv tenv fenv ps pt →
ExpTyping ftenv tenv fenv (Apply q ps) t

| Modify_Typing : ∀ (ftenv: funTC) (tenv: valTC) (fenv: funEnv)

(T1 T2: Type) (VT1: ValTyp T1) (VT2: ValTyp T2)

(XF: XFun T1 T2) (q: QValue),

QValueTyping tenv q (vtyp T1) →
ExpTyping ftenv tenv fenv (@Modify T1 T2 VT1 VT2 XF q) (vtyp T2)

with QFunTyping : funTC→funEnv→QFun→FTyp→Type := ...

In the typing of function application, the type of the actual parameters is com-
pared with that of the formal ones obtained from the q-function typing, which
means either consulting the function typing context (ftenv) in case of an identi-
fier, or else checking the function type. In the typing of external function calls
the relevant types and the function definition are passed as a record.

Our function typing relation has a comparatively non-standard, algorithmic
character.

1 Details in 2xs/dec/src/langspec/LangSpec.v [14].

Formalising Executable Specifications 163

Given a function to type, while the types of the
parameters are supplied by tenv, the return type needs to be inferred, either from

when , or else from e1. This involves also inferring the types of the local
functions in fenv, not supplied by f. Hence the typing relation requires a func-
tion environment as argument, rather than just a function typing context, and
given the function environment update in case of , type inference requires
induction on the fuel.

We have developed our typing definitions in parallel with the proof of a type
soundness theorem which in fact we carry out by mutual induction on the typing
relations. However, the induction principle supplied automatically by Coq turned
out to be weak, particularly given our use of lists to represent parameters and
our typing of parameters
with PrmsTyping : funTC→valTC→funEnv→Prms→PTyp→Type :=

| PS_Typing: ∀ (ftenv: funTC) (tenv: valTC) (fenv: funEnv)

(es: list Exp) (ts: list VTyp),

Forall2T (ExpTyping ftenv tenv fenv) es ts →
PrmsTyping ftenv tenv fenv (PS es) (PT ts).

where Forall2T maps a relation on lists.

We solved this problem by supplying customised and stronger mutual induc-
tion principles (called ExpTyping_str_rect for expressions and similarly for the
other categories), obtained by instantiating a more general one, proved by means
of the mutually recursive version of the fix tactic [5]. Reasoning by induction on
the typing relations, we can prove that each well-typed object is uniquely typed.
This is also the case for functions.
Lemma UniqueFunType (f: Fun) (ft1 ft2: FTyp)

(k1: FunTyping f ft1) (k2: FunTyping f ft2) : ft1 = ft2.

Although the typing of functions depends on their fuel, we can prove

164 P. Torrini et al.

and conversely

The dynamic semantics of DEC, defined in terms of small-step rules, is com-
paratively standard and close to the IL presentation, though far less concise,
as propagation rules are needed for each constructs. It relies on a notion of
configuration parametrised by syntactic categories (i.e. expressions, parameters,
q-values and q-functions).
Inductive AConf (T: Type) : Type := Conf (state: W) (qq: T).

The step rules for q-values and q-functions are just environment lookups.
Inductive QVStep : valEnv → AConf QValue → AConf QValue → Type

Inductive QFStep : funEnv → AConf QFun → AConf QFun → Type

The step rules for expressions and parameters (evaluated from left to right) are
defined by mutual induction, using the principle supplied by Coq.
Inductive EStep: funEnv→valEnv→AConf Exp→AConf Exp→Type := ...

with PrmsStep: funEnv→valEnv→AConf Prms→AConf Prms→Type := ...

The reduction rules for Apply and particularly the decreasing character of the
recursive one (shown below), supplemented by the call-by-value propagation
rules, ensures the termination of recursive functions in a way that corresponds
to the iterate-style construct of IL. Here isValueList2T is used to check whether a
list of expressions equals a list of lifted values, and mkVE:valTC→list Value→valEnv

constructs a value environment from a typing context and a list of values of the
same length.

Notice the use of BindMS to introduce a local environment, with the following
step rules.

Formalising Executable Specifications 165

The reduction rule of Modify enacts the monadic behaviour of the stateful
action associated with xf, returning the value computed by x_eval and changing
the state according to x_exec.

5 The SOS Interpreter

The small-step semantics can be used to compute well-typed programs in
well-typed environments. First of all, we extend the definitions of transi-
tion steps to reflexive-transitive closures (represented by inductive types,
e.g. EClosure : funEnv → valEnv → AConf Exp → AConf Exp → Type). Then, after
using double induction on the step relation and its reflexive-transitive exten-
sion to prove a weakening lemma (for expressions as shown, and similarly for
parameters)

our strong mutual induction principle on typing suffices to prove a type sound-
ness theorem, with the following formulation for expressions (and similarly for
the other mutually defined categories).2

The use of Σ types ensures that the witnesses can be extracted from the
proof. The proof can then be applied as a function, ensuring that a value of the
expected type can always be obtained together with a final state for well-typed
expressions in well-typed environments by a finite number of steps. Notice that
usually induction on the typing relation only suffices to prove subject reduction,
i.e.

whereas type soundness, in the case of a terminating language, involves a weak
normalisation result typically provable by induction on the step relations. Our
typing relations incorporate the inductive aspect on fuel, and therefore suffice
2 Specification and proofs in 2xs/dec/src/DEC1 [1].

166 P. Torrini et al.

to prove normalisation. We prove determinism of evaluation, again by induction
on typing.
Lemma ExpDeterm (ftenv:funTC) (tenv:valTC) (fenv:funEnv) (e:Exp) (t:VTyp):

ExpTyping ftenv tenv fenv e t → FEnvTyping fenv ftenv →
∀ (env: valEnv), EnvTyping env tenv → ∀ (n n1 n2: W) (e1 e2: Exp),

EStep fenv env (Conf Exp n e) ((Conf Exp n1 e1)) →
EStep fenv env (Conf Exp n e) ((Conf Exp n2 e2)) → (n1 = n2) ∧ (e1 = e2).

Determinism together with weak normalisation give us strong normalisation,
and indeed this makes it possible to ensure that our type soundness proof can
be used as an SOS interpreter to evaluate DEC programs. We can run the
interpreter on simple expressions, but Coq’s evaluation mechanism (notoriously
fragile [19]) currently does not carry us far enough, particularly in connection
with our extensive use of dependent types.

Nonetheless, we can rely on the Coq extraction mechanism to obtain a certi-
fied and efficient implementation of the SOS interpreter. We used extraction to
Haskell to generate code which we compiled and run with GHC. The presence of
dependent types in our Coq code required some adjustments. In fact, when Coq
types have no direct translation into Haskell, the extraction mechanism will use
the Haskell type Any (which can be understood as the union of all possible types).
This means that in order to print the result of running the interpreter, we need
to supply explicitly the translated type using the Haskell function unsafeCoerce.
As expected, the Haskell interpreter is recursively defined on a term that in Coq
has the dependent type of the typing relation. In fact, the computational content
of our carefully designed algorithm rests entirely on that relation, rather than
on its arguments. Although such arguments have no computational role, they
are still present in the extracted code, as they have computational types. But
the lazy evaluation strategy of Haskell ensures that they are not evaluated, and
thus they can be safely given the value undefined.

In the future we would like to tackle the aspect of evaluation in Coq too,
in order to show the semantic adequacy of DEC with respect to MC. We have
defined a translation of DEC to Gallina, relying on the strong induction principle
on typing as we did for type soundness. Ideally we would like to show that for each
DEC program, the proof term of this translation is equal to the term obtained
from the SOS interpreter.

6 Hoare Logic

We defined a Hoare logic to verify well-typed DEC programs with respect to
state properties expressed in Gallina. Our definitions of Hoare triples allow for
the postcondition to depend on the value returned by the computation, follow-
ing [20,21], and for the computation to depend on function and value environ-
ments. We provide the syntax {{ P }} fenv >> env >> e {{ Q }} to write triples for
expressions, where the unary predicate P gives the precondition and the binary
predicate Q the postcondition of running the SOS interpreter on a well-typed
expression e in well-typed environments fenv for functions and env for values,
corresponding to the following definition

Formalising Executable Specifications 167

where the transitive closure hypothesis states that the expression e,
evaluated in state s, leads to value v in an updated state . The syn-
tax {{ P }} fenv >> env >> ps {{ Q }} and an analogous definition are used for
Hoare triples for parameters. Notice that in contrast with the triples for MC
[4] where well-typedness is shallow and implicit, here the typing information is
deep and thus needs to be explicit. In principle, this explicitness could bring
additional discriminating power, making it easier to distinguish between types
that are meant to be different, with different actions associated to them, though
modelled by the same shallow type. However, this comes to the cost of an over-
head in the proofs. On the other hand, an untyped version of the triples could
not rely on termination, and therefore would be rather weak in comparison with
the shallow counterpart.

We supply a Hoare logic library based on our triples, notably including Hoare
logic structural rules for each DEC construct, in order to allow for a verification
style that is essentially syntax-driven. Most of these rules support bidirectional
use, i.e. both by weakest precondition and strongest postcondition, and corre-
spond to big-step rules. For example, the following is the main rule for BindS

This rule allows a triple for the expression BindS x e1 e2 to be broken down
into sequential triples for e1 and e2 (the latter in an updated value environment).
The main rule for the Apply constructor can be conveniently split into two distinct
ones, in order to deal with the recursive update of the function environment,
which does not take place with zero fuel

whereas it does otherwise (i.e. is updated with the assignment of function
to the identifier x)

168 P. Torrini et al.

As another example, given an external function record xf: XFun t1 t2, the
rule for Modify has more naturally the form of a weakest precondition (we show
the case when the argument q is already a lifted value):
let q := QV (cst t1 v) in let g := λs, xf.x_eval s v in

let h := λs, xf.x_exec s v in {{λ s. Q (g s) (h s)}}

fenv >> env >> Modify xf q {{Q}}

The validity of these rules is proved by inverting the corresponding operational
semantic rules, making use of the determinism of DEC.

7 Case Study: Verifying Properties of Pip

The model of Pip in the shallow embedding [4] is based on Gallina code which
can be regarded as a monadic representation of IL. The LLI monad used in that
representation is defined as an abstract datatype and it wraps together hardware
state and undefined behaviours, analogously to applying a state transformer to
an error monad [16,22].

The primitive types are Booleans and subsets of naturals. The HAL functions
correspond to the actions in IL. The monadic operations ret and bind, which can
be easily proved to satisfy the monadic laws

provide the semantics for sequencing, let binding and function application. Prim-
itive recursion and conditional expressions are encoded in terms of the corre-
sponding Gallina notions (see Appendix A for a semiformal definition of the
corresponding denotational semantics).

The executable specification of Pip rests on a platform model which
includes the representation of physical memory as association lists of physical
addresses and values, and the specification of HAL primitives corresponding to
architecture-dependent functions [4,9]. Stateful functions such as get and put

are only used in the definition of the HAL primitives, thus ensuring that Pip
services can access the state only through specific actions. A physical address is

Formalising Executable Specifications 169

modelled as a page identifier (corresponding to a fixed-size chunk of memory)
and an offset value called index.

The value datatype sums up the types of values that can be found in the
configuration pages.
Inductive value : Type:= | PE: Pentry → value | VE: Ventry → value

| PP: page → value | VA: vaddr → value | I: index → value.

Here Pentry stands for physical entry, Ventry for virtual entry, and vaddr for
virtual address. Physical entries (PTEs) associate a page with its accessibility
information.
Record Pentry : Type:= {pa: page; present: bool; accessible: bool}.

The management of memory is based on a tree-like partition structure. The par-
tition tree is a hierarchical graph in which each node contains a handle called par-
tition descriptor (PD) together with the configuration of the partition, defined as
a set of entities, the main one being the MMU configuration. This has the struc-
ture of a tree of fixed levelNum depth where physical addresses (including those
pointing to possible children in the partition tree) are essentially leaves, whereas
valid virtual addresses represent maximal branches. In fact, virtual addresses are
modelled as lists of indices of length levelNum+1. Each of them is translated by
the MMU either to the null address or to a physical one, by interpreting each
index in the list as offset in the page table at the corresponding level in the
MMU. Partitioning management also uses two auxiliary entities, which can be
described as shadows of the MMU. The first shadow is used to find out which
pages are assigned children, and it uses the type Ventry. The second shadow is
used to associate each PD to the virtual address it has in the parent partition.
The comparatively low-level representation of these structures in the Coq model
is based on lists and relies on consistency invariants to ensure e.g. that a list
represents a tree. The physical state in Pip is defined by the PD identifier of
the currently active partition and the relevant part of the memory state (i.e.
essentially, the configuration pages).

In the monadic model of Pip, this defines the state for the LLI monad [4,9].
In the deep embedding formalisation [1,23], we rely on a concrete module

where Id is instantiated with strings, and W with state. The HAL primitives
correspond to the actions which are executed as external function calls by means
of Modify. Since the current definition of DEC does not include rules for error
handling, we delegate undefined behaviour to each action, using option types.
This involves some adjustments. For example, the original HAL primitive in [9]
to read a physical address in a given page

Definition readPhysical (p: page) (i: index) : LLI page := bind get (λs,

170 P. Torrini et al.

match (lookup p i (memory s) page_beq index_beq) with

| Some (PP a) ⇒ ret a | Some _ ⇒ undefined 5 | None ⇒ undefined 4 end).

gets translated to the following

which can be lifted to DEC as external function.

The fact that the composition of state and error is essentially inverted by
the translation is not problematic in our model: all the proofs on the hardware
primitives turned out to be easy to adjust.

We translated to DEC three auxiliary functions which are defined in the MC
model [9], called getFstShadow, writeVirtual and initVAddrTable. For each function,
we proved the main invariant associated with it for its DEC translation, along the
lines of the proofs in the shallow embedding, reusing the HAL model in the sense
we have described above. The top-level proofs in the shallow embedding are com-
paratively small (about 50, 100 and 250 lines, respectively), but they are quite
representative as they involve using several HAL primitives, sequencing and let-
binding, reading from the state (getFstShadow), updating the state (writeVirtual),
as well as a conditional and a recursive function (initVAddrTable). Following in
the footsteps of the shallow proofs, the deep embedding results in comparable
top-level proofs (about 100, 100 and 350 lines respectively), with an overhead
due mainly to DEC type-checking, and to the lifting-unlifting of values on which
properties may depend. In the case of getFstShadow, we have experimented with
alternative definitions of HAL primitives, showing that the top-level proof does
not change and therefore, in principle, that DEC could support refinement of
abstract specifications. In the case of initVAddrTable, we also proved the invariant
following a more thoroughly syntax-driven approach, in the spirit of our Hoare
logic. This resulted in a significantly shorter top-level proof (about 170 lines,
mainly instantiations of metavariables), though it involved proving additional
HAL-level lemmas (about 300 lines) not supplied by the original model, yet
general enough to be potentially reusable.

The function getFstShadow is used to return the physical page of the
first shadow for a given partition, and it is implemented monadically using
readPhysical as well as getSh1idx and Index.succ as HAL primitives.
Definition getFstShadow (p : page) : LLI page :=

bind getSh1idx (λ x, bind (Index.succ x) (λ y, readPhysical p y)).

This function can be translated to DEC as follows

Formalising Executable Specifications 171

where all the subexpressions are based on lifted primitives. The invariant that
has been proved for the DEC code [1,23] is the following
Lemma GetFstShadowBind (p: page) (P: W → Prop) (fenv: funEnv) (env: valEnv):

{{λ s, P s ∧ PartitionDescriptorEntry s ∧ p ∈ (GetPartitions mltplxr s) }}
fenv >> env >> (GetFstShadow p)

{{λ sh1 s, P s ∧ NextEntryIsPP p sh1idx sh1 s }}.
closely matching the shallow version in [9]. Here again GetPartitions

and NextEntryIsPP are lifted HAL primitives. GetPartitions returns the list of all
sub-partitions of a given partition, NextEntryIsPP returns a Boolean depending on
whether the successor of the given index in the given configuration page points
to the given physical page, whereas PartitionDescriptorEntry defines a specific
property of the partition descriptor. The typing information that is explicit in
the shallow embedding needs to be extracted from the deep type, and this makes
for most of the overhead in the deep proof.

The function writeVirtual writes a virtual address to the physical memory
and it is used to update configuration pages in the second shadow. It is a HAL
primitive, and therefore can be adjusted and lifted to DEC as an external func-
tion. The associated invariant ensures that the given value is actually written to
the given location, while the properties which do not depend on the updated part
of the state are preserved. This example illustrates reuse quite well. Although
the invariant requires a comparatively long proof in the shallow embedding, this
proof can be replicated almost exactly in the deep embedding, using the same
(of many) HAL lemmas.

The recursive function initVAddrTable is used to initialise the virtual addresses
in the second shadow. Its translation has a comparatively complex DEC struc-
ture, involving a conditional and the use of tableSize as fuel.

The associated invariant ensures that after execution each entry of the given con-
figuration table contains the default value defaultVAddr, regardless of the current
index (cidx).
Lemma InitVaddrTableInv (p: page) (cidx: index)

(fenv: funEnv) (env: valEnv) : {{λ s, (λ idx : index , idx < cidx →
(ReadVirtual table idx (memory s) = Some defaultVAddr)) }}

fenv >> env >> InitVAddrTable p cidx

172 P. Torrini et al.

{{λ _ s idx, ReadVirtual p idx (memory s) = Some defaultVAddr}}.
The DEC structure of InitVAddrTableAux makes it convenient to adopt a

syntax-driven approach based on the application of Hoare logic rules (as opposed
to unfolding the definition of Hoare triple), in order to facilitate automation and
maximise reuse. Indeed, it has been easy to write a tactic in Ltac (the scripting
language of Coq) to semi-automate the application of such rules. In comparison,
pattern-matching on terms in MC might be trickier. On the other hand, the
impact of this basic form of automation is restricted by the need to instantiate
metavariables with comparatively complex terms for properties. Moreover, the
proof uses induction on tableSize (in analogy to the shallow one).

8 Related Work

Differences and complementarity between shallow and deep embedding have
been widely discussed in functional programming, in relationship with the devel-
opment of embedded domain specific languages (EDSLs) [24–27]. Combinations
of shallow and deep embedding have been proposed e.g. in [25] to deal at once
with the expression problem (related to extending a deeply embedded language)
and the interpretation problem (related to extending the semantic interpretation
of a shallow embedding). Their approach consists in extending a deeply embed-
ded core language with a shallowly embedded front-end, thus the opposite of
what we do with a DLE. In fact, they share our intent of separating the inter-
pretation of the EDSL from that of the metalanguage. However, they want the
high-level qualities of a shallow embedding (e.g. usability and extensibility of the
syntax) for the top level part of the EDSL, whereas we need those qualities in
the abstract model underneath (where in facts proofs tend to be, mathematically
speaking, higher-level ones).

In applications of theorem proving, the difference between shallow and deep
embedding has often been associated with a tradeoff between ease in dealing
with mathematically higher-level proofs and language manipulation [28]. For
example, Cogent [29] is a domain-specific language that has been used to verify
file systems in the context of the seL4 project [3]. Targeting Isabelle, Cogent
compiles both to a shallow embedding, used in higher-level verification, and to a
deep one, used in verifying C source code (an approach that bears some analogy
with our plan A mentioned in Sect. 2).

In the Coq community, refinement from abstract models based on shallow
embedding to deeply embedded lower-level ones has been discussed in the con-
text of higher-level formal development [30] as well as in hardware design [31,32].
CertikOS [2,33] provides a method to formally develop low-level applications in
Coq, targeting an extension of CompCert Clight and assembly code [13], allowing
for composition and refinement of modular specifications which can be imported
as external functions into the deeply embedded CompCert frontend. In compar-
ison, our notion of DLE has a radically lighter-weight, domain specific charac-
ter, relying on a separation of concerns between verification of the executable
model (discussed in this paper) and translation to the implementation language.

Formalising Executable Specifications 173

Moreover, unlike our basic Hoare logic, CertikOS provides advanced support for
modular reasoning through contextual refinement [33].

9 Conclusions and Further Work

We have presented the core development of DEC as a DLE, with an interpreter
based on its small-step operational semantics. The translation of DEC to C
is ongoing work, and so is the proof that its denotational translation to the
monadic code agrees with its operational semantics. As a preliminary experi-
ment in using DEC as modelling language, we formalised functions of Pip in
DEC and we proved model invariants associated with them. The DLE approach
has proved fruitful in two main respects: it has enabled us to match neatly
the modelling distinction between platform abstraction and service layer with a
linguistic one between external and internal functions, hence defining a formal
interface between the two; it has supported modular reuse of abstract platform
components and associated proofs along that interface, within a framework that
allows for direct manipulation of the executable code.

The notion of DLE is essentially oriented toward the design of intermediate,
executable models. In the case of DEC, the DLE has been designed to ensure
well-typedness and termination. This choice has been made to match the orig-
inal model in the shallow embedding, rather than the ultimate C target. More
generally, the idea we presented is to build domain specific modelling languages
that support program development by refining stateful specifications into imper-
ative code, while preserving in Coq the separation of concerns between layered
modelling in a language with a comparatively simple model of execution, and
translation to a richer implementation language.

Acknowledgments. We wish to thank all the other members of the Pip Development
Team, especially Gilles Grimaud and Samuel Hym, Vlad Rusu and the anonymous
reviewers for feedback and discussion. This work has been funded by the European
Celtic-Plus Project ODSI C2014/2-12.

A Appendix: Denotational Semantics

We can define a denotational semantics of IL relying on a monadic translation
similar to the one in [16] based on a state monad M with fixed state type W .
The semantics is defined by a translation of IL to the monadic metalanguage
(4–7), for types (Θt), expressions (Θe), expression lists (Θes) and functions (Θf),
using the auxiliary definitions here also included (1–3).

condM : M Bool → M t1 → M t1 → M t1 :=
λx0 x1 x2. bind x0

(λv0. bind x1 (λv1. bind x2 (λv2. if then else v0 v1 v2)))
(1)

174 P. Torrini et al.

mapM : (∀t. Exp t → M t) → Exps ts → M ts :=
λf es. match es with [] ⇒ []

| e :: es′ ⇒ bind (f e) (λx. (bind (mapM f es′)
(λxs. ret (x :: xs))))

(2)

iterateM (ts : Typs) (t : Typ) (e0 : ts → M t)
(e1 : (ts → M t) → (ts → M t))
(n : Nat) (xs : ts) : M t := match n with

0 ⇒ e0 xs | S n′ ⇒ e1 (iterateM ts t e0 e1 n′) xs

(3)

Θt (Exp t) := M t
Θt (Exps ts) := M ts
Θt (Fun t ts) := ts → M t
Θt (Act t ts) := ts → M t

(4)

Θe : ∀t. Exp t → M t
Θe (val x) = ret x
Θe (binds e1 (λx : t. e2)) = bind (Θe e1) (λx : t. Θe e2)
Θe (cond e1 e2 e3) = condM (Θe e1) (Θe e2) (Θe e3)
Θe (call fc es) = bind (Θes es) (Θf fc)
Θe (xcall a es) = bind (Θes es) a

(5)

Θes : Exps ts → M ts
Θes es = mapM Θe es

(6)

Θf : Fun t ts → ts → M t
Θf (fun (λ x : ts. e0) (λ (r : ts → Exp t) (x : ts). e1) n) =

iterateM ts t (λ x : ts. Θe e0)
(λ (r : ts → M t) (x : ts). Θe e1)) n

(7)

References

1. Torrini, P., Nowak, D., Cherif, M.S., Jomaa, N.: The repository of DEC (2018).
https://github.com/2xs/dec.git

2. Gu, R., et al.: CertiKOS: an extensible architecture for building certified concurrent
OS kernels. In: OSDI, pp. 653–669 (2016)

3. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, pp. 207–220
(2009)

https://github.com/2xs/dec.git

Formalising Executable Specifications 175

4. Jomaa, N., Torrini, P., Nowak, D., Grimaud, G., Hym, S.: Proof-oriented design
of a separation kernel with minimal trusted computing base. In: Proceedings of
AVOCS 2018, 16 p. (2018). http://www.cristal.univ-lille.fr/∼nowakd/pipdesign.
pdf

5. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-662-07964-5

6. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45949-9

7. Bergougnoux, Q., Grimaud, G., Iguchi-Cartigny, J.: Porting the Pip proto-kernel’s
model to multi-core environments. In: IEEE-DASC 2018, 8 p. (2018)

8. Yaker, M., et al.: Ensuring IoT security with an architecture based on a separation
kernel. In: FiCloud 2018, 8 p. (2018)

9. Bergougnoux, Q., et al.: The repository of Pip (2018). http://pip.univ-lille1.fr
10. Zhao, Y., Sanan, D., Zhang, F., Liu, Y.: High-assurance separation kernels: a survey

on formal methods. arXiv preprint arXiv:1701.01535 (2017)
11. Dam, M., Guanciale, R., Khakpour, N., Nemati, H., Schwarz, O.: Formal verifi-

cation of information flow security for a simple ARM-based separation kernel. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communica-
tions Security, CCS 2013, pp. 223–234. ACM (2013)

12. Hym, S., Oudjail, V.: The repository of Digger (2017). https://github.com/2xs/
digger

13. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
J. Autom. Reason. 43, 263–288 (2009)

14. Torrini, P., Nowak, D.: DEC 1.0 specification (2018). https://github.com/2xs/dec.
git

15. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2), 235–271 (1992)

16. Moggi, E.: Notions of computation and monads. Inf. Comput. 93, 55–92 (1991)
17. Churchill, M., Mosses, P.D., Sculthorpe, N., Torrini, P.: Reusable components of

semantic specifications. In: Chiba, S., Tanter, É., Ernst, E., Hirschfeld, R. (eds.)
Transactions on Aspect-Oriented Software Development XII. LNCS, vol. 8989, pp.
132–179. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46734-
3 4

18. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60–61, 17–139 (2004)

19. Leroy, X.: Using Coq’s evaluation mechanisms in anger (2015). http://gallium.
inria.fr/blog/coq-eval/

20. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable
refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS,
vol. 5170, pp. 167–182. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71067-7 16

21. Swierstra, W.: A Hoare logic for the state monad. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 440–451.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 30

22. Wadler, P.: Comprehending monads. Math. Struct. Comput. Sci. 2, 461–493 (1992)
23. Cherif, M.S.: Project report - modelling and verifying the Pip protokernel in a deep

embedding of C (2017). https://github.com/2xs/dec.git

http://www.cristal.univ-lille.fr/~nowakd/pipdesign.pdf
http://www.cristal.univ-lille.fr/~nowakd/pipdesign.pdf
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
http://pip.univ-lille1.fr
http://arxiv.org/abs/1701.01535
https://github.com/2xs/digger
https://github.com/2xs/digger
https://github.com/2xs/dec.git
https://github.com/2xs/dec.git
https://doi.org/10.1007/978-3-662-46734-3_4
https://doi.org/10.1007/978-3-662-46734-3_4
http://gallium.inria.fr/blog/coq-eval/
http://gallium.inria.fr/blog/coq-eval/
https://doi.org/10.1007/978-3-540-71067-7_16
https://doi.org/10.1007/978-3-540-71067-7_16
https://doi.org/10.1007/978-3-642-03359-9_30
https://github.com/2xs/dec.git

176 P. Torrini et al.

24. Gibbons, J., Wu, N.: Folding domain-specific languages: deep and shallow embed-
dings (functional pearl). In: Proceedings of the ACM SIGPLAN International Con-
ference on Functional Programming, ICFP, vol. 49 (2014)

25. Svenningsson, J., Axelsson, E.: Combining deep and shallow embedding of domain-
specific languages. Comput. Lang. Syst. Struct. 44, 143–165 (2015)

26. Jovanovic, V., Shaikhha, A., Stucki, S., Nikolaev, V., Koch, C., Odersky, M.: Yin-
yang: concealing the deep embedding of DSLs. In: Proceedings of the 2014 Interna-
tional Conference on Generative Programming: Concepts and Experiences. GPCE
2014, pp. 73–82. ACM (2014)

27. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19, 509–543
(2009)

28. Wildmoser, M., Nipkow, T.: Certifying machine code safety: shallow versus deep
embedding. In: Slind, K., Bunker, A., Gopalakrishnan, G. (eds.) TPHOLs 2004.
LNCS, vol. 3223, pp. 305–320. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30142-4 22

29. O’Connor, L., et al.: Refinement through restraint: bringing down the cost of ver-
ification. In: Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming, ICFP 2016, pp. 89–102. ACM (2016)

30. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: deductive synthesis of
abstract data types in a proof assistant. In: Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, pp. 689–700 (2015)

31. Chlipala, A.: The Bedrock structured programming system: combining generative
metaprogramming and Hoare logic in an extensible program verifier. In: Morrisett,
G., Uustalu, T. (eds.) ACM SIGPLAN International Conference on Functional
Programming, ICFP 2013, Boston, MA, USA, 25–27 September 2013, pp. 391–
402. ACM (2013). https://doi.org/10.1145/2500365.2500592

32. Vijayaraghavan, M., Chlipala, A., Arvind, Dave, N.: Modular deductive verification
of multiprocessor hardware designs. In: Kroening, D., Păsăreanu, C. (eds.) CAV
2015. LNCS, vol. 9207, pp. 109–127. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-319-21668-3 7

33. Gu, R., et al.: Deep specifications and certified abstraction layers. In: Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, pp. 595–608. ACM (2015)

https://doi.org/10.1007/978-3-540-30142-4_22
https://doi.org/10.1007/978-3-540-30142-4_22
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1007/978-3-319-21668-3_7
https://doi.org/10.1007/978-3-319-21668-3_7

A Formalization of the ABNF Notation
and a Verified Parser of ABNF Grammars

Alessandro Coglio(B)

Kestrel Institute, Palo Alto, CA, USA
coglio@kestrel.edu

http://www.kestrel.edu/~coglio

Abstract. Augmented Backus-Naur Form (ABNF) is a standardized
formal grammar notation used in several Internet syntax specifications.
This paper describes (i) a formalization of the syntax and semantics of
the ABNF notation and (ii) a verified parser that turns ABNF grammar
text into a formal representation usable in declarative specifications of
correct parsing of ABNF-specified languages. This work has been devel-
oped in the ACL2 theorem prover.

Keywords: ABNF · Parsing · Verification

1 Problem, Contribution, and Outlook

Augmented Backus-Naur Form (ABNF) is a standardized formal grammar nota-
tion [9,18] used in several Internet syntax specifications, e.g. HTTP [11], URI
[6], and JSON [8]. Since inadequate parsing may enable security exploits such
as HTTP request smuggling [19], formally verified parsers of ABNF-specified
languages are of interest. It is important to ensure that the formal specifications
against which the parsers are verified are faithful to the ABNF grammars.

The work described in this paper contributes to this goal by providing:

1. A formalization of the syntax and semantics of the ABNF notation.
2. A verified parser that turns ABNF grammar text (e.g. the grammar of HTTP)

into a formal representation usable in declarative specifications of correct
parsing (e.g. correct HTTP parsing).

This work has been developed in the ACL2 theorem prover [14]. The develop-
ment is available [24, books/kestrel/abnf], is thoroughly documented [25, abnf],
and includes examples of use of the parser on several Internet grammars such
as HTTP, URI, and JSON. It also includes a collection of operations to com-
pose ABNF grammars and to check properties of them, but this paper does not
describe these operations. Some of the excerpts of the development shown in this
paper are slightly simplified for brevity.

Future work includes the development of verified parsers for ABNF-specified
languages such as JSON and HTTP, and of a generator of verified parsers from
ABNF grammars.
c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 177–195, 2018.
https://doi.org/10.1007/978-3-030-03592-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_10

178 A. Coglio

2 Background

2.1 ABNF

ABNF adds conveniences and makes slight modifications to Backus-Naur Form
(BNF) [3], without going beyond context-free grammars.

Instead of BNF’s angle-bracket notation for nonterminals, ABNF uses case-
insensitive names consisting of letters, digits, and dashes, e.g. HTTP-message
and IPv6address. ABNF includes an angle-bracket notation for prose descrip-
tions, e.g. <host, see [RFC3986], Section 3.2.2>, usable as last resort in the
definiens of a nonterminal.

While BNF allows arbitrary terminals, ABNF uses only natural numbers as
terminals, and denotes them via: (i) binary, decimal, or hexadecimal sequences,
e.g. %b1.11.1010, %d1.3.10, and %x.1.3.a all denote the string ‘1 3 10’; (ii)
binary, decimal, or hexadecimal ranges, e.g. %x30-39 denotes any string ‘n’ with
48 ≤ n ≤ 57 (an ASCII digit); (iii) case-sensitive ASCII strings, e.g. %s"Ab"
denotes the string ‘65 98’; and (iv) case-insensitive ASCII strings, e.g. %i"ab",
or just "ab", denotes any string among ‘65 66’, ‘65 98’, ‘97 66’, and ‘97 98’.
ABNF terminals in suitable sets represent ASCII or Unicode characters.

ABNF allows repetition prefixes n*m, where n and m are natural numbers
in decimal notation; if absent, n defaults to 0, and m defaults to infinity. For
example, 1*4HEXDIG denotes one to four HEXDIGs, *3DIGIT denotes up to three
DIGITs, and 1*OCTET denotes one or more OCTETs. A single n prefix abbreviates
n*n, e.g. 3DIGIT denotes three DIGITs.

Instead of BNF’s |, ABNF uses / to separate alternatives. Repetition pre-
fixes have precedence over juxtapositions, which have precedence over /. Round
brackets group things and override the aforementioned precedence rules, e.g.
*(WSP / CRLF WSP) denotes strings obtained by repeating, zero or more times,
either (i) a WSP or (ii) a CRLF followed by a WSP. Square brackets also group things
but make them optional, e.g. [":" port] is equivalent to 0*1(":" port).

Instead of BNF’s ::=, ABNF uses = to define nonterminals, and =/ to incre-
mentally add alternatives to previously defined nonterminals. For example, the
rule BIT = "0" / "1" is equivalent to BIT = "0" followed by BIT =/ "1".

The syntax of ABNF itself is formally specified in ABNF [9, Sect. 4], after
the syntax and semantics of ABNF are informally specified in natural language
[9, Sects. 1–3]. The syntax rules of ABNF prescribe the ASCII codes allowed for
white space (spaces and horizontal tabs), line endings (carriage returns followed
by line feeds), and comments (semicolons to line endings).

2.2 ACL2

ACL2 is a general-purpose interactive theorem prover based on an untyped first-
order logic of total functions that is an extension of a purely functional subset
of Common Lisp [15]. Predicates are functions and formulas are terms; they are
false when their value is nil, and true when their value is t or anything non-nil.

ABNF Formalization and Verified Parser 179

(defun fact (n)
(if (zp n) 1 (* n (fact (- n 1)))))

(defthm above
(implies (natp n) (>= (fact n) n)))

(defchoose below (b) (n)
(and (natp b) (< b (fact n))))

(defun-sk between (n)
(exists (m)

(and (natp m) (< (below n) m) (< m (fact n)))))

Fig. 1. Some simple examples of ACL2 functions and theorems

The ACL2 syntax is consistent with Lisp. A function application is a paren-
thesized list consisting of the function’s name followed by the arguments, e.g.
x + 2 × f(y) is written (+ x (* 2 (f y))). Names of constants start and end
with *, e.g. *limit*. Comments extend from semicolons to line endings (like
ABNF, incidentally).

The user interacts with ACL2 by submitting a sequence of theorems, function
definitions, etc. ACL2 attempts to prove theorems automatically, via algorithms
similar to NQTHM [7], most notably simplification and induction. The user
guides these proof attempts mainly by (i) proving lemmas for use by specific
proof algorithms (e.g. rewrite rules for the simplifier) and (ii) supplying theorem-
specific ‘hints’ (e.g. to case-split on certain conditions).

The factorial function can be defined like fact in Fig. 1, where zp tests
if n is 0 or not a natural number. Thus fact treats arguments that are not
natural numbers as 0. ACL2 functions often handle arguments of the wrong
type by explicitly or implicitly coercing them to the right type—since the logic
is untyped, in ACL2 a ‘type’ is just any subset of the universe of values.

To preserve logical consistency, recursive function definitions must be proved
to terminate via a measure of the arguments that decreases in each recursive
call according to a well-founded relation. For fact, ACL2 automatically finds
a measure and proves that it decreases according to a standard well-founded
relation, but sometimes the user has to supply a measure.

A theorem saying that fact is above its argument can be introduced like
above in Fig. 1, where natp tests if n is a natural number. ACL2 proves this
theorem automatically (if a standard arithmetic library [24, books/arithmetic] is
loaded), finding and using an appropriate induction rule—the one derived from
the recursive definition of fact, in this case.

Besides the discouraged ability to introduce arbitrary axioms, ACL2 provides
logical-consistency-preserving mechanisms to axiomatize new functions, such as
indefinite description functions. A function constrained to be strictly below fact
can be introduced like below in Fig. 1, where b is the variable bound by the
indefinite description. This introduces the logically conservative axiom that, for
every n, (below n) is a natural number less than (fact n), if any exists—
otherwise, (below n) is unconstrained.

ACL2’s Lisp-like macro mechanism provides the ability to extend the lan-
guage with new constructs defined in terms of existing constructs. For instance,
despite the lack of built-in quantification in the logic, functions with top-level
quantifiers can be introduced. The existence of a value strictly between fact and

180 A. Coglio

below can be expressed by a predicate like between in Fig. 1, where defun-sk
is a macro defined in terms of defchoose and defun, following a well-known
construction [2].

3 ABNF Formalization

3.1 Abstract Syntax

The formalization starts by defining an abstract syntax of ABNF, based on
the ABNF rules that define the concrete syntax of ABNF.1 To ease validation
by inspection, this abstract syntax closely follows the structure of the concrete
syntax (as exemplified below) and abstracts away only essentially lexical details
(e.g. white space, comments, and defaults of repetition prefixes). ACL2’s FTY
macro library for introducing structured recursive types [23] is used to define
the abstract syntactic entities of ABNF—11 types in total.

rulelist = 1*(rule / (*c-wsp c-nl))
rule = rulename defined-as elements c-nl
defined-as = *c-wsp ("=" / "=/") *c-wsp
elements = alternation *c-wsp
alternation = concatenation *(*c-wsp "/" *c-wsp concatenation)
concatenation = repetition *(1*c-wsp repetition)
repetition = [repeat] element
element = rulename / group / option / char-val / num-val / prose-val
group = "(" *c-wsp alternation *c-wsp ")"
option = "[" *c-wsp alternation *c-wsp "]"
num-val = "%" (bin-val / dec-val / hex-val)
bin-val = "b" 1*BIT [1*("." 1*BIT) / ("-" 1*BIT)]
dec-val = "d" 1*DIGIT [1*("." 1*DIGIT) / ("-" 1*DIGIT)]
hex-val = "x" 1*HEXDIG [1*("." 1*HEXDIG) / ("-" 1*HEXDIG)]
c-wsp = WSP / (c-nl WSP)
c-nl = comment / CRLF
CRLF = CR LF ; carriage return and line feed
WSP = SP / HTAB ; space or horizontal tab

Fig. 2. Some rules of the ABNF grammar of ABNF

For example, the concrete syntax of numeric terminal notations such as
%d1.3.10 and %x30-39 is defined in ABNF by num-val in Fig. 2, where the
definitions of BIT, DIGIT, and HEXDIG are not shown but should be obvious from
the names. In ACL2, the corresponding abstract syntax is formalized by num-val
in Fig. 3, where: fty::deftagsum introduces a tagged sum type (disjoint union);
num-val is the name of the type; :direct tags direct notations such as %d1.3.10
whose only component get is a list of natural numbers (type nat-list, whose
recognizer is nat-listp) such as (1 3 10); and :range tags range notations
such as %x30-39 whose components min and max are natural numbers (type
nat, whose recognizer is natp) such as 48 and 57. This type definition intro-
duces: a recognizer num-val-p for the type; constructors num-val-direct and
num-val-range; destructors num-val-direct->get, num-val-range->min, and
1 The meta circularity of the definition of the concrete syntax of ABNF in ABNF is

broken by the human in the loop, who defines an abstract syntax of ABNF in ACL2.

ABNF Formalization and Verified Parser 181

num-val-range->max; and several theorems about these functions. Compared
to the concrete syntax rule num-val in Fig. 2, the abstract syntax type num-val
in Fig. 3 abstracts the binary, decimal, or hexadecimal notations to their natural
number values.

As another example, the concrete syntax of rule definientia is defined in
ABNF by alternation and mutually recursive companions in Fig. 2. In ACL2,
the corresponding abstract syntax is formalized by alternation and mutu-
ally recursive companions in Fig. 3, where: fty::deftypes introduces mutually
recursive types; fty::deflist introduces a type of lists over the element type
that appears after :elt-type; fty::defprod introduces a product type similar
to a fty::deftagsum summand; repeat-range is a type for repetition prefixes
such as 1* or 3*6; rulename is a type for rule names; char-val is a type for string
terminal notations such as %s"Ab"; and prose-val is a type for prose notations
such as <host, see [RFC3986], Section 3.2.2>. These type definitions intro-
duce recognizers, constructors, destructors, and theorems analogous to the ones
for num-val above. Compared to the concrete syntax rules alternation and
companions in Fig. 2, the abstract syntax types alternation and companions
in Fig. 3 abstract away comments, white space, and line endings.

As a third example, the concrete syntax of grammars (i.e. lists of rules) is
defined in ABNF by rulelist in Fig. 2. In ACL2, the corresponding abstract
syntax is formalized by rulelist in Fig. 3, where the incremental component
of rule is a boolean that says whether the rule is incremental (=/) or not (=).
Compared to the concrete syntax rules rulelist and rule, the abstract syn-
tax types rulelist and rule abstract away comments, white space, and line
endings.

The syntactic structure of ABNF grammars is more complex than the syntac-
tic structure of plain context-free grammars. ABNF rule definientia are expres-
sions built out of various terminal notations (direct and range numeric nota-
tions, etc.) and operators (alternation, concatenation, repetition, etc.), while
plain context-free rule definientia are sequences of symbols.

(fty::deftagsum num-val
(:direct ((get nat-list)))
(:range ((min nat) (max nat))))

(fty::defprod rule
((name rulename)
(incremental bool)
(definiens alternation)))

(fty::deflist rulelist
:elt-type rule)

(fty::deftypes alt/conc/rep/elem
(fty::deflist alternation :elt-type concatenation)
(fty::deflist concatenation :elt-type repetition)
(fty::defprod repetition

((range repeat-range) (element element)))
(fty::deftagsum element

(:rulename ((get rulename)))
(:group ((get alternation)))
(:option ((get alternation)))
(:char-val ((get char-val)))
(:num-val ((get num-val)))
(:prose-val ((get prose-val)))))

Fig. 3. Some excerpts of the abstract syntax of ABNF formalized in ACL2

182 A. Coglio

(fty::deftypes trees
(fty::deftagsum tree

(:leafterm ((get nat-list)))
(:leafrule ((get rulename)))
(:nonleaf ((rulename? maybe-rulename) (branches tree-list-list))))

(fty::deflist tree-list :elt-type tree)
(fty::deflist tree-list-list :elt-type tree-list))

(defun tree-match-num-val-p (tree num-val)
(and (tree-case tree :leafterm)

(let ((nats (tree-leafterm->get tree)))
(num-val-case num-val

:direct (equal nats num-val.get)
:range (and (equal (len nats) 1)

(<= num-val.min (car nats))
(<= (car nats) num-val.max))))))

(mutual-recursion
(defun tree-list-list-match-alternation-p (treess alt rules) ...)
(defun tree-list-list-match-concatenation-p (treess conc rules) ...)
(defun tree-list-match-repetition-p (trees rep rules) ...)
(defun tree-list-match-element-p (trees elem rules) ...)
(defun tree-match-element-p (tree elem rules)

(element-case elem
:rulename (tree-case tree

:leafterm nil
:leafrule (equal tree.get elem.get)
:nonleaf (and (equal tree.rulename? elem.get)

(let ((alt (lookup-rulename elem.get rules)))
(tree-list-list-match-alternation-p
tree.branches alt rules))))

:group ...
:option ...
:char-val ...
:num-val (tree-match-num-val-p tree elem.get)
:prose-val t)))

(defun parse-treep (tree string rulename rules)
(and (treep tree)

(tree-match-element-p tree (element-rulename rulename) rules)
(equal (tree->string tree) string)))

(defun-sk languagep (nats rulenames rules)
(exists (rulename tree) (and (nat-listp nats)

(in rulename rulenames)
(parse-treep tree nats rulename rules))))

Fig. 4. Some excerpts of the semantics of ABNF formalized in ACL2

tree:
x

y y y ‘1 3 10’

‘65 98’ () ()

z z ‘50’

x () x ()

‘97 66’

rules:
x = *y %d1.3.10

y = %s"Ab" / (2z / %x30-39)

z = x ["ab"]

string:

‘65 98 x 97 66 x 50 1 3 10’

Fig. 5. An example of a tree for a string, given some rules

ABNF Formalization and Verified Parser 183

(defchoose parse-http (result) (string)
(if (string-parsablep string *http-message* *http-grammar*)

(and (parse-treep result string *http-message* *http-grammar*)
(disambiguatep result))

(equal result *error*)))

Fig. 6. A sketch of a declarative specification of an HTTP parser

3.2 Semantics

An ABNF grammar describes how a sequence of natural numbers (terminals)
can be organized in tree structures according to the grammar’s rules. Thus, the
semantics of the abstract syntactic entities is formalized via matching relations
with trees. The notion of language generated by a grammar is derived from that.

Since a single terminal notation like %d1.3.10 or %s"Ab" denotes multiple
natural numbers in sequence, it is convenient to use lists (i.e. strings) of natu-
ral numbers, instead of individual natural numbers, to label leaves of trees. A
rule name (nonterminal) can label the root of a (sub)tree, with branches for
one of the concatenations of the alternation that defines the rule name. Since a
concatenation is a sequence of repetitions, and each repetition may denote mul-
tiple instances of its element, the branches are organized into a list of lists: the
outer list matches the list of repetitions that form the concatenation, and each
inner list matches the element instances of the corresponding repetition; this
organization facilitates the formulation of the matching relations (see below).
Rule names can also label leaves, to represent the tree structure of strings that
include nonterminals. Round-bracketed groups and square-bracketed options are
like anonymous rules: roots of (sub)trees that match groups and options are not
labeled by rule names, but have lists of lists of branches for concatenations from
the alternations inside the brackets, in the same way as named rules; additionally,
a square-bracketed option is allowed to have an empty list of lists of branches,
to represent the absence of the option.

Formally, (lists of (lists of)) trees are recursively defined by tree and mutu-
ally recursive companions in Fig. 4, where maybe-rulename is a type consisting
of rule names and nil—the latter is used for roots not labeled by rule names. A
function tree->string (whose definition is not shown here) collects the natural
numbers and rule names at the leaves of a tree, from left to right, into a string
(i.e. list).

Trees can be visualized as in Fig. 5. Leaves are labeled by lists of natural
numbers or rule names. Roots of (sub)trees are labeled by rule names or, for
groups and options, by () (which is another way to write nil in ACL2). Lines
with joints represent lists of lists of branches.

A tree matches a direct numeric terminal notation iff it is a leaf labeled by the
same list of natural numbers; a tree matches a range numeric terminal notation iff
it is a leaf labeled by a list of one natural number in the range. This is formalized
by tree-match-num-val-p in Fig. 4, where: (tree-case tree:leafterm) tests
if tree is tagged by :leafterm; (num-val-case num-val ...) performs a case
analysis on the tag of num-val (Fig. 3) that binds the variables with dots in

184 A. Coglio

their names to the corresponding components of the target variable num-val
(e.g. num-val.get is bound to (num-val-direct->get num-val)); len returns
the length of a list; and car returns the first value of a list.

Since an element (e.g. a numeric terminal notation) is matched by a tree, a
repetition is matched by a list of trees: the length of the list must be within the
repetition prefix’s range, and each tree of the list must match the repetition’s
element. Since a concatenation is a list of repetitions, a concatenation is matched
by a list of lists of trees: the length of the outer list must equal the length of
the concatenation, and each inner list must match the corresponding repetition.
Since an alternation denotes one of its concatenations at a time, an alternation
is matched by a list of lists of trees, which must match one of the alternation’s
concatenations. A rule name is matched by either a leaf tree labeled by the
rule name, or a non-leaf tree whose root is labeled by the rule name and whose
branches match the alternation that defines the rule name. A group is matched
by a non-leaf tree whose root is labeled by () and whose branches match the
alternation inside the group; an option is matched by either a tree in the same
way as a group, or by a non-leaf tree whose root is labeled by () and with an
empty list of lists of trees as branches.

The assertions in the previous paragraph are formalized by tree-list-
list-match-alternation-p and mutually recursive companions in Fig. 4, where:
mutual-recursion introduces mutually recursive defuns; (element-case elem
...) and (tree-case tree ...) perform case analyses on the tags of elem
(Fig. 3) and tree (Fig. 4), analogously to num-val-case as explained above; and
lookup-rulename collects, from the rules of a grammar, all the alternatives that
define a rule name. The termination of these mutually recursive functions is proved
via a lexicographic measure consisting of the size of the trees followed by the size
of the abstract syntactic entities.

A prose notation is matched by any tree, as far as the ABNF semantics
alone is concerned. Predicates on trees, external to ABNF grammars, can be
used to define the meaning of specific prose notations, and conjoined with the
tree matching predicates to specify parsing requirements.2 Some grammars use
prose notations to refer to rules from other grammars, e.g. the HTTP grammar
uses prose notations to refer to rules from the URI grammar (an example is
in Sect. 2.1): the grammar composition operations briefly mentioned in Sect. 1
replace these prose notations with the referenced rules, resulting in a combined
grammar without prose notations.

Given the rules of a grammar and a rule name, a parse tree for a string
is a tree that matches the rule name and that has the string at the leaves, as
formalized by parse-treep in Fig. 4. Given the rules of a grammar and a set
of rule names, a string of the language generated by the rules starting from the
rule names is a list of natural numbers at the leaves of some parse tree whose
root is one of the rule names, as formalized by languagep in Fig. 4, where in
tests set membership; since ABNF grammars do not have an explicit notion of

2 Future work includes exploring mechanisms to “plug” such external predicates into
the ABNF semantics.

ABNF Formalization and Verified Parser 185

start nonterminal, the start nonterminals of interest are specified by the second
argument of languagep.

The parse-treep predicate can be used to write declarative specifications of
correct parsing of ABNF-specified languages. For instance, a (non-executable)
HTTP parser can be specified by something like parse-http in Fig. 6, where:
http-grammar is a constant of type rulelist (Fig. 3) representing the rules of
the ABNF grammar of HTTP; *http-message* is a constant of type rulename
(Fig. 3) representing the top-level rule name HTTP-message; string-parsablep
holds iff there exists a parse tree for the string; the predicate disambiguatep
states disambiguating restrictions (since the grammar of HTTP is ambiguous);
and *error* is a constant representing an error, distinct from trees. The function
parse-http returns concrete syntax trees, because grammars do not specify
abstract syntax; a practical HTTP parser can be specified as the composition of
parse-http followed by a suitable HTTP syntax abstraction function (analogous
to the ABNF syntax abstraction functions described in Sect. 3.3).

The semantics of ABNF grammars is more complex than the semantics of
plain context-free grammars. ABNF parse trees have branches organized as lists
of lists and have roots of non-leaf trees possibly labeled by (), while parse trees
of plain context-free grammars have branches organized as lists and have roots
of non-leaf trees always labeled by nonterminals. Accordingly, the ABNF tree
matching relations are more complex than the tree matching relations of plain
context-free grammars.

3.3 Concrete Syntax

The concrete syntax of ABNF is formalized in ACL2 using the rules of the ABNF
grammar of ABNF, but “written in abstract syntax” because the concrete syntax
is not available before it is formalized. This safely captures the meta circularity.

(def-rule-const *group*
(/_ "(" (*_ *c-wsp*) *alternation* (*_ *c-wsp*) ")"))

(def-rule-const *num-val*
(/_ "%" (!_ (/_ *bin-val*) (/_ *dec-val*) (/_ *hex-val*))))

Fig. 7. Some excerpts of the concrete syntax of ABNF formalized in ACL2

Since the FTY constructors of the abstract syntax are verbose, some specially
crafted and named functions and macros are defined, and used to write abstract
syntactic entities in a way that looks more like concrete syntax, easing not only
their writing, but also their validation by inspection. For example, the rules
group and num-val (Fig. 2) are written in abstract syntax as shown in Fig. 7.

After transcribing the 40 rules of the ABNF grammar of ABNF to this form,
a constant *abnf-grammar* consisting of their list is defined. Since grammars,
i.e. values of type rulelist (Fig. 3), are endowed with semantics (Sect. 3.2), this
constant provides a formalization of the concrete syntax of ABNF in ACL2.

186 A. Coglio

The link between the concrete and abstract syntax of ABNF is formalized
by 51 executable ACL2 functions that map parse trees to their correspond-
ing abstract syntactic entities: these are abstraction functions, which distill
the abstract syntactic information from the concrete syntactic information. For
example, a function abstract-num-val (whose definition is not shown here)
maps a tree that matches the rule name num-val (Fig. 2) to a value of type
num-val (Fig. 3). This function calls other abstraction functions on its subtrees,
e.g. a function abstract-*bit (whose definition is not shown here) that maps a
list of trees that matches *BIT to the big endian value of their bits. The top-level
abstraction function abstract-rulelist (whose definition is not shown here)
maps a tree that matches the rule name rulelist (Fig. 2) to the corresponding
value of type rulelist (Fig. 3)—a grammar.

4 ABNF Grammar Parser

When specifying correct parsing of an ABNF-specified language as sketched in
Fig. 6, a constant like *http-grammar* can be built by manually transcribing
the grammar, as done for *abnf-grammar* (Sect. 3.3). A better alternative is
to perform this transcription automatically, by running (i) the grammar parser
described in the rest of this section, which produces a parse tree that matches
rulelist, followed by (ii) abstract-rulelist (Sect. 3.3) on the resulting parse
tree.

Since the grammar parser is verified as described below, and this auto-
matic transcription process operates on the actual grammar text (e.g. copied
and pasted from an Internet standard document), the resulting formal parsing
specification is faithful to the grammar.

Running this process on the ABNF grammar of ABNF produces the same
value as the manually built *abnf-grammar*. This provides a validation.

4.1 Implementation

The ABNF grammar of ABNF is ambiguous, as shown by the two different parse
trees for the same string (of nonterminals, for brevity) in Fig. 8: the first c-nl can
either end a rule (lower tree) or form, with the WSP, a c-wsp under elements
(upper tree). The ambiguity only affects where certain comments, white space,
and line endings go in the parse trees; it does not affect the abstract syntax,
and thus the semantics, of ABNF. The parser resolves the ambiguity by always
parsing as many consecutive c-wsps as possible, as in the upper tree in Fig. 8.3

Aside from this ambiguity, the ABNF grammar of ABNF is mostly LL(1),
with some LL(2) and LL(∗) parts [1,21]. The parser is implemented as a recursive
descent with backtracking. Backtracking is expected to be limited in reasonable
grammars. Indeed, the parser runs very quickly on all the example grammars

3 Future work includes exploring the formulation of an unambiguous ABNF grammar
of ABNF that provably defines the same language as the current ambiguous one.

ABNF Formalization and Verified Parser 187

rulename defined-as alternation c-nl WSP c-nl

()

c-wsp

elements

rule

()

rulelist

c-wsp

()

elements

rule

()()

rulelist

string:

upper tree:

lower tree:

Fig. 8. An example showing the ambiguity of the ABNF grammar of ABNF

included in the development—fractions of a second, including file reading, which
is adequate for the expected use of the parser outlined above.

The parser consists of 85 executable ACL2 functions. There is a parsing func-
tion for each rule, and parsing functions for certain groups, options, repetitions,
and terminal notations. ACL2’s Seq macro library for stream processing [25, seq]
is used to define these functions in a more readable way. Each function takes a
list of natural numbers to parse as input, and, consistently with Seq, returns (i)
an indication of success (nil, i.e. no error) or failure (an error message, which
is never nil), (ii) a (list of) parse tree(s) if successful, and (iii) the remaining
natural numbers in the input.

For example, the parsing function for CRLF (Fig. 2) is parse-crlf in Fig. 9,
where: first parse-cr parses a carriage return, yielding a CR parse tree that is
assigned to tree-cr; then parse-lf parses a line feed, yielding an LF parse tree
that is assigned to tree-lf; and finally return returns (i) nil (success), (ii) a
CRLF parse tree with the two subtrees, and (iii) the remaining input after the
carriage return and line feed. If parse-cr or parse-lf fails, parse-crlf fails.
The threading of the input and the propagation of the failures is handled by the
seq macro behind the scenes.

As another example, the parsing function for WSP (Fig. 2) is parse-wsp in
Fig. 9, where: parse-sp attempts to parse a space, returning a WSP parse tree
with a SP subtree if successful; otherwise parse-htab attempts to parse a hori-
zontal tab, returning a WSP parse tree with a HTAB subtree if successful. If both
parse-sp and parse-htab fail, parse-wsp fails. The backtracking is handled by
the seq-backtrack macro behind the scenes.

188 A. Coglio

As a third example, the parsing function for *BIT is parse-*bit in Fig. 9,
which uses parse-bit to parse as many bits as possible, eventually returning
the corresponding list of BIT parse trees; cons adds an element to the front of a
list. The termination of parse-*bit is proved by the decrease of the length of
the input. This function never fails: when no bits can be parsed, the empty list
nil of parse trees is returned.

The parsing functions for alternation and mutually recursive companions
(Fig. 2) are mutually recursive (their definitions are not shown here). Their ter-
mination is proved via a lexicographic measure consisting of the size of the input
followed by a linear ordering of these functions—the length of the input alone is
insufficient to prove termination, because some (e.g. parse-alternation) call
others (e.g. parse-concatenation) on the same input.

The top-level parsing function is parse-grammar in Fig. 9, where b* binds
the results of parse-rulelist to the three variables in the triple (mv ...). The
function checks that there is no remaining input, returning just the parse tree if
successful (or nil, i.e. no parse tree, if a failure occurs). There is also a wrapper
function parse-grammar-from-file (whose definition is not shown here) that
takes a file name as input and calls parse-grammar on the file’s content.

(defun parse-crlf (input)
(seq input

(tree-cr := (parse-cr input))
(tree-lf := (parse-lf input))
(return (tree-nonleaf *crlf* (list (list tree-cr) (list tree-lf))))))

(defun parse-wsp (input)
(seq-backtrack input

((tree := (parse-sp input))
(return (tree-nonleaf *wsp* (list (list tree)))))

((tree := (parse-htab input))
(return (tree-nonleaf *wsp* (list (list tree)))))))

(defun parse-*bit (input)
(seq-backtrack input

((tree := (parse-bit input))
(trees := (parse-*bit input))
(return (cons tree trees)))

((return nil))))

(defun parse-grammar (input)
(b* (((mv error? tree? rest) (parse-rulelist input)))

(cond (error? nil) (rest nil) (t tree?))))

Fig. 9. Some excerpts of the ABNF grammar parser in ACL2

4.2 Verification

The correctness of the parser consists of:

– Soundness: the parser recognizes only ABNF grammars.
– Completeness: the parser recognizes all ABNF grammars (almost; see below).

ABNF Formalization and Verified Parser 189

(defthm parse-treep-of-parse-grammar
(implies (and (nat-listp input)

(parse-grammar input))
(parse-treep (parse-grammar input) input *rulelist* *abnf-grammar*)))

(defthm input-decomposition-of-parse-crlf
(implies (and (nat-listp input)

(not (mv-nth 0 (parse-crlf input))))
(equal (append (tree->string (mv-nth 1 (parse-crlf input)))

(mv-nth 2 (parse-crlf input)))
input)))

(defthm tree-match-of-parse-crlf
(implies (and (nat-listp input)

(not (mv-nth 0 (parse-crlf input))))
(tree-match-element-p (mv-nth 1 (parse-crlf input))

(element-rulename *crlf*)
abnf-grammar)))

Fig. 10. Some excerpts of the ABNF grammar parser soundness proof in ACL2

(defthm parse-grammar-when-tree-match
(implies (and (treep tree)

(tree-match-element-p tree (element-rulename *rulelist*) *abnf-grammar*)
(tree-terminatedp tree)
(tree-rulelist-restriction-p tree))

(equal (parse-grammar (tree->string tree)) tree)))

(defthm parse-wsp-when-tree-match
(implies (and (treep tree)

(nat-listp rest-input)
(tree-match-element-p tree (element-rulename *wsp*) *abnf-grammar*)
(tree-terminatedp tree))

(equal (parse-wsp (append (tree->string tree) rest-input))
(mv nil tree rest-input))))

(defthm parse-*bit-when-tree-list-match
(implies (and (tree-listp trees)

(nat-listp rest-input)
(tree-list-match-repetition-p trees (*_ *bit*) *abnf-grammar*)
(tree-list-terminatedp trees)
(mv-nth 0 (parse-bit rest-input)))

(equal (parse-*bit (append (tree-list->string trees) rest-input))
(mv nil trees rest-input))))

(defthm fail-sp-when-match-htab
(implies (and (tree-match-element-p tree (element-rulename *htab*) *abnf-grammar*)

(tree-terminatedp tree))
(mv-nth 0 (parse-sp (append (tree->string tree) rest-input)))))

(defthm constraints-from-parse-sp
(implies (not (mv-nth 0 (parse-sp input)))

(equal (car input) 32)))

(defthm constraints-from-tree-match-htab
(implies (and (tree-match-element-p tree (element-rulename *htab*) *abnf-grammar*)

(tree-terminatedp tree))
(equal (car (tree->string tree)) 9)))

(defun-sk pred-alternation (input)
(forall (tree rest-input)

(implies (and (treep tree)
(nat-listp rest-input)
(tree-match-element-p tree (element-rulename *alternation*) *abnf-grammar*)
(tree-terminatedp tree)
... ; 8 parsing failure hypotheses on rest-input
(equal input (append (tree->string tree) rest-input)))

(equal (parse-alternation (append (tree->string tree) rest-input))
(mv nil tree rest-input)))))

(defthm parse-alternation-when-tree-match-lemma
(pred-alternation input))

Fig. 11. Some excerpts of the ABNF grammar parser completeness proof in ACL2

190 A. Coglio

More precisely, the parser not only recognizes ABNF grammars, but also returns
the corresponding parse trees, as elaborated below.

The main soundness theorem is parse-treep-of-parse-grammar in Fig. 10,
where *rulelist* represents the rule name rulelist (Fig. 2). Semi-formally,
the theorem says:

input is a list of natural numbers ∧
(parse-grammar input) �= nil =⇒
(parse-grammar input) is a parse tree

with rulelist at the root and input at the leaves
That is, if parse-grammar (Fig. 9) succeeds, it returns a parse tree that organizes
the input into the tree structure of a grammar (i.e. a list of rules).

This main soundness theorem is proved via two theorems for each of the
parsing functions that return triples:

– Input decomposition: if the function succeeds, the string at the leaves of the
returned parse tree(s) consists of the natural numbers parsed from the input,
and the function also returns the remaining natural numbers in the input.

– Tree matching: if the function succeeds, the returned parse tree/trees is/are
consistent with the syntactic entity that the function is intended to parse.

For example, the input decomposition theorem of parse-crlf (Fig. 9) is
input-decomposition-of-parse-crlf in Fig. 10, where mv-nth extracts the
components (zero-indexed) of the triple returned by parse-crlf. The theorem
says that if parse-crlf succeeds (i.e. its first result is nil, not an error), joining
the string at the leaves of the returned tree with the returned remaining input
yields the original input.

Each input decomposition theorem is proved by expanding the parsing func-
tion and using the input decomposition theorems of the called parsing func-
tions as rewrite rules. For instance, in input-decomposition-of-parse-crlf
(Fig. 10), expanding parse-crlf turns the (append ...) into one involving
parse-cr and parse-lf, making their input decomposition theorems applica-
ble.

As another example, the tree matching theorem of parse-crlf (Fig. 9) is
tree-match-of-parse-crlf in Fig. 10. The theorem says that if parse-crlf
succeeds (formulated in the same way as in the input decomposition theorem),
the returned parse tree matches CRLF—which parse-crlf is intended to parse.

Each tree matching theorem is proved by expanding the parsing function and
the tree matching predicate, and using the tree matching theorems of the called
functions as rewrite rules. For instance, in the tree-match-of-parse-crlf,
expanding parse-crlf and tree-match-element-p turns the conclusion into
the assertion that the subtrees match CR and LF when parse-cr and parse-lf
succeed, making their tree matching theorems applicable.

The input decomposition and tree matching theorems of the recursive parsing
functions (e.g. parse-*bit in Fig. 9) are proved by induction on their recursive
definitions.

The main soundness theorem, parse-treep-of-parse-grammar (Fig. 10),
is proved from the input decomposition and tree matching theorems of

ABNF Formalization and Verified Parser 191

parse-rulelist, and the fact that parse-grammar fails if there is remaining
input.

Since the ABNF grammar of ABNF is ambiguous (Fig. 8) but the parser
returns a single parse tree at a time, completeness is not provable. But it is
provable relatively to trees consistent with how the parser resolves the ambi-
guity. A predicate tree-rulelist-restriction-p formalizes these restrictions
on trees: each (*c-wsp c-nl) subtree, except the one (if any) that starts a
rulelist, must not start with WSP.

The main completeness theorem is parse-grammar-when-tree-match in
Fig. 11, where tree-terminatedp tests if a tree is terminated, i.e. if the string
at its leaves has only natural numbers and no rule names. Semi-formally, the
theorem says:

tree is a tree ∧
tree matches rulelist ∧
tree has no rule names at the leaves ∧
tree satisfies the disambiguating restrictions =⇒
(parse-grammar (tree->string tree)) = tree

That is, if a terminated tree matches a rulelist (i.e. it is a concrete syntactic
representation of a grammar) and is consistent with how the parser resolves the
ambiguity, parse-grammar succeeds on the string at the leaves of the tree and
returns the tree.

This main completeness theorem is proved via an auxiliary completeness
theorem for each of the parsing functions that return triples. The formulation
of these auxiliary theorems is analogous to the main one, but with additional
complexities: in the conclusions, the parsing functions are applied to the string
at the leaves of the tree(s) joined with some remaining input; this makes these
theorems usable as rewrite rules, and enables the addition of certain critical
hypotheses to these theorems.

For example, the completeness theorem of parse-wsp (Fig. 9) is
parse-wsp-when-tree-match in Fig. 11. As another example, the complete-
ness theorem of parse-*bit (Fig. 9) is parse-*bit-when-tree-list-match in
Fig. 11. The hypothesis that parse-bit fails on rest-input is critical: without
it, parse-*bit might parse another bit from rest-input, and return a longer
list of trees than trees.

Each auxiliary completeness theorem is proved by expanding the parsing
function and the tree matching predicate, using the completeness theorems of
the called functions as rewrite rules, and also using, as needed, certain disam-
biguation theorems.

The need and nature of these disambiguation theorems, in simple form, are
illustrated by considering the proof of the completeness theorem of parse-wsp.
The hypothesis that tree matches WSP expands to two cases:

1. The subtree matches the SP alternative of WSP. In this case, the completeness
theorem of parse-sp applies, parse-sp succeeds returning the subtree, and
parse-wsp succeeds returning tree.

192 A. Coglio

2. The subtree matches the HTAB alternative of WSP. For the completeness the-
orem of parse-htab to apply, parse-sp must be shown to fail so that
parse-wsp reduces to parse-htab and the proof proceeds as in the SP case.4

The theorem saying that parse-sp fails on the string at the leaves of a termi-
nated tree matching HTAB is fail-sp-when-match-htab in Fig. 11. This theorem
is proved via two theorems saying that parse-sp and HTAB induce incompati-
ble constraints on the same value at the start of the input: the two theorems
are constraints-from-parse-sp and constraints-from-tree-match-htab in
Fig. 11. The incompatible constraints are that parse-sp requires the ASCII code
32, while HTAB requires the ASCII code 9.

There are 26 parsing constraint theorems similar to the one for parse-sp,
and 49 tree matching constraint theorems similar to the one for HTAB. There
are 87 disambiguation theorems similar to fail-sp-when-match-htab (Fig. 11):
they say that certain parsing functions fail when trees match certain syntactic
entities, effectively showing that the parser can disambiguate all the alterna-
tives in the ABNF grammar of ABNF, including deciding when to stop parsing
unbounded repetitions. The disambiguation theorems are used to prove not only
some completeness theorems, but also other disambiguation theorems. Some dis-
ambiguation theorems critically include parsing failure hypotheses similarly to
the completeness theorem of parse-*bit (Fig. 11). Many disambiguation theo-
rems show incompatible constraints just on the first one or two natural numbers
in the input, corresponding to LL(1) and LL(2) parts of the grammar. But for
LL(∗) parts of the grammar, the disambiguation theorems show incompatible
constraints on natural numbers that follow unbounded prefixes of the input; to
“go past” these prefixes in the proofs of these disambiguation theorems, certain
completeness theorems are used in turn.

Since the auxiliary completeness theorems call the parsing functions not on
variables but on (append ...) terms, induction on the recursive parsing func-
tions is not readily applicable [7, Chap. 15]. For the singly recursive functions
like parse-*bit, induction on the list of trees is used. For the mutually recur-
sive functions like parse-alternation, an analogous induction on the (lists
of (lists of)) trees seems unwieldy due to the number (10) of mutually recur-
sive parsing functions. Instead, the desired completeness assertions are packaged
into predicates like pred-alternation in Fig. 11, where the tree and remain-
ing input are universally quantified and a new variable input is equated to
the argument of the parsing function. Given these predicates, theorems like
parse-alternation-when-tree-match-lemma in Fig. 11 are proved by induc-
tion on the recursive parsing functions (now applicable to the variable input),
from which the desired completeness theorems readily follow.

The main completeness theorem, parse-grammar-when-tree-match
(Fig. 11), is proved from the auxiliary completeness theorem of parse-rulelist
and the fact that the absence of remaining input fulfills the parsing failure
hypotheses on the remaining input.
4 Even though the roles of SP and HTAB are “symmetric” in the rule WSP in Fig. 2, the

function parse-wsp in Fig. 9 “asymmetrically” tries to parse SP before HTAB.

ABNF Formalization and Verified Parser 193

All the theorems and proofs overviewed in this subsection are discussed in
much greater detail in the documentation of the development [25, abnf]. Even the
short overview above should convey that the completeness proof is considerably
more laborious than the soundness proof, perhaps because the completeness
proof must show that the parser can reconstruct any parse tree from its string
at the leaves, while the soundness proof must show that the parser can just
construct one appropriate parse tree when it succeeds.

5 Related Work

The author is not aware of other formalizations of the ABNF notation. There are
formalizations of regular expressions [10], plain context-free grammars [4], and
parsing expression grammars [16]. As explained at the end of Sects. 3.1 and 3.2,
the syntax and semantics of ABNF are more complex than those of plain context-
free grammars (and of regular expressions). The syntax of parsing expression
grammars has some similarities with ABNF, but their semantics is operational,
in terms of parsing steps, in contrast with ABNF’s tree matching semantics. The
referenced works formalize abstract syntax of the grammar notations, but not
concrete syntax; in contrast, the work described in this paper formalizes both
abstract and concrete syntax of ABNF, using the former to define the latter
as faithfully to the meta circularity [9,18] as allowed by the theorem prover’s
define-before-use constraints, and validating the definition via the verified ABNF
grammar parser as mentioned just before Sect. 4.1.

The author is not aware of other verified parsers of ABNF grammars. There
are verified parsers of other languages [17,27]. Due to ABNF’s role in Internet
syntax specifications, a verified parser of ABNF grammars has a practical signifi-
cance. There are verified generators of parsers, generators of verified parsers, ver-
ified parser interpreters, and verified parser validators [5,12,13,16,20,22]. Since
they are based on different grammar notations from ABNF, using these tools for
the verified parsing of ABNF grammars would require a trusted translation from
the ABNF grammar of ABNF to the tools’ grammar notations; in contrast, the
verification of the parser described in this paper is based directly on the formal-
ized ABNF notation. APG [26] is an ABNF parser generator, but it does not
include or generate formal proofs.

Acknowledgements. This work was supported by DARPA under Contract No.
FA8750-15-C-0007.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Pearson, London (2007)

2. Avigad, J., Zach, R.: The epsilon calculus. In: Zalta, E.N. (ed.) The Stanford Ency-
clopedia of Philosophy, summer 2016 edn. Metaphysics Research Lab, Stanford
University (2016). https://plato.stanford.edu/archives/sum2016/entries/epsilon-
calculus/

https://plato.stanford.edu/archives/sum2016/entries/epsilon-calculus/
https://plato.stanford.edu/archives/sum2016/entries/epsilon-calculus/

194 A. Coglio

3. Backus, J.W., et al.: Report on the algorithmic language ALGOL 60. Commun.
ACM 3(5), 299–314 (1960)

4. Barthwal, A.: A formalisation of the theory of context-free languages in higher-
order logic. Ph.D. thesis. The Australian National University (2010)

5. Barthwal, A., Norrish, M.: Verified, executable parsing. In: Castagna, G. (ed.)
ESOP 2009. LNCS, vol. 5502, pp. 160–174. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00590-9 12

6. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI):
Generic syntax. Request for Comments (RFC) 3986, January 2005

7. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, Cambridge
(1979)

8. Bray, T.: The JavaScript Object Notation (JSON) data interchange format.
Request for Comments (RFC) 7159, March 2014

9. Crocker, D., Overell, P.: Augmented BNF for syntax specifications: ABNF. Request
for Comments (RFC) 5234, January 2008

10. Doczkal, C., Kaiser, J.-O., Smolka, G.: A constructive theory of regular languages
in Coq. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 82–97.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1 6

11. Fielding, R., Reschke, J.: Hypertext Transfer Protocol (HTTP/1.1): Message syn-
tax and routing. Request for Comments (RFC) 7230, June 2014

12. Gross, J.S.: An extensible framework for synthesizing efficient, verified parsers.
Master’s thesis. Massachusetts Institute of Technology (2015)

13. Jourdan, J.-H., Pottier, F., Leroy, X.: Validating LR(1) parsers. In: Seidl, H. (ed.)
ESOP 2012. LNCS, vol. 7211, pp. 397–416. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28869-2 20

14. Kaufmann, M., Moore, J.S.: The ACL2 theorem prover: Web page. http://www.
cs.utexas.edu/users/moore/acl2

15. Kaufmann, M., Moore, J.S.: A precise description of the ACL2 logic. Technical
report. Department of Computer Sciences, University of Texas at Austin (1998)

16. Koprowski, A., Binsztok, H.: TRX: a formally verified parser interpreter. Log.
Methods Comput. Sci. 7(2), 1–26 (2011)

17. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Proceedings of 41st ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL, pp. 179–191 (2014)

18. Kyzivat, P.: Case-sensitive string support in ABNF. Request for Comments (RFC)
7405, December 2014

19. Linhart, C., Klein, A., Heled, R., Orrin, S.: HTTP request smuggling. White paper,
Watchfire (2005)

20. Nipkow, T.: Verified lexical analysis. In: Proceedings of 11th International Confer-
ence on Theorem Proving in Higher-Order Logics, TPHOL, pp. 1–15 (1998)

21. Parr, T., Fisher, K.: LL(*): the foundation of the ANTLR parser generator. In: Pro-
ceedings of 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI, pp. 425–436 (2011)

22. Ridge, T.: Simple, efficient, sound and complete combinator parsing for all context-
free grammars, using an Oracle. In: Combemale, B., Pearce, D.J., Barais, O.,
Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 261–281. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11245-9 15

23. Swords, S., Davis, J.: Fix your types. In: Proceedings of 13th International Work-
shop on the ACL2 Theorem Prover and Its Applications (2015)

24. The ACL2 Community: The ACL2 theorem prover and community books: Source
code. http://github.com/acl2/acl2

https://doi.org/10.1007/978-3-642-00590-9_12
https://doi.org/10.1007/978-3-642-00590-9_12
https://doi.org/10.1007/978-3-319-03545-1_6
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1007/978-3-642-28869-2_20
http://www.cs.utexas.edu/users/moore/acl2
http://www.cs.utexas.edu/users/moore/acl2
https://doi.org/10.1007/978-3-319-11245-9_15
http://github.com/acl2/acl2

ABNF Formalization and Verified Parser 195

25. The ACL2 Community: The ACL2 theorem prover and community books: User
manual. http://www.cs.utexas.edu/∼moore/acl2/manuals/current/manual

26. Thomas, L.D.: APG: ABNF Parser Generator. http://www.coasttocoastresearch.
com

27. Wisnesky, R., Malecha, G., Morrisett, G.: Certified web services in Ynot. In: Pro-
ceedings of 5th International Workshop on Automated Specification and Verifica-
tion of Web Systems, WWV, pp. 5–19 (2009)

http://www.cs.utexas.edu/~moore/acl2/manuals/current/manual
http://www.coasttocoastresearch.com
http://www.coasttocoastresearch.com

Constructing Independently Verifiable
Privacy-Compliant Type Systems

for Message Passing Between Black-Box
Components

Robin Adams1(B) and Sibylle Schupp2

1 Chalmers University of Technology, Gothenburg, Sweden
robinad@chalmers.se

2 Technische Universität Hamburg, Hamburg, Germany
sibylle.schupp@tuhh.de

Abstract. Privacy by design (PbD) is the principle that privacy should
be considered at every stage of the software engineering process. It is
increasingly both viewed as best practice and required by law. It is
therefore desirable to have formal methods that provide guarantees that
certain privacy-relevant properties hold. We propose an approach that
can be used to design a privacy-compliant architecture without needing
to know the source code or internal structure of any individual compo-
nent. We model an architecture as a set of agents or components that
pass messages to each other. We present in this paper algorithms that
take as input an architecture and a set of privacy constraints, and out-
put an extension of the original architecture that satisfies the privacy
constraints.

1 Introduction

Privacy by Design is the principle that privacy should be a consideration at every
stage of the software design process [8]. It is increasingly seen as best practice for
privacy protection, including by the International Conference of Data Protection
and Privacy Commissioners [9] and the US Federal Trade Commission [14], and
is a legal requirement in the EU since the General Data Protection Regulation
(GDPR) came into force on 25 May 2018 [13].

It is therefore desirable to create methods that will provide a guarantee that
software satisfies certain privacy-relevant properties. To this end, a substan-
tial amount of research (both formal methods and other approaches) has been
devoted to this problem, including static analysis of source code (e.g. [11,15]);
real-time “taint tracking” of the data released by apps on a mobile device
(e.g. [12,19]); refinement techniques that preserve privacy properties as we refine
in stages from a high-level design to code (e.g. [1,10]); or the creation of new pro-
gramming languages which include representations of privacy-relevant properties
in types or annotations (e.g. [16,18]).

c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 196–214, 2018.
https://doi.org/10.1007/978-3-030-03592-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_11

Constructing Independently Verifiable Privacy-Compliant Type Systems 197

We can thus design a privacy-safe application, or verify that a given appli-
cation is privacy-safe, provided we can access and/or change its source code.
However, in practice, many systems involve the interaction of different compo-
nents, each controlled by a different person or organisation. The source code
might not be available, or it might not be possible for us to change it. New
versions of each component may come out regularly, so that a privacy analysis
we did using an old component quickly becomes obsolete.

In this paper, we will show how we can design a type system for the messages
that the components pass to each other, in such a way that we can formally
prove that, if every message passed is typable under this typing system, then
the privacy property must hold. We indicate how an existing unsafe component
can be adapted into a component that uses this typing system by providing each
component with an interface through which all messages must pass, without
needing to read or modify the component’s source code.

The structure of the paper is as follows. In Sect. 2, we give a relatively simple
but realistic example of privacy constraints that we may wish to hold, and show
the architecture that our algorithms generate. In Sect. 3, we provide the formal
definition of architecture that we use. In Sect. 4, we define the algorithm for
a simple constraint language and prove it correct. In Sect. 5, we do the same
development again for a stronger language of constraints, of the form α � A ⇒
β � B (‘if α possesses a term of type A then β must previously have possessed a
term of type B’). Finally we survey some related work in Sect. 6, and conclude
in Sect. 7.

2 Motivating Example

We now give an example of realistic privacy constraints that we might wish
to introduce, and the architectures that are produced by our algorithms. The
example is similar to an example considered by Barth et al. [4].

The US Children’s Online Privacy Protection Act (COPPA) includes the
clause:

When a child sends protected information to the website, a parent must
have previously received a privacy notice from the web site operator, [and]
granted consent to the web site operator.

We propose to model a system as being composed of agents or components
who pass messages to each other. The possible messages are provided by a type
system, which consists of a set of types and a set of constructors. These two sets
determine the set of terms, each of which has a type. We write t : A to denote
that the term t has type A.

A message is a triple (α, t, β), where α and β are agents and t is a term; this
represents the agent α sending the piece of data t to β. If t : A, then we write
this message as α

t→ β or α
t:A→ β.

For the COPPA example, Fig. 1 suggests an architecture with three agents,
Child, Website, and Parent. In the initial state, Child possesses a term info:

198 R. Adams and S. Schupp

INFO, Website possesses policy: POLICY, and Child may send messages of
type INFO to Website, etc. This represents a website which can send its privacy
policy to the parent; the parent may send consent for the website to collect the
child’s protected info; and the child may send their protected info to the website.
However, at the moment, there is nothing to prevent the protected info being
sent to the website without either policy or consent having been sent.

Formally, an architecture is described by specifying the following (see Defi-
nition 2):

– for any agent α, which constructors an agent possesses in the initial state;
– for any two agents α, β, the set of types A such that α may pass a message

of type A to β.

If A is a type, we shall sometimes say ‘α can send A to β’ to mean ‘α may send
messages of type A to β’.

We envision the designer beginning with a set Ag of agents and a type system
T which describes the pieces of data they are interested in. They write down
the set C of privacy constraints that they wish the finished system to have. For
now, we consider constraints of these two forms (see Definitions 4 and 6):

– α � A ⇒ B: If agent α has a piece of data of type A, then a piece of data of
type B must have previously been created.

– α � A ⇒ β � B: If agent α has a piece of data of type A, then agent β must
previously have had a piece of data of type B.

The privacy constraints that we require for the architecture in Fig. 1 include

Website � INFO ⇒ Website � CONSENT

Website � CONSENT ⇒ Parent � POLICY

The first constraint specifies that agent Website possesses INFO only if it
previously has received data of type CONSENT. The second constraint specifies
that agent Website possesses CONSENT only if the Parent agent has received
the POLICY before. (We will add a third constraint later, in Sect. 5.1.)

Fig. 1. An architecture that allows privacy breach

Given privacy constraints, we show how to extend T to a type system TC.
The type system TC includes a set of new types Cα(A). A term of type Cα(A)
is called a certified term. As well as the plain INFO type, for example, the safe
architecture contains the type CWebsite(INFO). A term of this type represents
a piece of data from which Website can extract a term of type INFO, but no

Constructing Independently Verifiable Privacy-Compliant Type Systems 199

other agent can.1 There are no restrictions on which agents may receive them
or send certified terms.

The type system TC also has types Pα(A), and constructors pα that construct
terms of type Pα(A). We may think of a term of type Pα(A) as a proof that α
possesses a term of type A.

The architecture created by our Algorithm2 is shown in Fig. 2. (For space
reasons, we have listed only some of the constructors and messages, and omit-
ted the subscripts on the types Cα(A) and Pα(A).) The algorithm creates new
components IWebsite, the input interface to Website, and OWebsite, the output
interface for Website; and similarly input and output interfaces for Parent and
Child .

The constructor pPOLICY takes a term of type POLICY and constructs a
term of type PParent(POLICY)—a proof that Parent has received a term of
type POLICY . The constructor mCONSENT constructs a certified term of type
CWebsite(CONSENT) out of a term of type CONSENT , plus the proof that
the preconditions for Website to be allowed to read a term of type CONSENT ,
namely a term of type PParent(POLICY). The constructor πCONSENT then
extracts the term of type CONSENT from the certified term. Similar comments
hold for mPOLICY and πPOLICY , and the other new constructors in Fig. 2.

It can be seen that, while Child may send INFO to OChild at any time, the
only way for the data to travel any further is for a term of type CWebsite(INFO)
to be created; this can only happen if a term of type PWebsite(CONSENT)
has been created; this can only happen if a term of type CONSENT reaches
OWebsite; and this can only happen if Website has a term of type CONSENT .
Similar considerations hold for our other negative constraint.

Fig. 2. A privacy-safe architecture

We can partition the agents in Fig. 2 into three sets: {Child, IChild,
OChild}, {Website, IWebsite,OWebsite}, {Parent, IParent,OParent}. Each
set thus consists of one of the agents from Fig. 1, plus its two new interfaces.
Note that, if an agent from one set passes a message to an agent in another set,
1 In practice, this would presumably be achieved by encryption, but we abstract from

these implementation details here. See Sect. 2.1 for more discussion.

200 R. Adams and S. Schupp

then that message has type Cα(A) or Pα(A) for some α, A. In the rest of this
paper, we will prove two results (Theorems 1 and 2) that give general conditions
such that, if an architecture can be partitioned in a way that satisfies these
conditions, then a given set of privacy constraints are satisfied.

2.1 Note on Implementation

In practice, certification on the one hand, access on the other hand, could be
implemented through encryption and decryption. But, other mechanisms possi-
bly exist as well. The type systems we present in this paper abstract from these
details. They specify which agents may and may not access which data, without
specifying how this is to be done.

The terms of type Pα(A) should, in practice, ideally be an appropriate zero-
knowledge proof which guarantees that α possesses a term of type A, without
revealing the value of the term of type A. Again, in this paper we abstract from
the details of how this would be implemented.

However, we expect it to be possible to implement these types in such a way
that the designer could publish both the set of constraints C and the type system
TC, and an independent third party (the user, a regulatory authority, or anyone
else) to verify both that our algorithm maps C to TC, and that any given message
is typable under TC. This would greatly increase the trust that all parties can
have that the global privacy policies C hold true.

We also note that, if there are large numbers of agents in our system, we
will need a large number of types. In our motivating example, if we have many
children and many parents, then we will need types CCHILD1(CONSENT),
CCHILD2(CONSENT), etc. and a way to ensure that παA accepts terms of
type Cα′(A) only if α = α′, requiring the use of dependent types. For now, this
is left as work for the future.

3 Architectures

We now describe the language we use for specifying architectures. This system
was inspired by work by le Métayer et al. [3] and Barth et al. [4].

An architecture consists of agents who pass messages to each other. Each
message is a term that can be typed in a type system.

Definition 1 (Type System). A type system is given by the following:

– A set of atomic types. The set of types is the defined inductively by:
• Every atomic type is a type.
• If A and B are types, then A → B is a type.

– A set of constructors, each with an associated type.

The set of terms of each type is then defined inductively by:

– Every constructor of type A is a term of type A.

Constructing Independently Verifiable Privacy-Compliant Type Systems 201

– If s is a term of type A → B and t is a term of type A, then st is a term of
type B.

We write t : A to denote that t is a term of type A.

In the example in Fig. 1, the atomic types are INFO, CONSENT and
POLICY . The constructors are info which has type INFO, policy which
has type POLICY , and consent which has type CONSENT . In the exam-
ple in Fig. 2, the architecture has been extended with new atomic types such
as CWebsite(INFO), and new constructors such as pPOLICY , which has type
POLICY → PParent(POLICY).

Definition 2 (Architecture). Given a type system T , an architecture A over
T consists of:

– a set Ag of agents or components;
– for every agent α, a set Hα of constructors that α initially possesses or ini-

tially has;
– for every ordered pair of distinct agents (α, β), a set Mαβ of atomic types

that α may send in a message to β.

We shall write α
A→ β to denote that A ∈ Mαβ.

(Note that only terms of atomic type can be passed between agents.)
In the example in Sect. 2, we have Ag = {Child,Website, Parent}. The

agent Child initially possesses the constructor info, and Website initially pos-
sesses policy, and Parent initially possesses consent. We have MChild,Website =
{INFO}; thus, Child may send messages of type INFO to Website. We also
have MWebsite,Parent = {POLICY } and MParent,Website = {CONSENT}.

We will use lower-case Greek letters α, β, . . .for agents, lower-case Roman
letters s, t, . . .for terms, and capital Roman letters A,B, . . .for types. The letter
c is reserved for constructors.

Let us say that an agent α can compute terms of type A iff it possesses a
constructor of type B1 → · · · → Bn → A for some B1, . . . , Bn.

Definition 3. Let A be an architecture.

1. An event or message is an expression of the form α
t:A→ β, to be read as ‘α

passes the term t of type A to β.’
2. A trace τ is a finite sequence of events.
3. A judgement is an expression of the form τ � α � t : A, which we read as

“After the trace τ , α has the term t of type A.”

We write τ1, τ2 for the concatenation of traces τ1 and τ2. We write τ1 � τ ′ iff
τ1 is a prefix of τ ′, i.e. there exists τ2 such that τ ′ = τ1, τ2.

The derivable judgements are given by the rules of deduction in Fig. 3. We
say that τ is a valid trace through A iff τ � α � t : A is derivable for some
α, t, A. We say that an agent α possesses a term of type A after τ , and write

202 R. Adams and S. Schupp

(init) � α � c : A
(c : A ∈ Hα) (message1)

τ � α � t : A

τ, α
t:A→ β � β � t : A

(A ∈ Mαβ)

(message2)
τ � α � t : A τ � γ � s : C

τ, α
t:A→ β � γ � s : C

(A ∈ Mαβ)

(func)
τ � α � f : A → B τ � α � t : A

τ � α � ft : B

Fig. 3. Rules of deduction

τ � α � A, iff there exists a term t such that τ � α � t : A. We say that there
exists a term of type A after τ , and write τ � A, iff τ � α � t : A for some α, t.

The rule (init) states that, if α initially possesses c, then α possesses c in the
initial state. The rule (func) states that, if an agent possesses both a function
f and term t of the appropriate types, it may compute the term ft. The rule
(message1) states that, after α has sent t to β, then β possesses t. The rule
(message2) states that, if γ possesses s before α sends a message to β, then γ
still possesses s after the message is sent.

3.1 Metatheorems

We can establish the basic properties that our typing system satisfies.

Lemma 1.

1. Weakening. Suppose τ1 � α � t : A and τ1, τ2 is a valid trace. Then τ1, τ2 �
α � t : A.

2. If τ1, α
t:A→ β, τ2 is a valid trace, then A ∈ Mαβ, and τ1 � α � t : A.

3. Generation. Suppose τ � β � t : B. Then there exist terms t1 : A1, . . . , tm :
Am (m ≥ 0) and agents α1, . . . , αn (n ≥ 1) such that t ≡ ft1 · · · tm, β = αn,
and the following events occur in τ in order:

α1 � f : A1 → · · · → An → B, α1
t:B→ α2, · · · , αn−1

t:B→ αn

Further, we have τ � α1 � t1 : A1, . . . , τ � α1 � tm : Am.
4. If τ � β � t : B, then either β can compute B, or there is an event α

t:B→ β
in τ for some α.

Intuitively, Generation says that if agent β possesses a piece of data of type
B, then it must have been computed by an agent α1 that can compute terms of
type B, and then passed to β in a sequence of messages.

The proofs of the first three properties are by straightforward induction on
derivations. Part 4 follows easily from part 3.

Constructing Independently Verifiable Privacy-Compliant Type Systems 203

4 The First Algorithm

In the rest of this paper, we will consider different sets of constraints that we
may wish to place on our architectures. In each case, we shall show how, given
an architecture A and a set of constraints C, we can construct an architecture B,
which we call a safe architecture, that extends A and satisfies all the constraints.

For our first algorithm, we consider the following constraints:

Definition 4 (Constraint).

1. A negative constraint has the form α � A ⇒ B, where A and B are atomic
types. We read it as: “If α receives a message of type A, then a term of type
B must have previously been created.” A trace τ complies with this constraint
iff, for every τ1 � τ , if τ1 � α � t : A for some t, then τ1 � β � s : B for
some β, s.

2. A positive constraint has the form Pos(α,A), where A is an atomic type. We
read it as: “It must be possible for α to have a term of type A.” A trace τ
complies with this constraint iff τ � α � t : A for some term t.

Note. To understand part 1 of this definition, note that, if it is possible to create
a term t : A without first creating a term s : B, then there is a trace τ such
that τ � α � t : A for some α, and τ � β � s : B for all β. Thus, the condition
“For every τ1 � τ , if τ1 � α � t : A for some t, then τ1 � β � s : B for some β,
s” captures the idea “If α receives a message of type A, then a term of type B
must have previously been created.”

Example. Consider an accountancy firm collecting personal data from the
employees of a company in order to prepare a tax report. The principle of data
minimization [13, Sect. 25] states that the accountancy firm should collect only
the data that is necessary for this purpose. We can model this as follows: assume
there are two types of tax return that can be prepared, TRA and TRB . Let
Employee initially possess a : A and b : B, where a is required to prepare TRA

and b is required to prepare TRB. The company can send requests QA and QB

to Accountancy, requesting a tax return of one of the two types. We could then
write constraints Accountancy � A ⇒ TRA and Accountancy � B ⇒ TRB to
express that the accountancy firm may only possess an employee’s personal data
if it is necessary for a tax return that it has been requested to prepare.

We now construct the type system that the safe architecture will use:

Definition 5 (Safe Type System). Let T be a type system and Ag a set of
agents. Let C be a finite set of negative constraints over T and Ag. The safe type
system TC is defined as follows.

– The atomic types of TC are the atomic types of T together with, for every
agent α ∈ Ag and atomic type A in T , a type Cα(A), the type of certified
terms of type A that may only be read by α.

– Every constructor of T is a constructor of TC.

204 R. Adams and S. Schupp

– For every α ∈ Ag and type A of T , let the constraints in C that begin with
‘α � A’ be

α � A ⇒ B1, . . . , α � A ⇒ Bn .

Then the following are constructors of TC:

mβ1···βn

αA : A → Cβ1(B1) → · · · → Cβn
(Bn) → Cα(A) for all β1, . . . , βn ∈ Ag;

παA : Cα(A) → A

The intention is that mβ1···βn

αA constructs a term of type Cα(A) out of a term
of type A and n other terms which prove that the preconditions to α � A are
all satisfied. The constructor παA then extracts the term of type A again.

Using the type system, we can state a set of conditions that guarantee that
an architecture satisfies the negative constraints in C.

Theorem 1. Let T be a type system, Ag a set of agents, and C a set of negative
constraints over T and Ag. Let B be an architecture over TC with set of agents
Ag′, where Ag ⊆ Ag′. Suppose there is a partition {Pα ⊆ Ag′}α∈Ag of Ag′ indexed
by Ag such that:

1. α ∈ Pα for all α ∈ Ag;
2. If β

A→ β′ and β, β′ are in different sets of the partition, then A has the form
Cγ(B) for some γ, B;

3. If β possesses παA then β ∈ Pα;
4. For every constraint α � A ⇒ B in C, if an agent β ∈ Pα possesses a

constructor with target A, then this constructor is παA.

Then every trace through B satisfies every negative constraint in C.

The intuition behind the premises is this: the partition divides the system
into parts. The part Pα is the only part of the system that is allowed to look
inside a term of type Cα(A) and extract the underlying term of type A. Only
certified terms may be passed between the parts. Thus, the only way for an agent
in Pα to possess a term of type A is either for it to be computed within Pα, or
for a term of type Cα(A) to be passed in from another part of the system.

Proof. Let τ be any trace through B and let α � A ⇒ B be one of the constraints
in C. We must show that, if τ � α � t : A, then τ � B. We shall prove the more
general result:

If τ � β � t : A for some β ∈ Pα, then τ � B.

So suppose τ � β � t : A for some β ∈ Pα. We may also assume without loss of
generality that τ is the shortest trace for which this is true. By Generation and
the minimality of τ , β possesses a constructor with target A. By our hypotheses,
this is παA, and t = παA(t′) for some t′. Hence τ � β � t′ : Cα(A) for some t′.

Constructing Independently Verifiable Privacy-Compliant Type Systems 205

Now, looking at the construction of TC, the only constructor with target
Cα(A) is

mβ1···βn

αA : A → Cβ1(B1) → · · · → Cβn
(Bn) → Cα(A).

So applying Generation again, we must have t ≡ mβ1···βn

αA st1 · · · tn and there
must be an agent γ which possesses mβ1···βn

αA with

τ � γ � s : A, τ � γ � t1 : B1, . . . , τ � γ � tn : Bn .

Now, B is one of the types B1, . . . , Bn; let it be Bi. Then τ � γ � Cβi
(B). By

similar reasoning, there must be an agent δ that possesses one of the constructors
mβiB , and τ � δ � B. ��

We are now ready to construct the safe architecture.

Algorithm 1. Given an architecture A and a finite set of constraints C, con-
struct the architecture Safe(A, C) as follows:

1. The agents of Safe(A, C) are the agents of A together with, for every agent
α of A, an agent Iα, which we call the interface to α.

2. The type system of Safe(A, C) is TC.
3. If an agent α possesses a constructor c in A, then α possesses c in Safe(A, C).
4. For every type A of A, let the negative constraints that begin with α � A be

α � A ⇒ B1, . . . , α � A ⇒ Bn .

– Every interface Iγ possesses mβ1···βn

αA for all β1, . . . , βn.
– Iα posseses παA

5. For every atomic type A, the agents α and Iα may send A to each other.
6. Any two interfaces may send messages of type Cα(A) to each other for any

α, A.

Thus, in order to construct a certified term of type A readable by α, an
interface must first obtain certified terms of all the types which the constraints
require. The only way α can receive a term of type A is through its interface
obtaining a term of type Cα(A). Interfaces may pass certified terms between
each other at will. An agent and its interface may exchange uncertified terms at
will.

Theorem 2. Let A be an architecture and C a set of constraints. Suppose that:

1. For every negative constraint α � A ⇒ β � B in C, we have that α cannot
compute terms of type A.

2. For every positive constraint Pos(α,A) ∈ C, there exists a trace through A
that satisfies Pos(α,A) and all the negative constraints in C.

Then the architecture Safe(A, C) has the following properties:

1. Every trace through Safe(A, C) satisfies every negative constraint in C.

206 R. Adams and S. Schupp

2. For every positive constraint Pos(α,A) ∈ C, there exists a trace through
Safe(A, C) that satisfies Pos(α,A).

Proof. Part 1 follows from the previous theorem, taking Pα = {α, Iα}.
We now show that Safe(A, C) has the following property. Part 2 of the

theorem follows immediately.

If τ � α � t : A in A, A is an atomic type, and τ satisfies every negative
constraint in C, then there exists a valid trace τ ′ through Safe(A, C) such
that τ ′ � α � t : A and τ ′ � Iα � t′ : Cα(A) for some t′.

The proof is by induction on τ , then on the derivation of τ � α � t : A. We
deal here with the case where the last rule in the derivation was (message1):

τ � β � t : A

τ, β
t:A→ α � α � t : A.

By the induction hypothesis, there exists τ ′ such that τ ′ �Safe(A,C) β � t : A.
By the construction of Safe(A, C), we have A ∈ CβIβ

and A ∈ CIαα. Hence

τ, β
t:A→ Iβ �Safe(A,C) Iβ � t : A.

Now, let the negative constraints in C that begin with α � A be α � A ⇒
B1, . . . , α � A ⇒ Bn. By hypothesis, τ, β

t:A→ α satisfies all these constraints.
Therefore, τ �A B1, . . . , τ �A Bn.

Hence, by the induction hypothesis, there exists τ ′′ such that τ ′′ �Safe(A,C)

B1, . . . , τ
′′ �Safe(A,C) Bn. Therefore,

τ ′′ �Safe(A,C) Iβ1 � t1 : Cβ1(B1), . . . , τ ′′ �Safe(A,C) Iβn
� tn : Cβn

(Bn),

for some t1, . . . , tn. By Weakening, we may assume τ ′ � τ ′′.
After extending τ ′′ by passing t1, . . . , tn as messages to Iβ , we have that Iβ

can construct a term of type Cα(A). After passing this term to Iα, we have that
Iα(A) possesses a term of type Cα(A). From this, it can construct a term of type
A which it may then pass to α, completing the required trace. ��

5 The Second Algorithm

Supposing it is important to us, not merely that a piece of data has been created,
but that a particular agent has seen it. We can extend our system to handle this
type of constraint as follows.

Definition 6. In this section of the paper:

– a negative constraint is an expression of the form α � A ⇒ β � B. A trace
τ satisfies this constraint iff, for every τ ′ � τ , if τ ′ � α � A then τ1 � β � B.

– Positive constraints are as in Sect. 4.

Constructing Independently Verifiable Privacy-Compliant Type Systems 207

Note. If (α,A)
= (β,B), then the constraint α � A ⇒ β � B is to be read as “if
α possesses a term of type A, then β must previously have possessed a term of
type B”. (The condition α � A ⇒ α � A is trivial.)

We show how to extend a given architecture A to an architecture that uses
the new privacy-safe type system. Unfortunately, we have not found a way to
do this that requires no modifications to the agents in A. We present below
(Algorithm 2) an algorithm that requires modifications which we expect would
be minor in practice, and discuss in Sect. 5.2 ways in which this situation could
be improved in future work.

Definition 7. Given a type system T , a set of agents Ag, and a set of negative
constraints C over T and Ag, define the type system TC as follows.

– The types of TC are the types of T together with, for every agent α and atomic
type A of T , a type Cα(A) and a type Pα(A). (Intuition: a term Cα(A) is a
certified term of type A that α is permitted to read. A term Pα(A) is proof
that α has held a term of type A.)

– Every constructor of T is a constructor of TC.
– For every agent α and type A, let the negative constraints in C that begin with

α � A be

α � A ⇒ β1 � B1, . . . , α � A ⇒ βn � Bn.

Then the following are constructors of TC:

mαA : A → Pβ1(B1) → · · · → Pβn
(B) → Cα(A)

παA : Cα(A) → A

pαA : A → Pα(A)

Theorem 3. Let T be a type system, Ag a set of agents, and C a set of negative
constraints over T and Ag. Let B be an architecture over TC with set of agents
Ag′, where Ag ⊆ Ag′. Suppose that there is a partition {Pα}α∈Ag of the agents of
B such that:

– α ∈ Pα;
– If β

A→ β′ and β and β′ are in different sets in the partition, then A has
either the form Cγ(T) or Pγ(T);

– If β initially possesses παA then β ∈ Pα;
– If β initially possesses pαA then β cannot compute A.
– If β initially possesses pαA and γ

A→ β then γ = α.

Then every trace through B satisfies every constraint in C.

Proof. Let τ be a trace through B and α � A ⇒ β � B be a constraint in C. We
must show that, if τ � α � A, then τ � β � B. We shall prove the more general
result:

If τ � γ � A for any γ ∈ Pα, then τ � β � B.

208 R. Adams and S. Schupp

So suppose τ � γ � A for some γ ∈ Pα. We may assume without loss of
generality that τ is the shortest such trace. By Generation and the minimality
of τ , γ must possess a constructor with target A. By our hypotheses, this is παA.
Hence τ � γ � t : Cα(A) for some t. Now, let the constraints in C that begin
with α � A be

α � A ⇒ β1 � B1, · · · , α � A ⇒ βn � Bn.

Applying Generation, we must have t ≡ mαAst1 · · · tn, and there must be an
agent γ′ that possesses mαA such that

τ � γ′ � s : A, τ � γ′ � t1 : Pβ1(B1), . . . , τ � γ′ � tn : Pβn
(Bn).

Now, there is some i such that βi = β and Bi = B. We have τ � γ′ � ti : Pβ(B).
Since a term of type Pβ(B) has been constructed, it must be that τ � β � B, as
required. ��

We now show again how, given an architecture A, we can construct an archi-
tecture that is privacy-safe.

Algorithm 2. Given an architecture A and a finite set of constraints C, con-
struct the architecture Safe(A, C) as follows:

1. The agents of Safe(A, C) are the agents of A together with, for every agent
α of A:
– an agent Iα, which we call the input interface to α;
– an agent Oα, which we call the output interface to α

2. The type system of Safe(A, C) is TC.
3. If an agent α has a constructor c in T , then it has the constructor c in TC.
4. For any agent α and type A:

– Every output interface Oγ possesses mαA

– Iα possesses παA : CαA → A
– Oα possesses pαA : A → PαA

5. For any atomic type A of T , Iα may send A to α, and α may send A to Oα.
6. Any two interfaces may send messages of type Cα(A) or Pα(A) to each other

for any α, A.

Theorem 4. Let A be an architecture and C a set of constraints. Suppose that:

1. For every negative constraint α � A ⇒ B in C, we have that α cannot
compute terms of type A.

2. For every positive constraint Pos(α,A) ∈ C, there exists a trace through A
that satisfies Pos(α,A) and all the negative constraints in C.

Then the architecture Safe(A, C) has the following properties:

1. Every trace through Safe(A, C) satisfies every negative constraint in C.
2. For every positive constraint Pos(α,A) ∈ C, there exists a trace through

Safe(A, C) that satisfies Pos(α,A).

Constructing Independently Verifiable Privacy-Compliant Type Systems 209

Proof. Part 1 follows from Theorem 3, taking Pα = {α, Iα, Oα}.
We shall now prove the following property, from which part 2 of the theorem

follows.

If τ � α � t : A in A and τ satisfies every negative constraint in C, then
there exists a trace τ ′ through Safe(A, C) such that τ ′ � α � t : A.

The proof is by induction on τ , then on the derivation of τ � α � t : A. We
deal here with the case where the final step in the derivation is an instance of
(message1):

τ � β � t : A

τ, β
t:A→ α � α � t : A

By the induction hypothesis, there is a trace τ ′ such that τ ′ �Safe(A,C) α � A.
Let the negative constraints beginning with α � A be

α � A ⇒ β1 � B1, . . . , α � A ⇒ βn � Bn.

Then, by hypothesis,

τ, β
t:A→ α �A β1 � B1, · · · , τ, β

t:A→ α �A βn � Bn.

Using the fact that (α,A)
= (βi, Bi) for all i, the last step in each of these
derivations must have been (message2). Therefore,

τ �A β1 � B1, · · · , τ �A βn � Bn.

We may therefore apply the induction hypothesis to obtain traces τ1, . . . , τn such
that

τ1 �Safe(A,C) β1 � t1 : B1, · · · , τn �Safe(A,C) βn � tn : Bn.

Now, let τ ′′ be the trace τ ′, τ1, . . . , τn followed by these events:

β
t:A−→ Oβ , β1

t1:B1−→ Oβ1 , · · · , βn
tn:Bn−→ Oβn

,

Oβ1

pβ1B1 t1−→ Oβ , · · · , Oβn

pβn,Bn tn−→ Oβ ,

Oβ

cαAt(pβ1B1 t1)···(pβnBn tn)
−→ Iα,

Iα

πβA(cαAt(pβ1B1 t1)···(pβnBn tn))
−→ α

(Informally: the agent Oβ collects the term of type A from β and all the necessary
proofs, assembles the term of type CαA, and passes it to Iα, who decodes it with
παA and passes the value of A to α.)

We thus have τ ′′ � α � A in Safe (A, C), as required. ��

210 R. Adams and S. Schupp

5.1 Example Revisited

We return to the example we presented in Sect. 2. We are now ready to formulate
our third, positive constraint. We want to ensure it is possible for the website
to receive the child’s information once all legal requirements have been met. So
the privacy constraints that we require for this architecture are:

Negative Constraint Website � INFO ⇒ Website � CONSENT
Negative Constraint Website � CONSENT ⇒ Parent � POLICY
Positive Constraint Pos (Website, INFO)

We can verify that the first constraint holds. The child can send the pro-
tected info to the interface OChild, but it cannot then be sent to another agent
unless OChild receives a term of type P (CONSENT). And for a term of type
P (CONSENT) to be constructed, the parent must have sent consent to the
website (via OParent and IWebsite).

We can also verify that, in the architecture in Fig. 2, it is possible for the
website to send the privacy policy to the parent, the parent to send consent to
the website, and the child to send the protected info to the website. Formally, we
describe a valid trace τ through the architecture that represents this sequence
of events. The trace τ begins

Website
policy:POLICY−→ OWebsite,

OWebsite
mPOLICY (policy):C(POLICY)−→ IParent,

IParent
πPOLICY (mPOLICY (policy)):POLICY−→ Parent,

Parent
consent:CONSENT−→ OParent,

Parent
πPOLICY (mPOLICY (policy)):POLICY−→ OParent

Let p = πPOLICY (mPOLICY (policy). The trace τ continues:

OParent
mCONSENT (consent,p):C(CONSENT)−→ IWebsite,

IWebsite
πCONSENT (mCONSENT (consent,p)):CONSENT−→ Website,

Website
πCONSENT (mCONSENT (consent,p)):CONSENT−→ OWebsite,

Constructing Independently Verifiable Privacy-Compliant Type Systems 211

Let c = πCONSENT (mCONSENT (consent, p)). The trace τ continues:

OWebsite
pCONSENT (c):P (CONSENT)−→ OChild,

Child
info:INFO−→ OChild,

OChild
mINFO(info,pCONSENT (c)):C(INFO)−→ IWebsite,

IWebsite
πINFO(mINFO(info,pCONSENT (c))):INFO−→ Website

This ends the trace τ which verifies that it is possible for Website to receive a
term of type INFO.

5.2 Note

In Fig. 2, we have had to modify the agents from Fig. 1. The agent Parent needs
to be able to output messages of type POLICY , and Website needs to be able to
output messages of type CONSENT . We believe these would be minor changes
in practice. However, this is still unfortunate, because as discussed in the Intro-
duction, we want our algorithms to apply in cases in which we are unable to
change the source code of the agents in A.

In practice, we could implement this by allowing IParent to send POLICY to
OParent , and IWebsite to send POLICY to OWebsite, and adding the following
local constraints to their behaviour:

– If IParent sends t : POLICY to OParent , then IParent must previously have
sent t to Parent .

– If IWebsite sends t : POLICY to OWebsite, then IWebsite must previously
have sent t to Website.

Obtaining a formal proof of correctness for this construction requires an
architecture language in which this sort of local constraint can be expressed,
and we leave this for future work.

6 Related Work

Le Métayer et al. [2,3,6,7] have described several languages for describing archi-
tectures and deciding privacy-related properties over them. Barth et al. [4] also
give a formal definition of architectures, and show how to decide properties
defined in temporal logic. Our work was heavily inspired by these systems; how-
ever, our aim was to give a method to design an architecture starting from a
set of privacy properties, and not to decide whether a property holds of a given
architecture.

Basin et al. [5] show how to describe privacy policies in metric first-order
temporal logic (MFOTL), and how to build a component that monitors in real-
time whether these policies are being violated. Nissenbaum et al. [4] also describe

212 R. Adams and S. Schupp

privacy policies using linear temporal logic (LTL), and this has inspired a lot of
research into systems such as P-RBAC, which enforces low-level privacy-related
conditions at run-time [17]. Most of this research has concentrated on verifying
at run-time whether or not a given action is permitted by a given set of pri-
vacy policies. The work presented here concentrates instead on design-time, and
ensures that a high-level privacy policy is followed, no matter what actions each
individual component performs with the data it receives, as long as all messages
follow the given type system.

Jeeves [20] is a constraint functional language motivated by separating busi-
ness logic and confidentially concerns. We could implement our (architectural)
constraints in Jeeves, but would no longer have static guarantees. Other work
in formal methods for privacy includes static analysis of source code [11,15] and
refinement techniques for deriving low-level designs from high-level designs in a
way that preserves privacy properties [1,10]. These approaches complement ours
well, addressing properties for individual components that cannot be expressed
in our constraint language, while our algorithms provide formal guarantees of
global properties of the system as a whole.

Other work in formal methods for privacy has tended to concentrate either
on static analysis of source code [11,15] or on refinement techniques for deriving
low-level designs from high-level designs in a way that preserves privacy prop-
erties [1,10]. These approaches should complement ours well, providing formal
guarantees for individual components of properties that cannot be expressed
in our constraint language, while our algorithms provide formal guarantees of
global properties of the system as a whole.

7 Conclusion

We have given two algorithms which take an architecture, and a set of constraints
on that architecture, and show how the architecture may be extended in such a
way that we can produce a formal proof that the negative constraints hold on
every trace through the architecture, and the positive constraints are satisfiable.
Moreover, we do not need to read or modify the source code of the components
from the original architecture in order to do this. We believe this is a promising
approach to designing large, complex systems, with many different parts designed
and maintained by different people, such that we can provide a formal proof of
privacy-relevant properties.

For the future, we wish to expand the language that may be used for our
constraints, for example by allowing the designer to express constraints using
propositional, predicate or temporal logic. We hope then to express other prop-
erties that are desirable for privacy, such as the obligation to delete data. This
will require in turn expanding our type systems TC. We also plan to construct a
prototype implementation of the interfaces described in this paper.

Constructing Independently Verifiable Privacy-Compliant Type Systems 213

References

1. Alur, R., Černý, P., Zdancewic, S.: Preserving secrecy under refinement. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 107–118. Springer, Heidelberg (2006). https://doi.org/10.1007/
11787006 10

2. Antignac, T., Le Métayer, D.: Privacy architectures: reasoning about data minimi-
sation and integrity. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743,
pp. 17–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11851-2 2

3. Antignac, T., Le Métayer, D.: Privacy by design: from technologies to architectures.
In: Preneel, B., Ikonomou, D. (eds.) APF 2014. LNCS, vol. 8450, pp. 1–17. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-06749-0 1

4. Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy and contextual
integrity: framework and applications. In: IEEE Symposium on Security and Pri-
vacy, pp. 184–198 (2006)

5. Basin, D., Klaedtke, F., Müller, S.: Monitoring security policies with metric first-
order temporal logic. In: ACM SACMAT 2010 (2010)

6. Butin, D., Chicote, M., le Métayer, D.: Log design for accountability. In: IEEE
Symposium on Security and Privacy Workshops, pp. 1–7 (2013)

7. Butin, D., Chicote, M., Le Métayer, D.: Strong accountability: beyond vague
promises. Reloading Data Protection, pp. 343–369. Springer, Dordrecht (2014).
https://doi.org/10.1007/978-94-007-7540-4 16

8. Cavoukian, A.: Privacy by design. IEEE Technol. Soc. Mag. 31(4), 18–19 (2012)
9. Cavoukian, A., Stoddart, J., Dix, A., Nemec, I., Peep, V., Shroff, M.: Resolution

on privacy by design. In: 32nd International Conference of Data Protection and
Privacy Commissioners (2010)

10. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

11. Cortesi, A., Ferrara, P., Pistoia, M., Tripp, O.: Datacentric semantics for verifica-
tion of privacy policy compliance by mobile applications. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 61–79. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8 4

12. Enck, W., et al.: TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 32(2), 5
(2014)

13. Regulation (EU) 2016/679 of the European parliament and of the council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing directive
95/46/EC (general data protection regulation). Official journal of the European
union L119, 1–88, May 2016. http://eur-lex.europa.eu/legal-content/EN/TXT/?
uri=OJ:L:2016:119:TOC

14. Federal Trade Commission: Protecting consumer privacy in an era of rapid change.
FTC report (2012)

15. Ferrara, P., Tripp, O., Pistoia, M.: MorphDroid: fine-grained privacy verification.
In: Proceedings of the 31st Annual Computer Security Applications Conference,
pp. 371–380. ACM (2015)

16. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java informa-
tion flow (2001)

17. Ni, Q., et al.: Privacy-aware role-based access control. ACM Trans. Inf. Syst. Secur.
(TISSEC) 13(3), 24 (2010)

https://doi.org/10.1007/11787006_10
https://doi.org/10.1007/11787006_10
https://doi.org/10.1007/978-3-319-11851-2_2
https://doi.org/10.1007/978-3-319-06749-0_1
https://doi.org/10.1007/978-94-007-7540-4_16
https://doi.org/10.1007/978-3-662-46081-8_4
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC

214 R. Adams and S. Schupp

18. Pottier, F., Simonet, V.: Information flow inference for ml. ACM Trans. Program.
Lang. Syst. (TOPLAS) 25(1), 117–158 (2003)

19. Schreckling, D., Köstler, J., Schaff, M.: Kynoid: real-time enforcement of fine-
grained, user-defined, and data-centric security policies for Android. Inf. Secur.
Tech. Rep. 17(3), 71–80 (2013)

20. Yang, J., Yessenov, K., Solar-Lezama, A.: A language for automatically enforcing
privacy policies. In: Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principle of Programming Languages, POPL 2012, Philadelphia, Pennsylvania,
USA, 22–28 January 2012, pp. 85–96 (2012)

SideTrail: Verifying Time-Balancing
of Cryptosystems

Konstantinos Athanasiou1, Byron Cook2, Michael Emmi3,
Colm MacCarthaigh2, Daniel Schwartz-Narbonne2(B), and Serdar Tasiran2

1 Northeastern University, Boston, USA
konathan@ccs.neu.edu

2 Amazon Web Services, Seattle, USA
{byron,colmmacc,dsn,tasirans}@amazon.com

3 SRI International, Menlo Park, USA
michael.emmi@sri.com

Abstract. Timing-based side-channel attacks are a serious security risk
for modern cryptosystems. The time-balancing countermeasure used by
several TLS implementations (e.g. s2n, GnuTLS) ensures that execu-
tion timing is negligibly influenced by secrets, and hence no attacker-
observable timing behavior depends on secrets. These implementations
can be difficult to validate, since time-balancing countermeasures depend
on global properties across multiple executions. In this work we intro-
duce the tool SideTrail, which we use to prove the correctness of time-
balancing countermeasures in s2n, the open-source TLS implementation
used across a range of products from AWS, including S3. SideTrail
is used in s2n’s continuous integration process, and has detected three
side-channel issues that the s2n team confirmed and repaired before the
affected code was deployed to production systems.

1 Introduction

Timing-based side-channel attacks are a serious security risk for modern cryp-
tosystems; the Lucky 13 attack is a recent example [1]. Current systems deploy
one of two prevailing countermeasures to prevent such attacks. One possible
mitigation against this threat is to apply the constant-time coding principle,
where secrets must not influence control-flow paths, memory access patterns,
or the cycle counts of instructions. This simplifies local reasoning about tim-
ing leaks: if secrets are not used in the prohibited manner, then the code does
not exhibit timing side-channels. However, constant-time coding often requires
replacing a program’s natural control-flow with complicated bitwise operations,
and can require significant changes to standard data-structures and APIs, mak-
ing it difficult to reason about functional correctness. The developers of OpenSSL
recently applied a 500+ LOC patch to perform constant-time cipher block chain-
ing (CBC) decoding; the complexity of which led to subsequent issues [2].

The second approach, dubbed time-balancing, ensures that execution time is
negligibly influenced by secrets. This relaxation from constant-time enables sim-
pler and more readable countermeasures: developers must balance a program’s
c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 215–228, 2018.
https://doi.org/10.1007/978-3-030-03592-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_12

216 K. Athanasiou et al.

executions to have similar timing footprints, allowing the use of standard oper-
ations that depend on secrets. The CBC code from s2n [3], for example, imple-
ments time-balancing in fewer than 20 additional lines, and s2n’s time-balanced
HMAC has been proven functionally correct [4]. However, since time-balancing
countermeasures depend on global properties across multiple executions, pro-
grammers easily miss subtle timing leaks [5].

In this work, we introduce SideTrail (and its implementation [6]), a deduc-
tive verifier for time-balancing countermeasures. SideTrail uses an instruction-
level precise timing model and encodes it via a time counter. It uses Boogie [7] to
precisely reason about control flow and values, including the time counter. We
automatically infer invariants over time-counter values with minimal user anno-
tation, and use self-composition [8] to prove that the timing difference between
every pair of executions with similar public inputs is below a given bound.

We have used SideTrail to verify the correctness of the timing countermea-
sures for the data-packet processing stack in s2n. SideTrail is used in s2n’s
Travis-based continuous integration system [9], has detected three issues that
the s2n team has confirmed and repaired before the affected code was used in
production systems, and has proved correctness of the repaired countermeasures.

1.1 Related Work

Prior work has proposed verification for constant-time [10–20] and power-
balancing [21] side-channel countermeasures including the Everest project which
has proven the functional correctness of a side-channel resistant TLS implemen-
tation in the constant-time model [22,23].

Different approaches have recently appeared in the context of time-balancing
countermeasures [24,25]. Blazer [24] uses a partitioning strategy instead of self-
composition and scales to examples of up to 100 basic blocks in size. Themis [25]
uses Quantitative Cartesian Hoare Logic to capture timing differences between
executions and scales to real-world Java applications. Themis requires functions
to be time-balanced; it otherwise reports spurious violations. In contrast, Side-
Trail takes a path-based approach, and can handle time-balancing countermea-
sures, such as those used in s2n’s HMAC, which compose unbalanced functions
to ensure that every execution path is time balanced. Both Blazer and Themis
target Java programs while SideTrail focuses on low-level C-code implemen-
tations. Unlike these two approaches, which approximate leakage using com-
putational complexity and bytecode instruction counts respectively, SideTrail
supports fine grained cost models at the instruction level of LLVM’s Intermediate
Representation language.

The self-composition we describe in Sect. 3 builds on those of existing
works [26–29], and our implementation follows ct-verif’s [19], replacing its cross-
product construction with self-composition; our novelty is in its application to
time balancing. Contrary to approaches providing upper bounds of information
leakage metrics [30], SideTrail employs relational verification.

SideTrail: Verifying Time-Balancing of Cryptosystems 217

2 Time-Balancing

Time-balancing countermeasures provide the security assurance that program
secrets have negligible influence on execution time, even in the presence of poten-
tially malicious observers who can control the public inputs to the program. For-
mally, a program is δ-secure if for every possible public-input value, the timing
difference between every pair of executions with different secrets is at most δ.
In this work, we assume a standard adversarial model: a network man in the
middle (MITM), who has the ability to observe and modify both the contents
and the timing of any packet on the network, but who cannot execute arbitrary
code on the targeted endpoints [31]. This model is powerful enough to capture
a wide range of real TLS attacks, ranging from Bleichenbacher’s attacks against
PKCS #1 [32], to Brumley and Boneh’s attack against RSA decryption [33], to
the Lucky 13 family of attacks against the TLS HMAC [1].

Fig. 1. A vulnerable TLS CBC algorithm (a), and its time-balanced version (b).

Example 1. The Lucky 13 family of attacks [1] takes advantage of a weakness in
the specification for SSL/TLS; CBC mode uses an HMAC to prevent adversaries
from modifying incoming cipher-texts, but neglects to protect the padding [34].
A MITM attacker can trick a TLS implementation into decrypting a selected
encrypted byte (e.g. from a password) into the padding length field. Figure 1a
shows what happens in a näıve implementation: in line 4, len - pad bytes are
hashed by the HMAC, whose timing strongly depends on the number of bytes
hashed. Since len is known to the attacker, this creates a timing side-channel
leaking the value of pad. A constant-time mitigation would be to rewrite the
HMAC implementation so that its computation was independent of the value of
pad. A simpler time-balanced countermeasure is shown in Fig. 1b: apply update

on a dummy HMAC state dummyMAC (line 5), which ensures that no matter the
value of pad, the HMAC will always process a total of len bytes, mitigating the
timing side-channel.

Verifying Time-Balancing. Following previous approaches to verifying non-
interference [26,29], we reduce verification of δ-security, which is a 2-safety prop-
erty, i.e. a property over pairs of executions, to the verification of a standard
safety property, i.e. over individual executions. For technical simplicity, we con-
sider a program P as a sequence of instructions p0; p1; . . . ; pn whose variables
V = Sec�Pub are the disjoint union of secret and public variables, respectively;

218 K. Athanasiou et al.

a program state s maps the variables to values. A configuration c is a tuple (s, p)
of program state s and the next instruction p to be executed. An execution is
defined as a configurations sequence c1c2 . . . cm.

Effective reasoning about δ-security requires (i) a timing model that accu-
rately captures programs’ timing behavior, and (ii) a verification technique able
to relate the timing behavior of two distinct program executions. To capture
timing, we introduce a leakage function �(c), mapping configurations c to tim-
ing observations, i.e. the cost of executing the next program instruction using
the values of variables in c. To keep track of the total cost of an execution we
extend the set of variables with a time counter l as VL = V � {l} and write the
time counter instrumented program PL as l1; p1; l2; p2 . . . ; ln; pn, in which each
instruction li updates the time counter variable as l:= l + �(s, pi). Finally to
relate the timing cost of two execution paths we compose PL with its renaming
P̂L over variables V̂L, and form its self-composition PL; P̂L ranging over variables
VL ∪ V̂L [8,26]. Accordingly, δ-security can be specified as a safety property over
the time-counter variables l and l̂.

3 Implementation

SideTrail uses the SMACK verification infrastructure [35], which leverages
Clang [36] and LLVM [37] to generate and optimize LLVM bitcode before trans-
lation to the Boogie [7] intermediate verification language. Using LLVM inter-
mediate representation (IR) allows SideTrail to reason precisely about the
effect of compiler optimizations, which can affect the timing of time-balancing
countermeasures. Our initial experience verifying simple time-balanced examples
showcased the importance of correctly accounting for compiler optimizations. In
some cases, the compiler can notice that the extra code added for time-balancing

Fig. 2. SideTrail architecture

SideTrail: Verifying Time-Balancing of Cryptosystems 219

Fig. 3. Stages of SideTrail translation, from left to right: (a) an annotated C-code add
function; (b) the corresponding LLVM IR with timing annotations; (c) the translated
Boogie code with time counter instrumentation; and (d) the Boogie code for the self-
composition.

is side-effect free, and remove it, reintroducing the timing side-channel in the
original algorithm.

In addition, using LLVM IR easily allows us to use an instruction-level-precise
architectural timing model. We have extended SMACK to introduce the tim-
ing cost of LLVM instructions, and implement program transformations at the
Boogie code-level, passing a time counter instrumented self-composition to the
Boogie verifier [7]. If the program being verified is δ-secure, SideTrail returns
with a proof; if there is a violation of δ-security, SideTrail provides a counter-
example trace which includes the input values that triggered the exception, the
trace leading to the exception, and the amount of leakage calculated for that
trace. The SideTrail flow is illustrated in Figs. 2 and 3.

Security Annotations: SideTrail requires a small number of annotations at the
source-code level to specify a δ-security proof. The programmer must annotate
the appropriate entry-point arguments as public (unannotated arguments are
treated as secrets) and specify the non-negative integer timing-difference bound
(δ). The public_in and assert_leakage annotations of Fig. 3a serve these pur-
poses.

Timing Model: SideTrail uses LLVM’s Cost Model Analysis for its instruction-
level precise timing model. The analysis approximates the timing cost of each
instruction when lowered to machine code by mapping it to a positive integer,
and assumes that all memory accesses hit their respective caches; we discuss
the soundness of this assumption in Sect. 4.3. Figure 3b shows how SideTrail
annotates the LLVM IR add (time cost: 1) and ret (time cost: 0) instructions
with timing metadata, represented as metadata pointers !19 and !27 respectively.
Figure 3c shows how the timing metadata are carried over to the Boogie code.
A time-modeling transformation, implemented as a Boogie-code transformation,
introduces the integer-type time counter variable l and updates it in lockstep
with program instructions.

Loop Invariants: To capture how the values of the time counter variables are
updated throughout a loop’s execution, SideTrail automatically inserts loop-

220 K. Athanasiou et al.

timing-invariants in the Boogie code, based on annotations provided by the
user.

A loop’s cost depends on two factors: the number of times it iterates,
and the cost of each iteration. The number of iterations can be captured by
annotating a simple continuation invariant—for example, loops of the form
for (i=0; i<n; ++i) should be user-annotated with a continuation invariant
(i<=n). In the common case where the execution time of the loop-body does
not vary across iterations, SideTrail can automatically infer the cost of each
iteration. If the loop body contains nested control statements the user must
provide annotations that describe how many times each branch of the control
statement is visited, although we note that we encountered only a single loop
with nested control in our experiments. In either case, SideTrail automati-
cally infers timing-invariants of the form (l = l_prior + i*body_cost), where
l_prior is the value of l before entering the loop and body_cost is the timing
cost of executing the loop body once, and inserts them in the Boogie code.

Self-composition: We implement the self-composition-based reduction of δ-
security to assertion checking as an additional Boogie-code transformation,
demonstrated in Fig. 3d. We duplicate the program to be verified, making a
renamed copy of all functions (plus becomes _plus), and then transform these
duplicated functions to use renamed copies of global variables including the
time counter, and to perform nested procedure calls on the renamed procedures.
Finally, a wrapper procedure enforces the equality of public inputs, makes two
consecutive calls to the entry function of the program and its renamed copy, and
adds an assertion to check δ-security.

Inter-procedural Analysis: SideTrail supports inter-procedural analysis
through function inlining, allowing the analysis of arbitrary entry points which
may invoke individually unbalanced functions (s2n uses such functions in its
path-balanced HMAC). As we discuss in Sect. 4, this approach is able to handle
industrial codebases such as the s2n HMAC. SideTrail also supports modular
verification through timing stubs, described below.

Timing Stubs: SideTrail allows the user to specify the expected leakage from
a function by providing support for timing stubs. Users specify these stubs by
adding assume_leakage(expr) statements to the body of a function, where expr is
any expression computable within the function. When the time-modeling trans-
formation encounters this call, it increases the time counter variable by expr.
This allows stubs to represent complex timing behaviour which may depend on
properties of both the input and current state of the function. It is the responsi-
bility of the user to ensure that the stub correctly models the timing behaviour
of the concrete implementation; we discuss how SideTrail can be used to verify
the correctness of stubs in Sect. 4.2.

SideTrail: Verifying Time-Balancing of Cryptosystems 221

4 Case Study of the s2n TLS Library

s2n is an open-source TLS library used by Amazon, including S3, and AWS
services [38]. Its design goals are that it be: “small, fast, with simplicity as a
priority” [39]. Its time-balanced CBC mode requires fewer than 20 additional
lines of code, compared to the 500+ LOC patch to perform constant-time CBC
decoding in OpenSSL. We have used SideTrail to verify the correctness of
the timing countermeasures for the whole data-packet processing stack (which
includes CBC verification as a sub-component) in the current s2n release. In
the process we have discovered three previously unknown issues that violate
δ-security. We note s2n has a belt-and-suspenders security model with random-
ized delay on error and a secure default configuration [40], which would have
prevented these issues from affecting data in production.

The proofs described below are automatically rerun as part of s2n’s Travis
based continuous integration system. This ensures that code changes are only
accepted to the s2n repository after they have been validated using SideTrail.

Fig. 4. Hash function timing stub.

4.1 Timing Stubs

s2n is written in a modular fashion, and does not implement its own crypto-
graphic primitives – instead they are linked from the system libcrypto. We
provide timing stubs for each cryptographic primitive used by s2n, following
the approach described in Sect. 3. An example stub for hash_update is shown
in 4. This stub has two components: a per-byte cost, representing the cost of
memcpying the data, and a per-block cost, representing the cost of a hash com-
pression round. The stubs were validated by using SideTrail to verify that
the stub had the same timing behaviour as a C implementation, as described in
Experiment 3 (Sect. 4.2).

4.2 Experiments

Except as noted below, all experiments had approximatly 400 lines of initial
source, 5 security annotations, 3 loop invariants, 100 lines of additional code
(stubs + test harness), and expanded to an order of 1000 SMT clauses. All of
the experiments listed below completed in less than 8 min on a 3.1 GHz Intel Core

222 K. Athanasiou et al.

i7 with 16 GB of RAM running OSX 10.11, using Z3 4.6.0’s integer arithmetic
theory.1 The code for all experiments is available online.2

For each experiment, we determined the precise amount of δ-leakage by vary-
ing δ to find the boundary where verification moved from unsuccessful to suc-
cessful. Our experience in this process suggests that refuting values of δ that are
too small is typically faster than verifying values of the correct size.

Properties Verified. We performed four related verification experiments using
SideTrail. Experiment 1 validated our ability to detect a previously reported
timing issue in the CBC mode of s2n. Experiment 2 validated the correctness of
the current implementation of this code. Experiment 3 validated the correctness
of the timing stubs used in Experiment 2. Experiment 4 extends this proof to
provide an end to end guarantee for data-packet processing.

[Experiment 1] One of the motivations for this work is a previously reported
and repaired timing side-channel issue [41] in s2n’s time-balanced CBC decoder.
The issue is caused by an off-by-one error in the code that tracks how many
bytes have been hashed and triggers for a particular edge-case in the padding
size. SideTrail reports an error trace that includes the concrete value of the
padding size, as well as the expected leakage (equivalent to one hash compression
round, approximately 1µs).

[Experiment 2] In this experiment, we verify the correctness of the CBC mode
time-balancing countermeasures for all protocol versions (SSL3, TLS[1.0–1.2])
and hash functions (MD5, SHA1, SHA-224, SHA-256, SHA-384, SHA-512) sup-
ported by s2n. In order to handle this wide range of modes and functions, both
the test-harness and the hash-stubs were written in a generic fashion, allowing
different modes to be tested by setting the appropriate compile-time constants.
The experiment could then be rerun with varying parameters to cover all modes.

We experienced two types of scalability issues in this experiment. Firstly, s2n
does not contain its own cryptographic primitives, leading us to use a modular
verification approach using timing stubs as described in Sect. 4.1. Secondly, the
CBC code makes branching decisions based on non-linear operators (mod and
div), which the backend SMT solver had difficulty solving in a reasonable time.
We worked around this issue by replacing the div operation with a handwrit-
ten variant that uses pre-calculated values for the block-sizes being tested. Our
proofs for the various modes all showed a small δ-leakage, caused by the extra call
to hash_digest necessary to affect time-balancing. Since this δ (approximately
0.03 µs) is significantly smaller than the time granularity visible to a network
based attacker (estimated at 1µs based on timing experiments done between

1 Using integer arithmetic provides performance benefits at the cost of losing informa-
tion about the underlying C types. In a few cases, we needed to annotate back this
information, for example by adding assume(x >= 0 && x < 256) after an assign-
ment to a uint8_t x;.

2 https://github.com/danielsn/s2n/tree/sidetrail-vstte-artifact/tests/sidewinder.

https://github.com/danielsn/s2n/tree/sidetrail-vstte-artifact/tests/sidewinder

SideTrail: Verifying Time-Balancing of Cryptosystems 223

co-located machines, which is in agreement with [31]), the code is successfully
balanced.

[Experiment 3] The soundness of Experiment 2 depends on correct modeling
of the timing behaviour of the timing stubs. In this experiment we verify that
our SHA-1 timing stub accurately captures the timing cost of an open-source
C implementation [42]. Our proof methodology is similar to the one used for
δ-security, but in this case we form a composition of the timing stub (Fig. 4)
with the C implementation and assert that their time counter variables are equal
(i.e. δ = 0). The SHA-1 C code contains a loop with a nested control statement,
which requires us to indicate the times each branch is exercised via an additional
invariant. After experimenting to find the correct values for PER_BYTE_COST and
PER_BLOCK_COST, we verify that the δ between the stub and the C implementation
is 0.

[Experiment 4] (450LOC Source, 150LOC stubs, 20LOC Annotations, 1860
SMT clauses) In this experiment we verify that data-packet processing is time-
balanced, for all protocols (SSL3, TLS[1.0–1.2]) and modes (AEAD, CBC, Com-
posite, and Stream) currently supported by s2n. This provides end-to-end con-
fidence that from the time a data-packet is decrypted, until when the bytes are
returned to the client, all paths are time-balanced.

The proof decomposes packet processing into three phases. Phase one, packet
parsing, operates on public data, such as header fields, which are already known
to a MITM attacker, and hence can be treated as public inputs. Phase two,
decryption, is handled by stubs which havoc the decrypted data buffer, making
the values non-deterministically different across the self-composed program exe-
cutions. Phase three validates the decrypted data and returns it to the user. This
phase uses the decrypted data from stage two, and hence is the stage which could
potentially leak confidential information via a timing side-channel. We leverage
the δ-security proof and the concrete value of δ reported from Experiment 2 to
validate the timing stub for HMAC verification. All modes reported a δ < 0.05
µs.

Previously Unknown Issues Discovered. Using SideTrail, we reported
three previously unknown issues in the s2n time-balancing countermeasures,
which have been acknowledged and fixed by the s2n team, and validated the
repaired code.

[Issue 1] s2n time-balancing code counts the number of bytes in the hash block,
and uses this value as part of its time-balancing countermeasures. As an opti-
mization, s2n took advantage of the fact that the standard HMAC specification
[43] pads keys to be multiples of the hash-block in length, which means that
hashing a padded key does not affect the number of bytes remaining in the hash
block. Unfortunately, the SSLv3 specification follows this recommendation for
MD5, but in SHA1 mode uses a padded key that is 4 blocks short of the hash

224 K. Athanasiou et al.

block size [44], causing the time-balancing code to incorrectly count the number
of bytes.

[Issue 2] s2n’s HMAC had two variables with similar names: hash_block_size

and block_size. Due to a typo, the wrong variable was used in a modular oper-
ation which determines the need for time-balancing operations. Interestingly,
this issue only exposes itself in SSLv3 mode; in all other modes, block_size and
hash_block_size have the same value. This issue was accepted and repaired by
the s2n team, who also renamed the variables to have more descriptive names.

[Issue 3] As discussed in Issue 1, s2n uses a count of the number of bytes hashed
as part of its time-balancing countermeasures. In addition to the bytes directly
added by calls to hash_update(), s2n must track the number of bytes added
behind the scenes by the hash algorithm. In particular, before generating a hash
digest, most hash algorithms append padding, which typically includes an integer
specifying the total number of bytes that have been hashed. Most hash functions
used in TLS (e.g. MD5, SHA1) use an 64-bit (i.e. 8-byte) integer for this purpose,
and hence s2n’s time-balancing code adds 8 to the number of bytes that have
been hashed when determining the need for time-balancing operations. However,
some hash algorithms, such as SHA-384 and SHA-512, append a 128 bit (16-byte)
integer, which would cause s2n time-balancing code to miscount the number of
bytes hashed when using these algorithms.

4.3 Discussion on the Timing Model

SideTrail assumes an architectural timing model, which abstracts away micro-
architectural features such as caching and branch prediction, similarly to other
approaches [24,25]. This model captures the capabilities of a MITM network
attacker against a TLS endpoint who can measure final execution time (with
limited precision due to network jitter) but cannot affect or directly observe
machine state. Consequently the attacker can only observe the cumulative num-
ber of cache hits/misses, and cannot influence them by altering the state of the
cache. In the context of our s2n case study, the TLS code we verify preloads
a data-packet whose maximum size is 16 KB into the cache, and then spends
approximately 50 µs doing a linear scan across it (based on the speed of the
hash functions used in TLS). Since the data-packet fits in the L1 cache (typ-
ically at least 32 KB), all memory accesses results in cache hits. Additionally,
50 µs are considerably less than the Linux quantum which is on the order of
milliseconds, meaning that cache interference effects from context switches are
minimal.

4.4 Verification Inspired Refactoring

Verifying an industrial code-base requires forming a clear understanding of the
code being verified. As part of this effort, we discovered a number of refactorings
that made the code more modular, clean, and easy to verify. These code changes

SideTrail: Verifying Time-Balancing of Cryptosystems 225

were shared with the s2n team as GitHub PRs, and have been merged into the
mainline code-base.

The proposed changes ranged from small optimizations such as removing an
unnecessary loop, to refactoring of larger portions of the code-base. For example,
as part of Experiment 2, we discovered that different HMAC modes had dupli-
cated functionality; merging this functionality into a common function simplified
both the code, and the proof effort. Conversely, in Experiment 4, the data-packet
processing code interleaved functionality from several different modes, requiring
a large number of local variables and making it difficult to write a test harness
that covered all cases. We split the code into four simpler functions, with four
simple test harnesses. The s2n team accepted the PR with the comment “this
looks much better, thanks.” The most interesting fix was to s2n’s error handling
which follows a disciplined methodology. As we analysed several error handling
code paths, we realized that every case followed the same template, and could
be simplified with a macro that made error-handling easier to annotate (since
we only needed to add the annotation in one place). As an added benefit, this
change removed 400 LOC from an approximately 6 KLOC code-base.

Formal verification both inspired and enabled these changes. Our refactoring
touched large portions of the overall code-base, and made changes to security-
critical functionality. Without automated formal proofs to give us confidence that
our changes would not introduce new timing regressions, the amount of effort to
manually validate the changes would have made these changes impractical.

5 Future Work

As future work we first aim to improve the accuracy of SideTrail’s timing
model. Modeling the behaviour of micro-architectural components, such as the
cache and the branch predictor, will extend the class of attackers that Side-
Trail can reason about with on-machine active attackers. Additionally, replac-
ing LLVM’s instruction cost model with a model based on micro-benchmarks
will increase the precision of SideTrail, especially for operations such as div

and mod which take a different number of cycles depending on the values of their
input. We have demonstrated SideTrail’s capability to utilize and validate tim-
ing stubs. As a second direction of future work, we envision extending the tool’s
usability by inferring timing stubs in an automated fashion.

6 Conclusion

Ideal cryptographic practice is to design algorithms for an easy and straightfor-
ward implementation that is naturally constant-time. For legacy algorithms that
were not designed with this restriction in mind, developers must use alternate
approaches such as time-balancing. SideTrail allows developers of industrial
cryptographic code-bases such as s2n to verify the correctness of these mitiga-
tions, and to detect issues and regressions when they occur.

226 K. Athanasiou et al.

References

1. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, 19–22 May 2013, pp. 526–540. IEEE Computer Society (2013)

2. Somorovsky, V.J.: Curious Padding oracle in OpenSSL (CVE-2016-2107)
(2016). https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-
in-openssl-cve.html. Accessed 15 Jan 2018

3. Amazon Web Services: s2n : an implementation of the TLS/SSL protocols (2018).
https://github.com/awslabs/s2n

4. Dodds, J.: Part one: verifying s2n HMAC with SAW (2016). https://galois.com/
blog/2016/09/verifying-s2n-hmac-with-saw/. Accessed 15 Jan 2018

5. Albrecht, M.R., Paterson, K.G.: Lucky microseconds: a timing attack on Amazon’s
s2n implementation of TLS. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 622–643. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 24

6. Sidewinder: Time-balanced Verification Tests (2018). https://github.com/awslabs/
s2n/tree/master/tests/sidewinder

7. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

8. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: 2004 Proceedings of 17th IEEE Computer Security Foundations Workshop, pp.
100–114. IEEE (2004)

9. Amazon Web Services: s2n Travis CI integration page (2018). https://travis-ci.
org/awslabs/s2n/

10. Agat, J.: Transforming out timing leaks. In: Wegman, M.N., Reps, T.W. (eds.)
POPL 2000, Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Boston, Massachusetts, USA, 19–21 Jan-
uary 2000, pp. 40–53. ACM (2000)

11. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006). https://doi.org/10.1007/11734727 14

12. Svenningsson, J., Sands, D.: Specification and verification of side channel declas-
sification. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp.
111–125. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12459-
4 9

13. Stefan, D., et al.: Eliminating cache-based timing attacks with instruction-based
scheduling. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS,
vol. 8134, pp. 718–735. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40203-6 40

14. Almeida, J.B., Barbosa, M., Pinto, J.S., Vieira, B.: Formal verification of side-
channel countermeasures using self-composition. Sci. Comput. Program. 78(7),
796–812 (2013)

15. Barthe, G., Betarte, G., Campo, J.D., Luna, C.D., Pichardie, D.: System-level non-
interference for constant-time cryptography. In: Ahn, G., Yung, M., Li, N. (eds.)
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, Scottsdale, AZ, USA, 3–7 November 2014, pp. 1267–1279. ACM
(2014)

https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html
https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html
https://github.com/awslabs/s2n
https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/
https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1007/978-3-662-49890-3_24
https://github.com/awslabs/s2n/tree/master/tests/sidewinder
https://github.com/awslabs/s2n/tree/master/tests/sidewinder
https://doi.org/10.1007/11804192_17
https://travis-ci.org/awslabs/s2n/
https://travis-ci.org/awslabs/s2n/
https://doi.org/10.1007/11734727_14
https://doi.org/10.1007/978-3-642-12459-4_9
https://doi.org/10.1007/978-3-642-12459-4_9
https://doi.org/10.1007/978-3-642-40203-6_40
https://doi.org/10.1007/978-3-642-40203-6_40

SideTrail: Verifying Time-Balancing of Cryptosystems 227

16. Zhang, D., Wang, Y., Suh, G.E., Myers, A.C.: A hardware design language
for timing-sensitive information-flow security. In: Özturk, Ö., Ebcioglu, K.,
Dwarkadas, S. (eds.) Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS 2015, Istanbul, Turkey, 14–18 March 2015, pp. 503–516. ACM (2015)

17. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: Cacheaudit: a tool for the
static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1), 4:1–4:32
(2015)

18. Rodrigues, B., Pereira, F.M.Q., Aranha, D.F.: Sparse representation of implicit
flows with applications to side-channel detection. In Zaks, A., Hermenegildo, M.V.
(eds.) Proceedings of the 25th International Conference on Compiler Construction,
CC 2016, Barcelona, Spain, 12–18 March 2016, pp. 110–120. ACM (2016)

19. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, 10–12 August 2016, pp. 53–70 (2016)

20. Blazy, S., Pichardie, D., Trieu, A.: Verifying constant-time implementations
by abstract interpretation. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.)
ESORICS 2017. LNCS, vol. 10492, pp. 260–277. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66402-6 16

21. Fang, X., Luo, P., Fei, Y., Leeser, M.: Leakage evaluation on power balance coun-
termeasure against side-channel attack on FPGAs. In: 2015 IEEE High Perfor-
mance Extreme Computing Conference, HPEC 2015, Waltham, MA, USA, 15–17
September 2015, pp. 1–6. IEEE (2015)

22. Bond, B., et al.: Vale: verifying high-performance cryptographic assembly code.
In: 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, 16–18 August 2017, pp. 917–934 (2017)

23. Bhargavan, K., et al.: Everest: towards a verified, drop-in replacement of HTTPS.
In: Lerner, B.S., Bod́ık, R., Krishnamurthi, S. (eds.) 2nd Summit on Advances in
Programming Languages, SNAPL 2017, Volume 71 of LIPIcs., Asilomar, CA, USA,
7–10 May 2017, pp. 1:1–1:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2017)

24. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:
Decomposition instead of self-composition for proving the absence of timing chan-
nels. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, pp. 362–375. ACM, New York
(2017)

25. Chen, J., Feng, Y., Dillig, I.: Precise detection of side-channel vulnerabilities using
quantitative Cartesian hoare logic. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, pp. 875–890.
ACM, New York (2017)

26. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). https://doi.org/10.1007/11547662 24

27. Zaks, A., Pnueli, A.: CoVaC: compiler validation by program analysis of the cross-
product. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014,
pp. 35–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-
0 5

28. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

https://doi.org/10.1007/978-3-319-66402-6_16
https://doi.org/10.1007/978-3-319-66402-6_16
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.1007/978-3-642-21437-0_17

228 K. Athanasiou et al.

29. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)

30. Pasareanu, C.S., Phan, Q.S., Malacaria, P.: Multi-run side-channel analysis using
symbolic execution and max-SMT. In: 2016 IEEE 29th Conference on Computer
Security Foundations Symposium (CSF), pp. 387–400. IEEE (2016)

31. Crosby, S.A., Wallach, D.S., Riedi, R.H.: Opportunities and limits of remote timing
attacks. ACM Trans. Inf. Syst. Secur. 12(3), 17:1–17:29 (2009)

32. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

33. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of
the 12th Conference on USENIX Security Symposium, SSYM 2003, vol. 12, p. 1.
USENIX Association, Berkeley (2003)

34. Rescorla, E., Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, August 2008

35. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from veri-
fier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 7

36. LLVM: clang: a C language family frontend for LLVM (2018). https://clang.llvm.
org/

37. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO 2004), Palo Alto, California, March
2004

38. Schmidt, S.: s2n is now handling 100 percent of SSL traffic for Ama-
zon S3 (2017). https://aws.amazon.com/blogs/security/s2n-is-now-handling-100-
percent-of-of-ssl-traffic-for-amazon-s3/. Accessed 15 Jan 2018

39. Schmidt, S.: Introducing s2n, a new open source TLS implementation (2015).
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-
implementation/. Accessed 15 Jan 2018

40. MacCarthaigh, C.: s2n and Lucky 13 (2015). https://aws.amazon.com/blogs/
security/s2n-and-lucky-13/. Accessed 15 Jan 2018

41. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Verifiable side-channel
security of cryptographic implementations: constant-time MEE-CBC. In: Peyrin,
T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 163–184. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-52993-5 9

42. Brad Conte: Basic implementations of standard cryptography algorithms, like
AES and SHA-1 (2018). https://github.com/B-Con/crypto-algorithms. Commit:
02b66ec38b474445d10a5d1f0114bc0e8326707e

43. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message
Authentication. RFC 2104, RFC Editor, February 1997. http://www.rfc-editor.
org/rfc/rfc2104.txt

44. Freier, A., Karlton, P., Kocher, P.: The Secure Sockets Layer (SSL) Protocol Ver-
sion 3.0. RFC 6101, RFC Editor, August 2011. http://www.rfc-editor.org/rfc/
rfc6101.txt

https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/978-3-319-08867-9_7
https://clang.llvm.org/
https://clang.llvm.org/
https://aws.amazon.com/blogs/security/s2n-is-now-handling-100-percent-of-of-ssl-traffic-for-amazon-s3/
https://aws.amazon.com/blogs/security/s2n-is-now-handling-100-percent-of-of-ssl-traffic-for-amazon-s3/
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://aws.amazon.com/blogs/security/s2n-and-lucky-13/
https://aws.amazon.com/blogs/security/s2n-and-lucky-13/
https://doi.org/10.1007/978-3-662-52993-5_9
https://github.com/B-Con/crypto-algorithms
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc6101.txt
http://www.rfc-editor.org/rfc/rfc6101.txt

Towards Verification of Ethereum Smart
Contracts: A Formalization

of Core of Solidity

Jakub Zakrzewski(B)

University of Warsaw, ul. S. Banacha 2a, 02-097 Warsaw, Poland
j.zakrzewski@mimuw.edu.pl

Abstract. Solidity is the most popular programming language for writ-
ing smart contracts on the Ethereum platform. Given that smart con-
tracts often manage large amounts of valuable digital assets, considerable
interest has arisen in formal verification of Solidity code. Designing verifi-
cation tools requires good understanding of language semantics. Acquir-
ing such an understanding in case of Solidity is difficult as the language
lacks even an informal specification.

In this work, we evaluate the feasibility of formalization of Solidity
and propose a formalization of a small subset of Solidity that contains
its core data model and some unique features, such as function modifiers.

Keywords: Solidity · Ethereum · Smart contracts · Semantics

1 Introduction

Ethereum is a blockchain-based platform that provides a globally-consistent vir-
tual general-purpose computer, called the Ethereum Virtual Machine. The pro-
grams to be executed on the EVM, called smart contracts, are provided in a
stack-based machine language, which has a corresponding assembly language.
But most smart contracts are written in higher-level languages. The most pop-
ular language of those is called Solidity. Given that Ethereum smart contracts
often manage assets worth millions of US dollars, bugs in their design may lead
to enormous harm. Since there is so little margin for error, considerable interest
has arisen in formal verification of Solidity code.

To design accurate verification tools, one needs to know precisely what Solid-
ity is. Superficially, Solidity seems to be a simple language that should be easy
to understand for anyone familiar with mainstream programming languages of
the C family, as it was designed with similarity to JavaScript in mind. However,
after reading the freely available documentation while investigating the possi-
bility of creating such a tool, we realized that we do not really understand the

J. Zakrzewski—This work was partially supported by the Polish NCN grant
2013/11/B/ST6/01381.

c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 229–247, 2018.
https://doi.org/10.1007/978-3-030-03592-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_13

230 J. Zakrzewski

language well. In the pursuit of providing high-level features, while maintaining
the abstractions efficiently implementable for the Ethereum Virtual Machine,
the creators of the language ended up with a language that has a very different
type system and data model, and numerous unusual features. To improve our
understanding of Solidity, we needed a precise specification.

Although much work has gone into formalizing and verifying the Ethereum
Virtual Machine bytecode [1,7–9,12], there appears to be a paucity of studies
on Solidity. A previous work on the topic by Bhargavan et al. [5] does not give
explicit semantics. As such, we set out to create a new formalization. Since
even an informal specification of the Solidity language does not exist, we had to
design the semantics by studying the official documentation, doing experiments,
and analysis of Solidity compiler sources. To enable establishing trust in the
specification, we implemented it in an executable form in Coq, in a way such that
it is possible to extract a working interpreter of the language. In the future, this
will enable testing the semantics and comparing it with the real implementation.

Semantics for the complete Solidity language will be rather complex due to
the multitude of features the language provides. In this paper:

– We give an overview of Solidity and highlight some surprising and, in our
opinion, poorly documented features of the language, like modifiers and the
data model (Sect. 2). We consider providing an accurate description of these
language features to be a necessary step towards creating sound and complete
verification tools for Solidity.

– We describe the dynamic semantics of several core Solidity constructs for-
mally. Our semantics is given in an executable form in Coq, however here, it
is described in conventional metanotation (Sect. 3). Our semantics omit many
features we consider inessential to enabling deductive verification of contract
state invariants. For example, we do not model transaction fees. Since provid-
ing insufficient funds for a transaction fee simply causes the whole transaction
to abort without affecting the contract state.

2 Overview of Solidity

Solidity was originally designed as a JavaScript-like, but typed, programming
language for the Ethereum platform. The language is structured into contract
definitions, function and modifier definitions, statements, and expressions. A
Solidity source unit is composed of contract definitions. Figure 1 presents the
abstract syntax of the described fragment of Solidity.

2.1 Contracts and Messages

At source level, contracts appear similar to classes in object-oriented languages.
They can contain declarations of state variables (analogous to class fields), defini-
tions of functions (method), modifiers, constructors, and structs (record type),
they support encapsulation (visibility attributes), and can even inherit from

Towards Verification of Ethereum Smart Contracts 231

e

cst
e1 e2∗
1 2

op

1 2

cst
n

n

stmt 1 2

StructFieldDef
StructDef
FunDef

ModifierDef
StateVarDef
ContractDef

Fig. 1. Abstract syntax of our core Solidity.

multiple other contracts. All the defined entities reside in a single namespace.
Functions can be statically overloaded. For resolving the visibility of inherited
identifiers the creators of Solidity opted for the widely used C3 linearization
algorithm [4].

To enable deployment on the Ethereum platform, the contract functions are
compiled into EVM bytecode and a piece of code called function selector is
added, which serves as an entry point into the contract code. The resulting
EVM program is put in a contract account on the Ethereum network, which,

232 J. Zakrzewski

in addition to storing code, also holds a certain amount of virtual currency.
From that point on, other Ethereum accounts may trigger execution of contract
functions or currency transfers by sending messages to the contract account.
Whenever someone sends a message to the contract account, the contract code
starts executing at the function selector. The selector decodes the message and
jumps into an appropriate contract function (method). Solidity supports custom
handling of messages that do not specify a concrete function to call, by the way
of specifying fallback functions.

Functions return values using return variables. Their names can be either
explicitly specified by the programmer, or it may be unique identifiers generated
during the typechecking phase.

The declarations of local variables, in addition to type names and variable
names can have a storage location. Local variables of simple scalar types, i.e.
machine integers and Ethereum network addresses, do not need, or allow, this
annotation. They always reside on the EVM stack. However, in addition to those
simple types, we can declare pointers to compound types, such as structs and
arrays. Objects of these types can reside in two locations: memory and storage.
These are described in more detail in following subsections.

State Variables. State variables can store storage objects. Storage objects
can be either scalars (machine integers, addresses, booleans), arrays of stor-
age objects (either fixed-size or resizable), structs (records of storage objects) or
mappings. Mappings are a sort of hash tables that are able to map certain hash-
able types to storage objects. However unlike typical hash tables, they do not
store the keys alongside the values and do not implement any collision resolution
mechanism. Instead, a key hashing scheme based on a collision resistant crypto-
graphic hash function is used to derive an address where the value is stored [19]
in the large 256-bit virtual address space of EVM storage. This lack of collision
resolution complicates formal reasoning about operations on mappings, so we
decided to treat this aspect as an implementation detail and abstract it away
in our formalization, i.e. treat mappings as formal mappings, with no hashing
involved.

The state variables reside in persistent storage of a given account, i.e. they
are a part of the global state of the Ethereum network.

Note that the storage, as viewed from Solidity, does not behave like a tradi-
tional automatically managed heap of objects linked by pointers. Instead, storage
objects are treated as values. As a result, assigning directly to a state variable
causes deep copying, as demonstrated in Fig. 2. Notably though, this does not
work for mappings, as they cannot be copied. Still, structs with a field of map-
ping type can be copied, though the problematic field in the destination object
is simply left alone, preserving the old values.

That said, pointers to non-scalar storage objects can be taken and stored in
local variables. An important thing to notice is that storage objects have auto-
matic lifetimes, tied to reachability from a state variable. For example, calling
the function foo of the following contract in Fig. 3 results in an error.

Towards Verification of Ethereum Smart Contracts 233

Fig. 2. Direct storage assignment example.

Fig. 3. An example demonstrating storage data structure lifetime.

Modifiers. A unique feature of Solidity are the function modifiers, a function-
ality somewhat similar to Python decorators. They are often used to add pre-
condition checks to contract functions. The modifiers assigned to a function are
executed before entering the actual function body. The modifier hands over the
control flow to the next modifier or the function body when so-called placeholder
statement is encountered (;).

address owner;

modifier my_modifier(address a) {

if (a != owner) { throw; }

_; // enter the function body

}

function foo() my_modifier(msg.sender) returns (uint) {

uint a; a += 1;

return a;

}

The official Solidity documentation does not go into much detail on the semantics
of modifiers. It only gives examples of the very simplest cases. For example,
consider code in Fig. 4.

Multiple things are not obvious about the behavior of the function foo() and
are not described by the documentation:

234 J. Zakrzewski

Fig. 4. Example of confusing modifier code

– Are function’s local variable values preserved when it is entered multiple times
from modifiers? Our experiments indicate that they are;

– Are modifier’s local variable values preserved when it is entered multiple times
from other modifiers? In this case it seems that they are not;

– When are arguments passed to modifiers evaluated? They are evaluated anew
each time the modifier is entered.

Struct Definitions. A struct definition in Solidity consists of a list of pairs
of type names and field names. The definition can be used to instantiate both
memory and storage objects, and the storage location of the object is propagated
to fields. This means e.g. that pointers to storage objects cannot be stored in
memory structs.

2.2 Type Names

The internal type system of the Solidity compiler is richer than the syntax sug-
gests, as it tracks additional type attributes, like storage location for composite
types. As a result, we have to differentiate type names from the actual types.
The actual type of the declared entity depends on the context of the declaration
and annotations provided by the programmer. This may be directly observed in
error messages produced by the compiler. For example, a local variable declared
as uint[] storage a has type uint[] storage pointer, while a storage vari-
ables declared as uint[] b has type uint[] storage ref.

Towards Verification of Ethereum Smart Contracts 235

2.3 Statements

We consider a limited set of simple control structures, such as if/then/else, while
loops. Additional features such as for and do/while loops are left out, as their
semantics are not particularly unusual.

One novel construct found in Solidity is the placeholder statement ;. It may
appear only in function modifiers, where it denotes the point of entry into the
next modifier or the function body.

The return statements interrupt the control flow and jump out of the func-
tion body. Providing an explicit value to the return statement causes it to have
the side effect of assigning to the return variable. The control flow returns either
to the caller or to a function modifier if one is used. The modifier may then
reenter the function body. In that case all values of local variables, including
return variables, are preserved.

2.4 Expressions

The annotation cname in state variable access and assignment statements of our
abstract language denotes the contract (class) where the referenced variable is
defined. It is not a part of Solidity’s concrete syntax and is inferred by the type
checker.

Function calls in Solidity can be of several types: internal, external, delegate,
and calls to certain builtin functions. Internal function calls are simply jumps
in the code of the current account. External calls cause a message to be sent
over the Ethereum network, executing code on another account. Delegate calls
exist to provide a functionality akin to shared libraries. That is, they allow code
from another account to directly operate on the storage of calling account. The
semantics of external and delegate calls are notorious source of bugs in contracts
[2], notably the DAO [6] and Parity multi-sig contract [16] incidents. Since the
code executed by outgoing external function calls may not be available, or not
written in Solidity, we decided to specify the behavior of such calls only in terms
of axioms that effectively state that arbitrary changes to the network state could
be made. This is not very helpful for verification purposes, however a provision
could be made for preservation of certain global invariants.

The semantics of this keyword in Solidity is quite unusual. In Solidity this is
the address of the current account in the Ethereum network, which the contract
can use to send an Ethereum message to itself. Directly accessing state variables
using this is not possible, and though accessor functions are generated for public
state variables, calling them incurs the cost of a message call. These phenomena
are demonstrated by Fig. 5.

An especially unusual corner case is using this in constructors. The con-
structors execute before this account is actually able to receive and decode
messages in the Ethereum network, which means that dispatching calls on this
in a constructor, as in Fig. 6, causes a runtime error.

The order of evaluation of sub-expression in Solidity is explicitly left unspec-
ified. Since this is tangential to the concepts we want to explore in this paper,
we assume for simplicity a deterministic order.

236 J. Zakrzewski

Fig. 5. this cannot be used to access state variables directly.

Fig. 6. this incorrectly used in a constructor.

Interestingly, the Solidity language has no constants of machine integer types.
Instead, all numeric constants in the source are treated by the compiler as arbi-
trary precision rational numbers. At the typechecking stage, the constants are
folded, and the results are converted to machine integers of type appropriate to
the source context. However, since this step can be done entirely statically, we
do not model this in our semantics.

2.5 Memory Objects in Solidity

As mentioned before, Solidity programs have access to auxiliary volatile memory.
The view of memory as provided by Solidity is that of a mapping of pointers
to memory objects. Memory objects can be either arrays or structs, which can
contain scalars or pointers to other memory objects.

Note that there are no mappings in memory. Also, unlike in the case of
storage, memory objects cannot be contained in other memory objects as values.
Importantly, this means that a single struct declaration in Solidity can have two
very different concrete representations.

Fig. 7. An example struct declaration.

For example, when the struct definition in Fig. 7 is instantiated in memory,
we get an object that contains a single field a that is a pointer to a memory

Towards Verification of Ethereum Smart Contracts 237

array. An attempt to access m results in a type error. On the other hand, a state
variable of type S, contains an object that has two fields, one of them being a
storage array object (not a pointer), and the other a mapping.

Somewhat confusingly though, whenever a local variable of memory pointer
type is defined, it is automatically initialized to point to a newly allocated mem-
ory object of given type and this initialization is recursive, i.e. all nested pointers
in the object are initialized the same way. In fact, Solidity does not allow the
programmer to explicitly allocate memory objects other than dynamically sized
arrays, nor it provides any facility to free allocated objects or otherwise reclaim
allocated memory. Thus, the code in Fig. 8, unlike the similar code in Fig. 2, does
not result in an error being raised.

Fig. 8. Memory allocation.

3 Formalization

Our formalization of Solidity focuses on dynamic semantics and it is written as
an interpreter in Coq, in monadic functional big-step semantics style described
by Owens et al. [15], however in this paper it is presented in a more conventional
notation. Describing the semantics of the full Solidity language, including its type
system, is too big to fit in a workshop paper. In order to make our presentation
feasible, we focus here only on a subset of Solidity that captures the following
features:

– contracts with storage,
– memory,
– inheritance,
– modifiers.

We omit other features, such as function overloading, visibility specifiers, rational
constant types, integers of sizes less than 256 bits, packed byte array types,
libraries, events, and most of Solidity’s global built-in functions and variables. We
assume all functions are callable both internally and externally. These features
were left out, as they are either laborious to implement or not very interesting
from the point of view of dynamic semantics. We have aimed for the formalization

238 J. Zakrzewski

to be as abstract as possible, for example by not exposing the EVM data model,
to make reasoning about programs simpler.

The Ethereum Network. The main effect of executing smart contract code
is altering the state of the Ethereum network. From the point of view of our
formalization, the Ethereum network σ is a partial mapping of addresses to
accounts.

An account is a triple 〈b, p, s〉 of balance b (the amount of currency the
account holds), the contract program p, and storage s. The contract program p
can be thought of as a pair 〈c, cdefs〉 of contract name and a list of definitions
of the account contract, as well as all its parents in the inheritance hierarchy.
To model the object-oriented nature of Solidity contracts, we abstract from the
low-level EVM view of the account storage as a mapping of machine words to
machine words, and instead we consider it to be analogous to a field table in Jinja
[14]. Therefore, a storage s is a partial mapping from pairs (var, cname) to stor-
age objects so, where var is the name of the variable and cname is the identifier
of the contract (class) where the variable was defined. Both those components
are needed, since inheritance may lead to a single contract containing more than
one variable of the same name. Storage objects can be thought of as trees con-
taining values in their leaves and with mappings, arrays or structs as their nodes:
so ::= Smapping (m), where m ∈ v → so

| Sarray (a, typ, l), a ∈ Z → option(so), l ∈ Z

| Sstruct (s), s ∈ ident → option(so)
| Sval (v)

This is similar to the model of C++ objects proposed by Ramananandro et al.
[17]. Solidity mappings are total, initially mapping all keys to default objects of
declared value type. Arrays contain, aside from partial mappings from indices
to storage objects, length, and type information to allow bounds checking and
initializing objects in new cells when resizing.

The contract execution is done as a part of a transaction which can be
triggered by messages sent to the network. Two kinds of messages are cur-
rently of interest to us: creation messages, which are used to create new con-
tract accounts in the network, and normal call messages. We do not attempt
to formalize the Solidity ABI specification. Instead, for our purposes, cre-
ation messages are quadruples 〈as, v, p, vs〉 and normal messages are quintuples
〈as, ar, v, funname, vs〉, where as and ar are the network addresses of the sender
and recipient accounts, the value v that holds the amount of currency sent, p is
contract code, funname is a name of a function to call, and vs is a list of values,
which are the arguments to the constructor or the called function.

Memory. Memory m can be thought of as a mapping loc → mo from a
set of locations to memory objects. Memory objects can be either arrays
or structs that store values, including pointers to other memory objects:
mo ::= Marray(a), a ∈ Z → option(v)

| Mstruct(s), s ∈ ident → option(v)
Since memory arrays are not resizable, unlike storage arrays, they do not

need to carry type information. Storage references in memory are disallowed by
the type system. We use mempty to denote an empty memory.

Towards Verification of Ethereum Smart Contracts 239

Values. Values range over 256-bit machine integers, Booleans, storage
references, memory pointers, and internal or external function pointers.
v ::= Vbool (b), b ∈ {true|false} booleans

| Vint (n), n ∈ Z, 0 ≤ n < 2256 machine integers
| Vaddr (a), a ∈ Z, 0 ≤ n < 2160 addresses
| Vsref (sref) storage references
| Vmptr (loc) memory pointers
| Vifptr (funname, cname) internal function pointers
| Vefptr (a, n, funname) external function pointers

sref ::= SRmapping val(sref , v)
| SRarray cell(sref , i), i ∈ Z
| SRsfield(sref , funname)
| SRvar(var , cname)

Storage references are paths to (sub)objects in the storage of the current
account. This accurately models the reachability and lifetimes of storage objects.
Memory pointers, on the other hand, are simply locations. Internal function
pointers contain a function name and the identifier of the contract where it is
defined. External function pointers contain an address of an external account,
value (i.e. the amount of currency to send along with the call), as well as a
function name.

Lvalues. Lvalues are entities that designate an assignable location in one
of the available storage locations. Lvalues may either point to locals, stor-
age objects, cells in memory arrays, fields in memory structs, or tuples.
lv ::= LVlocal (var) local variable

| LVstorage (sref) storage reference
| LVmem arr cell (loc, i), i ∈ Z memory array cell
| LVmem sfield (loc, fname) memory struct field
| LVtuple (lv∗) tuple

Most of these are self-explanatory. Tuple lvalues are a syntactic construct
mostly used to retrieve multiple return values from a function. They are produced
by tuple expressions appearing in an lvalue context. Tuple values do not exist,
so they cannot be assigned to variables or passed as parameters.

3.1 Big Step Semantics

State. State μ is a tuple 〈a,m, σ, lf , lm〉 of the address a of the current account,
memory m, network σ, function local store lf , and modifier local store lm. To
accurately model the semantics of Solidity function modifiers, we introduce two
stores for local variables: a function local store and a modifier local store. These
stores are partial mappings from identifiers to values. A function store is used to
hold local variables of the currently executing function, while a modifier store is
used to hold local variables of currently executing modifier, if any. We use lempty

to denote an empty store.

240 J. Zakrzewski

Evaluation. The evaluation judgments are of the following forms:
� msg , σ ⇒ σ′ transactions

p, q, f � stmt , μ ⇒ out , μ′ statements
p � e, μ ⇒ out , μ′ expressions
p � e, μ ⇐ out , μ′ expressions in lvalue position

The entry point to our semantics is the transaction judgment. A transaction
judgment relates a message msg and a network state σ to a new network state
σ′. The judgments for statements, expressions, and lvalues relate corresponding
syntactic elements to the outcomes of their execution in the given state μ. The
symbol q denotes the modifier stack, while f is the function being executed.
The modifier stack stores pairs 〈fm, e∗〉 of function modifiers that are yet to
be executed and lists of their unevaluated arguments (i.e. expressions). The
top of the stack contains the modifier that is entered when the next placeholder
statement is encountered. The return variables are used to store the return values
of the currently executing function.

The rules for expressions and statements may produce one of the following
outcomes:

out ::= OK(v) | OK(lv) | OK(vs) | Return | Fail
The OK outcome means normal termination. A successful termination may yield
a value v, lvalue lv, or a list of values vs. The OK notation is “overloaded” respec-
tively. Return is used to interrupt control flow and jump out of the function body
upon encountering a return statement. The Fail outcome is used to propagate
exceptions, which cannot be caught and always cause the transaction to fail. In
Solidity execution may fail for several reasons, like performing invalid storage
accesses or transaction fees exceeding allowances, however we are currently not
interested in tracing the causes of these failures.

Space constraints make it impossible to exhaustively list all the rules of our
core language, so we give only a few examples of rules we consider interesting.

Account Creation. First things first, we give a rule describing contract account
creation. Whenever someone wants to deploy a new contract on the Ethereum
network, they have to send a creation message containing contract code. This
results in a new account being created and the contract’s constructor being run.

msg = 〈as, v, p, vs〉
σ1(a) = None σ2 = σ1[a → 〈v, pempty ,mkstorage(p)〉]

μ = 〈a, mempty , σ2,mklocals(c, vs), lempty〉
run constructors(p, μ) = μ′ μ′ = 〈. . . , σ3, . . .〉 σ4 = σ3[a → 〈. . . , p, . . .〉]

� msg , σ1 ⇒ ε, σ4

Here, the account with address as (the sender) sends a creation message into the
network, with the aim of deploying the contract p. The rule for handling creation
messages generates a fresh network address a. Under this address, a new account
with empty contract code, denoted by pempty , is stored, resulting in a modified
network σ′. The mkstorage(p) function creates a new storage, with all storage
variables in p set to default values. Similarly, mklocals(c, vs) creates a new local
variable store with the arguments of c mapped to vs and locals initialized to

Towards Verification of Ethereum Smart Contracts 241

default values. Then, constructors of the contract and its superclasses are run
according to reverse MRO (the C3 algorithm [4]), i.e. from the most basic to the
most derived. Only when all these steps execute successfully, the contract code
is actually stored1 in the network σ4. The result of the transaction is an empty
list of values ε and the network σ4. Note that executing constructors does not
require special handling of internal virtual function calls. Our experiments show
that functions called are always those of the most derived contract, even if its
constructor has not yet finished executing.

Handling Normal Messages. Once we have a contract account on the network, we
may execute its functions. This is done by sending messages with the appropriate
value of the recipient field, as captured by the following rule:

msg = 〈as, a, v, fn, vs〉 σ1(a) = 〈b, p, s〉 MRO(fn, p) = c
lookup(p, fn, c) = f

μ1 = 〈a, mempty, σ1[a → 〈b + v, p, s〉],mklocals(f, vs), lempty〉
p,modifiers(f, p), retvars(f) � ;, μ1 ⇒ OK(ε), μ2 μ2 = 〈. . . , σ2, l

f
2 , . . .〉

rvs = [lf2 (retvar1(f)), . . . , lf2 (retvarn(f))]

� msg , σ1 ⇒ rvs, σ2

where the function retvars simply extracts the return variables of a given func-
tion, while modifiers looks up modifier definitions and builds the modifier stack.
Here, the sender as tries to trigger the execution of a function2 called fn. This rule
basically performs the role of the function selector. MRO(funname, p) returns
the identifier of the contract where according to the method resolution order
the function should be looked up. The lookup function retrieves the function
definition. Then we set the modifier stack to contain all the called function’s
modifiers and reuse the rule for the placeholder statement to actually start
executing the first function modifier, or otherwise enter the function body.
After the execution of the function terminates, the values of its return vari-
ables retvar1(f), . . . , retvarn(f) are extracted and returned. Note that we are
assuming any function can receive currency, but in Solidity only those declared
as payable can do that.

Internal Function Calls. The internal call of a function given as a pointer is
similar, however not messages are involved:

p � e1, μ1 ⇒ OK(Vifptr(fn, c)), μ2 p � e2∗, μ2[⇒]OK(vs), μ3

lookup(p, fn, c) = f μ3 = 〈a, m3, σ3, l
f
3 , lm3 〉

μ4 = 〈a, m3, σ3, mklocals(f, vs∗), lempty〉
p,modifiers(f, p), f � ; , μ4 ⇒ OK(ε), μ5

μ5 = 〈. . . , lf4 , . . .〉 rvs = [lf4 (retvar1(f)), . . . , lf4 (retvarn(f))]

p � e1(e2∗), μ1 ⇒ OK(rvs), μ5

1 Readers acquainted with the internals of Solidity might notice that, unlike the real
thing, we do store the constructor code in the network. However, after the account
is created, the constructors become inaccessible anyway.

2 For simplicity function overloading is not taken into account here. To make it work,
Solidity ABI uses hashes of the function signature, instead of just names and this is
a mechanism that we do implement in Coq.

242 J. Zakrzewski

where [⇒] means extension of evaluation to lists of expressions.

External Function Calls. External calls are specified in terms of an external call
axiom:

p � e1, μ1 ⇒ OK(Vefptr(a, v, fn)), μ2 p � e2∗, μ2[⇒]OK(vs), μ3

μ3 = 〈a, m3, σ3, l
f
3 , lm3 〉

external call(σ3, a, v, fn) = v′, σ4 μ4 = 〈a, m3, σ4, l
f
3 , lm3 〉

p � e1(e2∗), μ1 ⇒ OK(v′), μ4

An external call may arbitrarily change the state of the network, including the
invoking account. This is a important source of security issues [6], as well as a
problem for verification, since we lose any knowledge about the state we had
up to this point. However this is not a new problem, as it has long been known
in the context of verification of object-oriented programs [3,10,11,13]. Several
methodologies for reasoning about invariants across such calls have been pro-
posed. Perhaps the simplest one is visible-state semantics, which would involve
enforcing the invariants at all external call sites [11].

Modifiers and the Placeholder Statement. Next we give the semantics of the
placeholder statement and function modifier execution. This rule may be trig-
gered either as a part of the function call rules above, or when a placeholder
statement is encountered inside a modifier. Once we are there, one of two possi-
bilities may arise. The first one is that we have no more modifiers to execute, so
we set the modifier local store to empty and enter the function body. This case
is described by the following judgment:

μ = 〈a, m, σ, lf , lm〉 μ′ = 〈a, m, σ, lf , lempty〉
p, ε, f � body(f), μ′ ⇒ o, μ′′ o �= Fail

p, ε, f � ;, μ ⇒ OK(ε), μ′′

where the function body extracts the body of a given function. The second pos-
sibility is that we still have modifiers to execute:

μ1 = 〈a, m1, σ1, l
f
1 , lm1 〉 μ2 = 〈a, m1, σ1, l

f
1 , lempty〉

p � e∗, μ2[⇒]OK(vs), μ3 μ3 = 〈a, m3, σ3, l
f
3 , lempty〉

μ4 = 〈a, m3, σ3, l
f
3 ,mklocals(fm, vs)〉

p, q′, f � body(fm), μ4 ⇒ o, μ5 o �= Fail

p, 〈fm, e∗〉 :: q, rv � ;, μ1 ⇒ OK(ε), μ5

where 〈fm, e∗〉 :: q is a notation for list pattern matching. We evaluate the argu-
ments, create a new modifier local store and fill it with default values of the next
modifier’s local variables, pop the next modifier off the modifier stack and enter
its body.

Having a separate store for function and modifier locals allows us to ensure
that if the actual function body is entered more than once, the values of func-
tion’s local variables are preserved, in accordance with the observed behavior
produced by the Solidity compiler.

Towards Verification of Ethereum Smart Contracts 243

Return Statement. The return statement is simple, but still interesting because
of the return variable mechanism and its interaction with modifiers. The rule
assigns values to the return variables and interrupts the control flow by using
the Return outcome.

p � e∗, μ[⇒]OK(vs), μ′ μ′ = 〈. . . , lf , . . .〉
μ′′ = 〈. . . , lf [retvar1(f) → vs1, . . . , retvar(f) → vsn], . . .〉

p, q, f � return e∗; , μ ⇒ Return, μ′′

Local Variables. Local variable scoping follows Solidity versions prior to 0.5.0,
i.e. there is a single scope for the entire function body. The lvalue rule for local
variable is very simple:

p � var , μ ⇐ OK(LVlocal(var)), μ

There are two rules for dereferencing locals, one for modifiers, and one for
functions:

p � e, μ ⇐ OK(LVlocal(var)), μ s = 〈a, m, σ, lf , lm〉 lm(var) = Some(v)

p � e, μ ⇒ OK(v), μ

p � e, μ ⇐ OK(LVlocal(var)), μ s = 〈a, m, σ, lf , lm〉
lm(var) = None lf (var) = Some(v)

p � e, μ ⇒ OK(v), μ

Local variables are first looked up in the modifier store and then, if this fails, in
the function store. This could cause functions locals to be shadowed by modifier
locals, but we ensure that this is not the case by setting the modifier store
to empty when entering a function body. This trick allows us to forgo adding
information about whether our current expression is evaluated within a function
or modifier body. The possibility of accessing function locals from modifiers
should be ruled out during the typechecking phase.

State Variables and Storage. Now we show the rules dealing with state variables
and storage objects. The lvalue rules are straightforward:

p � var{cname}, μ ⇐ OK(LVstorage(SRvar(var , cname))), μ

p � e, μ ⇒ OK(Vsptr(sr)), μ′

p � e.fname, μ ⇐ OK(LVstorage(SRstruct field(sr , fname))), μ′

Analogous rules exist for element access of arrays or mappings.
The rules for dereferencing storage objects are as follows:

p � e, μ ⇐ OK(LVstorage(sr)), μ μ = 〈. . . , s, . . .〉 s(sr) = Some(Sval(v))

p � e, μ ⇒ OK(v), μ

244 J. Zakrzewski

p � e, μ ⇐ OK(LVstorage(sr)), μ μ = 〈. . . , s, . . .〉 s(sr) �= Some(Sval())

p � e, μ ⇒ OK(Vsref(sr)), μ

When the storage reference points to an Sval, the value it contains is returned.
Otherwise a pointer is returned.

Assigning to a storage location in Solidity is quite complicated. Consider the
rule for assigning from another storage location:

p � e1, μ1 ⇐ OK(LVstorage(sr1)), μ2 p � e2, μ2 ⇒ OK(Vsrefsr2), μ3

μ3 = 〈a, m3, σ3, l
f
3 , lm3 〉 σ3(a) = 〈b, p, s〉

s(sr1) = Some(so1) s(sr2) = Some(so2) copy over(so1, so2) = Some(so3)

s′ = s[sr1 → so3] μ4 = 〈a, m3, σ3[a → 〈b, p, s′, lf3 , lm3 〉]〉
p � e1 = e2, μ ⇒ OK(storage dereference(sr1, s

′)), μ4

As mentioned before, assigning a storage object to a storage location causes
deep copying into that location. Intuitively, it should be sufficient to replace the
storage object so1 pointed to by sr1 with so2. Sadly, the inability to copy contents
of mappings introduces an ugly corner case: when copying so2 object over so1,
the contents of mappings reachable from so1 are preserved. That behavior is
modeled by the function copy over .

3.2 Current State of the Coq Development

As mentioned, we have written down our semantics in an executable form in
Coq. This way, it can be combined with code that parses and typechecks Solid-
ity to enable execution of basic contract code. Currently, a very rudimentary
test environment has been implemented that enables running simple contract
functions, such as the examples given in Sect. 2, except those involving external
calls.

Solidity is quite a large language and a significant amount of work is still
to be done claim any completeness or run real-world contracts. In particular,
our typechecker is written in a mostly ad-hoc manner in Ocaml, still largely
incomplete and limited to features necessary for execution, such as resolving
state variable names and expression types. Other features of the type system,
such as visibility and mutability specifiers are ignored. Solidity provides a number
of syntactic sugar constructs, such as named arguments, that we left out. We
still do not support the full range of available types and builtin functions. For
example, support for small integer types, strings, and packed byte arrays is
incomplete. Libraries (accounts containing reusable code), an another widely
used feature yet to be formalized, are an significant omission, especially since
their semantics can also be a source of serious problems [16]. Some features, like
inline assembly, are incompatible with our high-level modeling and cannot be
implemented.

Once we implement enough of the language, to establish trust in the speci-
fication, we plan to test the semantics against the Solidity compiler test suite.
The way we plan to do this, is by implementing a mock Ethereum client with an
RPC API that accepts Solidity code instead of EVM bytecode and modifying

Towards Verification of Ethereum Smart Contracts 245

the Solidity test suite to work with it. The work on this infrastructure has been
started, but it is not yet fully functional.

4 Related Work

Bhargavan et al. [5] provided a verification framework for a subset of Solidity by
the way of shallow embedding in F*, a programming language aimed at program
verification. However they have not provided explicit semantics, and we could
not reproduce the data model of Solidity from the descriptions thereof.

Much work has been put into formally specifying the semantics of the
Ethereum Virtual Machine. Hirai [9] defined EVM semantics in Lem, a lan-
guage that can be compiled into specifications for several theorem provers, and
then used it to prove safety properties of smart contracts. His formalization was
extended with a program logic by Amani et al. [1]. Hildenbrandt et al. [8] defined
complete executable EVM semantics in the K Framework, which passed the ref-
erence test suite for EVM implementations. Luu et al. have created Oyente [12],
a static analysis tool for EVM bytecode. For that purpose, they have developed
a simplified semantics of a fragment of EVM. Grishchenko et al. [7] present
complete small-step semantics of EVM bytecode, formalized in F*.

Sergey et al. [18] describe Scilla, an intermediate-level programming lan-
guage for smart contracts that aims to provide clear operational semantics. They
restrict the computation model to communicating automata and mandate exter-
nal calls to occur at the end of a transaction. This makes the language more
amenable to formal verification techniques.

5 Conclusions and Future Work

We have presented a formalization of what we consider to be the core of Solidity,
in the form of big-step semantics. We have focused on high-level modeling of the
data model and semantics of internal function calls with function modifiers. We
have written down our semantics in an executable form in Coq.

Many features used in real contracts still remain to be formalized. In the near
future we plan to specify semantics of a larger subset of Solidity. To establish
trust in the specification, the executable semantics could then be tested against
the official Solidity compiler test suite. Additionally, a coming release of Solidity
(0.5.0) is planned to bring many changes to the language, like C99-like block
scoping for local variables, and our semantics has to be adapted accordingly.

Verification of realistic contracts is still a somewhat distant goal. We do
not consider raw operational semantics to be a practical tool for verification of
contracts, for example due to axiomatization of external calls. Ultimately, our
aim with this work is to provide a foundation for verification frameworks for
smart contracts written in Solidity.

Acknowledgements. I would like to thank Aleksy Schubert for his helpful comments
on the draft versions of this paper.

246 J. Zakrzewski

References

1. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying ethereum smart
contract bytecode in Isabelle/HOL. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2018, pp. 66–77.
ACM, New York (2018). https://doi.org/10.1145/3167084

2. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

3. Barnett, M., DeLine, R., Fahndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. J. Object Technol. 3, 2004 (2003)

4. Barrett, K., Cassels, B., Haahr, P., Moon, D.A., Playford, K., Withington, P.T.:
A monotonic superclass linearization for Dylan. In: Proceedings of the 11th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 1996, pp. 69–82. ACM, New York (1996). https://doi.org/
10.1145/236337.236343

5. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: ACM
Workshop on Programming Languages and Analysis for Security, Vienna, Austria,
October 2016. https://doi.org/10.1145/2993600.2993611, https://hal.inria.fr/hal-
01400469

6. Buterin, V.: CRITICAL UPDATE Re: DAO Vulnerability. https://blog.ethereum.
org/2016/06/17/critical-update-re-dao-vulnerability/. Accessed 24 April 2018

7. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST
2018. LNCS, vol. 10804, pp. 243–269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89722-6 10

8. Hildenbrandt, E., et al.: KEVM: a complete semantics of the ethereum virtual
machine. Technical report (2017)

9. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

10. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24851-4 22

11. Leino, K.R.M., Stata, R.: Checking object invariants (1997)
12. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts

smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2016, pp. 254–269. ACM, New York(2016).
https://doi.org/10.1145/2976749.2978309

13. Naumann, D.A., Barnett, M.: Towards imperative modules: reasoning about invari-
ants and sharing of mutable state. Theor. Comput. Sci. 365(1), 143–168 (2006).
https://doi.org/10.1016/j.tcs.2006.07.035. Formal Methods for Components and
Objects

14. Nipkow, T.: Jinja: towards a comprehensive formal semantics for a Java-like lan-
guage. In: Schwichtenberg, H., Spies, K. (eds.) Proof Technology and Computation,
pp. 247–277. IOS Press, Amsterdam (2006)

15. Owens, S., Myreen, M.O., Kumar, R., Tan, Y.K.: Functional big-step semantics. In:
Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 589–615. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49498-1 23

https://doi.org/10.1145/3167084
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1145/236337.236343
https://doi.org/10.1145/236337.236343
https://doi.org/10.1145/2993600.2993611
https://hal.inria.fr/hal-01400469
https://hal.inria.fr/hal-01400469
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-3-540-24851-4_22
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1016/j.tcs.2006.07.035
https://doi.org/10.1007/978-3-662-49498-1_23

Towards Verification of Ethereum Smart Contracts 247

16. A Postmortem on the Parity Multi-Sig Library Self-Destruct. https://paritytech.
io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/. Accessed 24 April
2018

17. Ramananandro, T., Dos Reis, G., Leroy, X.: Formal verification of object layout for
C++ multiple inheritance. In: Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011, pp.
67–80. ACM, New York (2011). https://doi.org/10.1145/1926385.1926395

18. Sergey, I., Kumar, A., Hobor, A.: Scilla: a smart contract intermediate-level lan-
guage. CoRR arXiv:abs/1801.00687 (2018)

19. Solidity documentation. https://solidity.readthedocs.io/en/develop/index.html.
Accessed 22 April 2018

https://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://doi.org/10.1145/1926385.1926395
http://arxiv.org/abs/abs/1801.00687
https://solidity.readthedocs.io/en/develop/index.html

Relational Equivalence Proofs Between
Imperative and MapReduce Algorithms

Bernhard Beckert, Timo Bingmann, Moritz Kiefer, Peter Sanders,
Mattias Ulbrich, and Alexander Weigl(B)

Institute of Theoretical Informatics, Karlsruhe Institute of Technology,
Karlsruhe, Germany

weigl@kit.edu

Abstract. Distributed programming frameworks like MapReduce, Spark
and Thrill, are widely used for the implementation of algorithms oper-
ating on large datasets. However, implementing in these frameworks is
more demanding than coming up with sequential implementations. One
way to achieve correctness of an optimized implementation is by deriving
it from an existing imperative sequential algorithm description through
a sequence of behavior-preserving transformations.

We present a novel approach for proving equivalence between imper-
ative and deterministic MapReduce algorithms based on partitioning the
equivalence proof into a sequence of equivalence proofs between interme-
diate programs with smaller differences. Our approach is based on the
insight that proofs are best conducted using a combination of two kinds
of steps: (1) uniform context-independent rewriting transformations; and
(2) context-dependent flexible transformations that can be proved using
relational reasoning with coupling invariants.

We demonstrate the feasibility of our approach by evaluating it on
two prototypical algorithms commonly used as examples in MapReduce
frameworks: k-means and PageRank. To carry out the proofs, we use a
higher-order theorem prover with partial proof automation. The results
show that our approach and its prototypical implementation enable
equivalence proofs of non-trivial algorithms and could be automated to
a large degree.

1 Introduction

Motivation. Frameworks for functional programming for distributed programs,
such as MapReduce [10], Spark [25] and Thrill [4] address the challenges aris-
ing in the implementation of large-scale distributed algorithms by providing a
limited set of operations whose execution is automatically parallelized and dis-
tributed among the nodes in a cluster. However, designing efficient algorithms in
these frameworks is a challenge in itself. A good starting point for a distributed
algorithm is an existing imperative algorithm which is then translated into a
MapReduce framework. This initial program could be taken from a textbook on

c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 248–266, 2018.
https://doi.org/10.1007/978-3-030-03592-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_14

Equivalence of Imperative and MapReduce Algorithms 249

algorithms or could be a sequential implementation from an existing code base
that is to be optimized. However, the translation into MapReduce can be non-
trivial, and the original algorithmic structure is often lost during the translation
since imperative constructs do not translate directly into the functional MapRe-
duce primitives. Implementing efficient algorithms using MapReduce frameworks
can thus require significant and elaborate alterations to a given imperative algo-
rithm.

By proving the equivalence of the original imperative algorithm and its
MapReduce version, one can verify that no bugs have been introduced during
the translation. While such proofs do not directly provide correctness guaran-
tees for the MapReduce algorithm, they transfer correctness results from the
imperative version to the MapReduce implementation. The transferred correct-
ness properties can be formal proofs whose reach then extends to the distributed
implementation, but can also be informal arguments, e.g., if the algorithm is a
well-known, simple textbook reference implementation or if it has been success-
fully applied previously.

In this paper, we use the term “MapReduce” in a broader sense than implied
by the two functions “map” and“reduce”. While some frameworks such as
Hadoop’s MapReduce [24] module are programmed strictly by specifying these
two functions, the more popular and widely used distributed frameworks provide
many additional primitives for performance reasons and to make them easier to
program with. Theoretically, these additional primitives can be reduced to only
map and reduce operations [6], but this overly complicates the program descrip-
tion and is generally not used in real-world applications.

Contribution of This Paper. We present an interactive verification approach
with which a MapReduce implementation of an algorithm can be proved equiv-
alent to an imperative implementation (to the best of our knowledge this is the
first framework for the purpose of such equivalence proofs, see Sect. 6). Proofs are
conducted as chains of individual, smaller behavior-preserving program trans-
formations.

One novelty of the approach is that it brings together two approaches for
equivalence reasoning: (1) proving equivalence by means of a series of uniform
context-independent rewriting transformations; and (2) proving equivalence by
means of relational deductive program verification using coupling invariants. We
show how the approaches can be applied alternatingly. We identified a catalogue
of 13 individual rules. Correctness of 10 of those rules was proven formally using
the Coq theorem prover.

Our approach has a high potential for automation. The required interaction
is designed to be as high-level as possible. The proof is guided by user-specified
intermediate programs from which the individual transformations are derived.
The rules are designed such that their side conditions can be proved automat-
ically and we describe how pattern matching can be used to allow for a more
flexible specification of intermediate steps.

250 B. Beckert et al.

We describe a workflow for integrating this approach with existing interactive
theorem provers. We have successfully implemented the approach as a prototype
within the interactive theorem prover Coq [22] and evaluated the feasibility of our
approach by applying it to the k-means and PageRank algorithms. These two are
prototypical algorithms commonly used as examples in MapReduce frameworks,
because they exhibit the most common patterns found in large-scale distributed
data processing applications. By showing that our approach can be applied to
these two examples, we demonstrate that it can be extended to a much larger
set of applications.

Interleaving Different Types of Proofs. We came to the important insight
that the proof task requires the interplay of two kinds of sub-proofs:

(1) Uniform, context-independent and pattern-driven transformations that can
locally change one program into another with a severely changed control
flow. Rewriting techniques can be applied to perform such proof steps.

(2) Context-dependent but flexible equivalence proofs that preserve the control
flow, but change the data representation. Relational deductive reasoning
using coupling invariants allows us to conduct such proof steps.

In previous work [12,18], we have explored how equivalence proofs can be con-
ducted effectively if the two programs to be compared exhibit a similar control
flow. In this case, the relational reasoning approach (2) using coupling pred-
icates that logically manifest the relation between the two program states at
given synchronization points proved very successful, and often runs fully auto-
matically. The reason for this is that if coupling predicates can be used, only
the relationship between two current states needs to be captured in logic – func-
tional properties (what the code actually computes) need not be formalized. The
less similar the two compared programs are, the more difficult and less effective
becomes this type of reasoning. However, differences in the control flows can
often be bridged by aligning them through behavior-preserving rewriting rules
of type (1) (like loop unrolling, loop peeling, function inlining) which are applied
prior to the verification [17].

The presented approach now generalizes this idea by interleaving steps of
both types. This permits us to apply relational reasoning even for the semanti-
cally larger gap between implementations of different programming paradigms.
Both types of rules (context-independent rewriting and context-dependent rela-
tional reasoning) are necessary for such equivalence proofs: Rewriting rules can
modify the control flow (and sometimes the data representation), but – being
pattern-driven – are very inflexible in the input they can operate on. Relational
reasoning on the other hand is not local; thus, it can be very flexible to show
differently laid out programs are correct – as long the control flow is generally
kept.

Overview of the Approach. The main challenge in proving the equivalence
of an imperative and a MapReduce algorithm lies in the potentially large struc-
tural difference between two such algorithms. Existing relational verification
approaches (like [12,13,19,23]) exploit the fact that the two program versions to

Equivalence of Imperative and MapReduce Algorithms 251

Fig. 1. Chain of equivalent programs is translated into formalized functional language

be compared are structurally similar, which allows the verification to focus on
describing and proving the similarity of the implementations rather than describ-
ing what they actually compute. To deal with the complexity arising from the
large structural differences, the equivalence of imperative and MapReduce algo-
rithms is not shown in one step, but as a succession of equivalence proofs for
structurally closer program versions.

To this end, we require that the translation of the algorithm is broken down
(by the user) into a chain of intermediate programs. For each pair of neighboring
programs in this chain, the difference is comparatively small and can usually be
reduced to one isolated transformation.

The imperative algorithm, the intermediate programs, as well as the MapRe-
duce implementation, are given in a high-level imperative programming lan-
guage (IL). IL is based on a While language and supports integers, booleans,
fixed-length arrays and sum and product types. It does not support recursion.
Besides the imperative language constructs, IL supports MapReduce primitives.
Given that we have stated previously that MapReduce programs tend to be of
a more functional nature, it might seem odd at first to not use a functional
language for specifying MapReduce algorithms. However, most existing MapRe-
duce frameworks are not implemented as separate programming languages but
as frameworks offered as APIs on top of imperative languages (Java for Hadoop,
Scala for Spark, or C++ for Thrill). Thereby sequential parts of MapReduce algo-
rithms can still be implemented using imperative language features.

Each program specified in the high-level imperative language is then auto-
matically translated into the formalized functional language (FFL) described in
Sect. 2. FFL is a deterministic language which might seem surprising given that
for performance reasons MapReduce frameworks often do not guarantee deter-
minism. However, the source of non-determinism in MapReduce algorithms are
non-associative and non-commutative functions used with the “reduce” prim-
itive. If all used reducer functions are associative and commutative, then the
resulting algorithm is deterministic (some frameworks only require associativity).

252 B. Beckert et al.

Reducer associativity and commutativity are assumptions for the transformation
into FFL which are not verified within our approach. Often, the justification is
trivial, e. g., for addition on natural or rational numbers. For non-trivial cases,
Chen et al. [8,9] present formal verification approaches.

The equivalence proofs are conducted on programs in FFL. An overview of
this process can be seen in Fig. 1. For each pair of neighboring programs in the
chain, a proof obligation is generated that requires proving their equivalence.
These proof obligations are then discharged independently of each other (using
the workflow described in Sect. 4). Since, by construction, the semantics of IL
programs is the same as that of corresponding FFL programs, the equivalence
of two IL programs follows from the equivalence of their translations to FFL.
Figure 2 shows two example IL programs for calculating the element-wise sum of
two arrays.

Function SumArrays(xs,ys)
begin

sum ← replicate(n, 0);
for i ← 0 to n − 1 do

sum[i] ← xs[i]+ ys[i];
end
return sum;

end

Function SumArraysZipped(xs,ys)
begin

sum ← replicate(n, 0);
zipped ← zip(xs,ys);
for i ← 0 to n − 1 do

sum[i] ← fst(zipped[i]) +
snd(zipped[i]);

end
return sum;

end

Fig. 2. Two IL programs which calculate the element-wise sum of two arrays.

The implementation of our approach based on the Coq theorem prover has
only limited proof automation and still requires a significant amount of interac-
tive proofs. We are convinced, however, that our approach can be extended such
that it becomes highly automatised and only few user interactions or none at all
are required – besides providing the intermediate programs. Further challenges
include the extension of our approach to features such as references and aliasing
which are commonly found in imperative languages.

Structure of This Paper. In Sect. 2, we lay the formal groundwork for our
approach by defining the programming language used for equivalence proofs and
the notion of program equivalence used in this paper. Section 3 describes the two
kinds of program transformations that we have identified and the techniques for
proving equivalence using these transformations. The technical framework for
equivalence proofs and the potential for automation are described in Sect. 4 and
their its evaluation is in Sect. 5. In Sect. 6, we discuss work related to the ideas
presented in this paper. Finally, we conclude in Sect. 7 and consider possible
future work.

Equivalence of Imperative and MapReduce Algorithms 253

2 Formal Foundations and Program Equivalence

In this section, we briefly describe the language FFL, introduce a reduction big-
step semantics for FFL and discuss the notion of equivalence for FFL programs.

The primary design goal of FFL is the capability to represent both imperative
and MapReduce programs written in IL. To achieve this, we follow the work
by Radoi et al. [21] and use a simply typed lambda calculus extended by the
theories of sums, products, and arrays. Furthermore, the language also contains
the programming primitives usually found in MapReduce frameworks. We also
want to limit the number of primitives included in FFL while still retaining
expressiveness. This simplifies proving general properties of FFL and proving
the correctness of rewrite rules. We accomplish this by building upon the work
of Chen et al. [7], who describe how to reduce the large number of primitives
provided by MapReduce frameworks to a smaller core.

Two new primitives iter and fold were added to translate imperative loops
directly. Compared to transforming imperative programs into a recursive form,
this allows a translation closer to the original program formulation. The fold
operator is used to translate bounded for-each iterator loops into FFL. The eval-
uation of the expression fold f v0 xs starts with the initial loop state v0 and
iterates over each value of the array xs updating the loop state by applying f .
General while loops are translated using the iter function. iter f v0 is evaluated
by repeatedly applying f to the loop state (which is initially v0) until f returns
unit to indicate termination. Program terms incorporating iter need not evaluate
to a value since the construct allows formulating non-terminating programs.

The big-step operational reduction semantics [16] of FFL is defined as a binary
relation ⇒bs . Note that, since FFL is based on lambda calculus, programs in FFL
as well as values are FFL expressions. The semantics predicate is thus a partial,
functional relation on FFL-terms.

Definition 1. An FFL term t evaluates to an FFL term v if t ⇒bs v holds. A
term t is called stuck if there exists no v such that t ⇒bs v. Terms that evaluate
to themselves are called values.

A formal definition of the syntax and semantics of FFL can be found in [2].
The evaluation of a program t in an input state (i.e., for an argument tuple a)
resulting in a output state v (a result tuple) can be formalized as the reduction
evaluation of the application of the program to the arguments: 〈t, a〉 ⇓bs v :=
app(t , a) ⇒bs v .

The semantics of FFL is deterministic. This may seem odd because most
MapReduce frameworks take considerable leeway from fully deterministic execu-
tion in the name of performance. For example, some operations may be evaluated
in a non-deterministic order depending on how fast data arrives over the net-
work leading to non-determinism if these operations are not commutative and
associative. However, non-determinism in MapReduce algorithms is usually not
desired, and the problem of checking whether or not a MapReduce algorithm
is deterministic is orthogonal to proving that it is equivalent to an imperative
algorithm. We thus consider a deterministic language model to be suitable for

254 B. Beckert et al.

our purposes and defer checking of determinism to other tools such as those
developed by Chen et al. [8,9].

Since FFL includes the potential for run-time errors such as out-of-bound
array accesses but does not include an explicit error term, the step-relation ⇒bs

is not total. The absence of an explicit error term also has the consequence that
one cannot distinguish between non-termination and runtime errors according
to the definition of program equivalence in Definition 2.

The introduction of the semantics relation allows us to define a notion of
program equivalence for FFL terms.

Definition 2. Two well-typed FFL terms s and t are called equivalent if they
(a) are of the same type τ and (b) evaluate to the same values v. We write s ∼=τ t
in this case. Using � t : τ to denote that the closed FFL term t has type τ , this
definition can be formalized as follows:

s ∼=τ t := � s : τ ∧ � t : τ ∧
∀v . (s ⇒bs v) ⇔ (t ⇒bs v) (1)

This definition of program equivalence also enforces mutual termination [11],
i.e., the property that equivalent programs either both terminate or both diverge.
In particular, two non-terminating terms of the same type are equivalent.

Fig. 3. Translation of function SumArrays (see Fig. 2) into FFL using fold and iter

(where inl and inr denote the left and right injection into a sumtype).

Example 1. Figure 3 shows two transformations of the function SumArrays (see
Fig. 2) into FFL. In Fig. 3 (a), the loop is translated using fold, and in Fig. 3
(b) using the more general iter. In both cases, it can be observed that the local
variables i and sum become λ-bound variables of the translation of the enclosing
block, in this case the loop body.

The first translation has the initial state replicate(n, 0), an array of length n
with all values set to 0, and it iterates over the indices in the array ([0; 1; . . . ;n−
1]), updating the array sum in each iteration using the write function of the
McCarthy theory of arrays.

The translation in Fig. 3(b) starts from the initial loop state (0, replicate(n, 0)).
In each iteration, an if -clause is used to check if the loop condition still evaluates

Equivalence of Imperative and MapReduce Algorithms 255

to true. If that is the case, the index is incremented and sum is updated, otherwise
the program exits the loop as indicated by inl unit and evaluates to the current loop
state.

3 Program Transformations

With the reduction of imperative and MapReduce implementations to the com-
mon language FFL, we are able to prove equivalence between two programs by
constructing a chain of single, isolated program transformations. We categorize
the transformations by their dependence on the surrounding context. A context-
independent transformation is an uniform transformation as it replaces only one
isolated subterm in the program by an equivalent term. This replacement has
no effects on other parts of the program and has only conditions on the replaced
subterm. In contrast, context-dependent transformations do not replace indi-
vidual terms but require many small changes throughout different parts of the
programs.

For example, consider the IL programs in Fig. 2. In the left IL program, the
loop iterates over two separate arrays xs and ys of the same length. In the
right IL program, the loop iterates over a single array that represents the zipped
version of xs and ys. Inspection of the FFL versions from Fig. 3 shows that a
program transformation unifying both programs requires two changes to individ-
ual subterms: (a) the initial loop state, and (b) adaption of the read and write
references.

We use two complementary techniques for proving the correctness of a trans-
formation depending on whether it is context-independent or context-dependent:
The equivalence of programs related by context-independent transformations is
proven using rewrite rules (Sect. 3.1) while the equivalence of programs related by
context-dependent transformation is shown using coupling predicates (Sect. 3.2).

fold(λacc. λx. f(acc, g(x)),
i,
xs)

�
fold(λacc. λy. f(acc, y),

i,
map(g, xs))

Side conditions: acc �∈ FV (f), x �∈ FV (f), y �∈ FV (f), x �∈ FV (g), acc �∈ FV (g)

Fig. 4. Rewrite rule for separating a loop body into two functions f and g such that the
evaluation of g is independent of all other iterations and can be computed in parallel.
FV (g) is the set of free, unbound variables in the term g.

3.1 Handling Context-Independent Transformations Using Rewrite
Rules

Intermediate programs are mostly linked by uniform context-independent trans-
formations on isolated subterms. Instead of performing and proving these local

256 B. Beckert et al.

transformations manually, we can capture them into generalized rewrite rules.
That equivalence is preserved when these generalized rewrite rules are applied,
needs to be proven only once. By maintaining and using a collection of local
transformations that have been proven correct, we can lower proof complexity
and later increase the computer assistance and automation.

A rewrite rule describes a bidirectional program transformation that allows
the replacement of a subterm within a program. It is composed of two patterns
and a set of side conditions which are sufficient for the transformation to preserve
program equivalence. A pattern is an FFL term containing metavariables.

To apply a rewrite rule on a program, we have to identify a subterm of the
program that (a) matches the first pattern and (b) satisfies the side conditions.
The transformed program is obtained by the instantiation of the other pattern
with the matched metavariables. Since the sets of bound metavariables in the two
patterns can be different, some metavariables may not be uniquely instantiated,
leading to a degree of freedom in the translation. We will discuss the practical
implications of this in Sect. 4.3.

While there is no hard limit on the complexity of the side conditions that
can be part of rewrite rules, it is desirable to use side conditions that are simple
and easy to check. This prevents the application of rewrite rules from producing
auxiliary complex proofs due to complex side conditions. In our experiments we
only encountered the following three different kinds of side conditions:

1. Two arrays xs and ys have the same length, i.e., length(xs) ∼=int length(ys).
2. t is not stuck.
3. x �∈ FV (t) where FV (t) is the set of free variables in the term t.

Section 4.3 discusses how these side conditions could be discharged automatically.
To illustrate the kind of rewrite rules used in the equivalence proofs described

in this paper, we present two of the most commonly used rewrite rules in detail.
To demonstrate the feasibility of formal correctness proofs for rewrite rules, we
have proven the correctness of most (10 out of 13 rules) of our rules in Coq . A full
listing of all FFL rewrite rules can be found in the long version of this paper [2].
The first rule, shown in Fig. 4, decomposes the loop body of a fold expression
into two separate functions f and g, where g is independent of other iterations.
Thus, g can be computed in parallel using a map operation. This rewrite rule
illustrates that rewrite rules used in proofs can often also function as guidelines
for parallelizing and distributing imperative algorithms.

The second rule, shown in Fig. 5, is similar to the previous rule in that it tries
to separate independent parts of the loop body so that they can be executed in
parallel. However, in this case, the part that is extracted is only independent of
other iterations that access different indices. The group operation can be used
to group all accesses to the same index. Using map one can then calculate the
new values for each index in xs in parallel and update ys with those new values.

Equivalence of Imperative and MapReduce Algorithms 257

fold(λacc. λ(i, x).
write(acc, i, f(i, x, acc[i])),
ys,
xs)

�

fold(λacc. λ(i, v).write(acc, i, v),
ys,
map(λ(i, vs).

(i, fold(λx′. λx. f(i, x, x′), ys[i], vs)),
group(xs)))

Side conditions: acc �∈ FV (f), x �∈ FV (f), x ′ �∈ FV (f), i �∈ FV (f), vs �∈ FV (f)

Fig. 5. Rewrite rule for grouping loop iterations which access the same index of an
array.

3.2 Handling Context-Dependent Transformations Using Coupling
Predicates

While context-independent transformations are nicely handled using rewrite
rules, context-dependent transformations can usually not be captured by pat-
terns and simple side conditions. Coupling predicates provide a flexible and effec-
tive solution to proving the correctness of context-dependent transformations –
at the cost of requiring more user interactions than rewrite rules. The use of
coupling predicates is based on the observation that analyzing two loops in lock-
step and proving that a relational property, i.e., the coupling predicate, holds
after each iteration is sufficient to prove that it holds after the execution of both
loops. Figure 6 shows the corresponding coupling invariant rule for fold. For the
purpose of presentation, we ignore the distinction between syntactic terms and
the values to which they evaluate. Besides this rule for fold, there is a similar
rule for iter.

C(i0, i′0)
∧ (∀i, i′, j. C(i , i ′) =⇒ C(f(i, xs[j]), f ′(i′, xs′[j])))

=⇒ C(fold(f, i0, xs), fold(f ′, i′0, xs′))

Fig. 6. Coupling invariant rule for fold for a coupling predicate C. Free variables are
implicitly universally quantified.

One compelling example for using coupling predicates is given in the begin-
ning of this section. The presented program transformation is provable equivalent
with the coupling invariant rule from Fig. 2. If these arrays are part of the accu-
mulator in a fold or iter, capturing this transformation by a rule patterns is
not possible: While the transformation of the initial accumulator value can be
captured using patterns, this is not sufficient since all references to the accumu-
lator in the loop body also need to be updated. These references can be nested
arbitrarily deep inside the loop body and there can be arbitrarily many refer-
ences. This makes it impossible to capture them by a single pattern which can
only bind a fixed number of variables and thereby only make a fixed number of

258 B. Beckert et al.

transformations. To make matters worse, it is not even sufficient to just trans-
form the loop itself since the loops are not equivalent: the right loop evaluates to
two separate arrays while the other evaluates to an array of tuples. It is thus nec-
essary to prove the equivalence of the enclosing terms under the assumption that
the loop in one program evaluates to a tuple of two arrays pair(xs, ys) while the
other loop evaluates to zip(xs, ys). This assumption can then be proven correct
using the coupling predicate stating that this holds after each iteration.

Another commonly found transformation is the removal of unused elements
from a tuple representing the loop accumulator. As it was the case for the previ-
ous transformation, the loops themselves are not equivalent and it is necessary to
prove enclosing terms equivalent using the assumption that the values present
in both loop accumulators are equivalent. As before, this assumption can be
proven correct using a coupling predicate which states that this holds after each
iteration.

4 Transformation Application Strategy

Splitting the translation into a chain of intermediate programs and translating
these into FFL leaves us with the problem of proving neighboring programs
equivalent. In order to reduce the amount of user interaction required to conduct
these basic equivalence proofs, we define an iterative heuristic search strategy to
identify the locations within the programs on which the program transformations
described in Sect. 3 will be applied. Algorithm 1 depicts this search strategy as
pseudocode. First, we use the structural difference operation (Diff, see Sect. 4.1)
to identify subterms P ′ and Q′ whose equivalence implies the equivalence of the
full programs P and Q. Second, we start an iterative bottom-up process in which
we try to prove the equivalence of the subterms P ′, Q′ and their enclosing terms
(ProveEquivalent), until we reached the top level programs P and Q. During
the bottom-up process, the subterms P ′ and Q′ may be found to be equivalent
only in some cases but not in others. But that is fine as long as we are able to
prove that the cases in which they are non-equivalent are not relevant in the
context in which P ′ and Q′ occur. Thus, we extract the premises under which
P ′ and Q′ are equivalent, and bubble them up to the equivalence proof for the
parent terms (AddMissingPremises, Widen, see Sect. 4.2) If we arrive at the
top-level terms and cannot prove those equivalent, the proof fails.

4.1 Using Congruence Rules to Simplify Proofs

While the difference between neighboring programs in the chain – which are
more closely related – tends to be small, the size of these programs can still
be large. This complicates interactive proofs for the user, and can also slow
down automated proofs. To reduce the complexity, we prove the equivalence of
subterms and then use congruence rules to derive the equivalence of the full
programs. A concrete example of a congruence rule is shown in Fig. 7a.

Equivalence of Imperative and MapReduce Algorithms 259

input : Two FFL terms P and Q
output: true if P and Q could be proven equivalent
Premises ← {};
(P ′,Q′) ← Diff(P ,Q);
repeat

equivalent? ← ProveEquivalent(P ′,Q′,Premises);
if equivalent? then

return true;
else

Premises ← AddMissingPremises(Premises);
(P ′, Q′) ← Widen(P ′,Q′);

end

until P ′ = P and Q′ = Q;
return false;

Algorithm 1. Strategy for individual equivalence proofs between a pair of FFL

programs.

We have found that a simple structural comparison (Diff in Algorithm 1)
is well suited for finding smaller subterms whose equivalence implies the equiv-
alence of the full programs. Diff computes the smallest two subterms such that
replacing them by placeholders results in identical terms. An example of Diff
can be seen in Fig. 7b.

xs ∼=[α] ys i ∼=Int j

read(xs, i) ∼=α read(ys, i)

Diff(fold(λ(x, y). x + y, 0, xs),
fold(λ(x, y). y + x, 0, xs))

= (λ(x, y). x + y, λ(x, y). y + x)

(b)
(a)

Fig. 7. (a) Congruence rule for read (b) Example of applying Diff

4.2 Missing Premises and Widening

During the iterative bottom-up process in Algorithm 1, P ′ and Q′ may turn out
to be non-equivalent in some cases. The strategy then tries to extract required
contextual conditions (premises) that are sufficient to ensure equivalence of P ′

and Q′ (AddMissingPremises). In the next step, we try to prove the equivalence
of enclosing terms (Widen), which contain P ′ and Q′ as subterms. Additionally,
in the widening-step, we take care of the generated premises. These have either
to be shown to always hold in the context of Widen(P ′, Q′) or in the context of
further widening.

These two steps – premise extraction and widening – are commonly required
to prove the equivalence of loop bodies. The example in Fig. 8 illustrates this.

260 B. Beckert et al.

sum ← 0;
for i ← 0 to n − 1 do

sum ← sum + xs[i];
xs ← F’(xs,ys);

end

sum ← 0;
for i ← 0 to n − 1 do

zipped ← zip(xs,ys);
sum ← sum + fst(zipped[i]);
xs ← F(zipped);

end

Fig. 8. Two potentially equivalent IL programs operating on two separate arrays (left)
and the result of applying zip to these arrays (right). xs, ys are arrays of length n. F
and F’ return arrays of the length of their input.

Applying Diff instantiates P ′ and Q′ with the two loop bodies, as they are the
topmost non-equal subterms. A coupling invariant implying that the two loops
are started in equivalent states is not sufficient to ensure equivalent loop states
after execution since zip is only defined for arrays of the same length. Thus,
the coupling invariant needs to include the premise that xs and ys are of equal
length.

In some cases, additional premises sufficient for proving equivalence can be
found by working backward from missing assumptions in failed proofs. In the
example above, proving that the program states are equivalent at the end of
each loop iteration assuming that they are equivalent at the beginning will fail
due to the missing premise that xs and ys have the same length. We thus add
this premise and try to prove the loop bodies equivalent using that premise. If
that is successful, we widen the context to enclosing terms. In the outer context,
we attempt to prove that the additional premises are satisfied and derive the
equivalence of the full loops based on proved coupling invariant.

4.3 Potential for Automation of Proofs Using Rewrite Rules

Since equivalence proofs using rewrite rules are particularly common but also
quite repetitive, this section is devoted to their potential for proof automation.
A graphical overview of the individual steps can be found in Fig. 9.

1. We perform an approximate matching procedure to generate candidate pro-
grams which match the patterns in the rewrite rule.

2. We attempt to prove that these candidates are equivalent to the input pro-
grams or otherwise we reject them.

3. We prove that the side conditions hold for these candidates.

By the correctness of the rewrite rule, the candidates are equivalent.

4.3.1 Matching of Rewrite Rules
While automatic rewriting systems have been used in the related context of
automatically translating imperative algorithms to MapReduce algorithms [21],
the specific ways in which rewrite rules are used in our approach brings new
challenges as well as simplifications.

Equivalence of Imperative and MapReduce Algorithms 261

Fig. 9. Workflow for equivalence proofs using rewrite rules. The user has to provide
the programs A,A′, B,B′ and also the rewrite rule. The equivalence proofs ③ are
computer-aided in Coq .

The challenge lies in the fact that the intermediate programs often do not
match the patterns found in rewrite rules directly. There are two typical solu-
tions: normal forms and generalization of patterns. Both are not applicable here.
First, there is no suitable normal form of FFL programs. Additionally, both pro-
grams are defined by the user, so we cannot assume a specific program structure.
Second, the formulation of generalized rewrite rules for matching the large vari-
ety of user-defined programs is difficult to obtain and also their correctness proofs
are harder to obtain.

The benefit of the programs A,A′ (resp. B,B′) being provided by the user
is that this can reduce ambiguities. In particular, the schematic variables in
the two patterns usually overlap to a large degree, but not fully. The matching
of the program A against the corresponding pattern can lead to unassigned
metavariables, which we need to instantiate with correct choices to prove the
equivalence. Now, we have the benefit, that the target program A′ is also defined
by the user. So, we can obtain missing assignments by matching the other pattern
against the other program.

To find the intermediate programs which match the patterns in rewrite rules,
an approximate match procedure is used to find assignments for schematic vari-
ables in patterns. The approximate matching is an extension of the classical
pattern matching with the background knowledge and heuristic of easy-to-prove
differences. Applying these assignments to patterns yields candidates for the
intermediate program. Once two candidates that match the patterns in a rewrite
rule have been identified, it is necessary to prove that (a) the candidates are
equivalent to the programs used as the input of the approximate matching pro-
cedure, and (b) the side conditions hold and the equivalence of the candidates
follows thereby from the correctness of the rewrite rule.

262 B. Beckert et al.

While we have only implemented rudimentary partial automation of the
equivalence proof construction, analyzing the Coq proofs produced in our exper-
iments has shown that these proofs can be reduced to the correctness of a small
number of simple transformations. Proving the correctness of these transforma-
tions automatically is feasible and could drastically reduce the need for user
interaction.

During our evaluation, one of the most prevalent transformations is call-by-
name beta-reduction or lambda abstraction depending on the direction of the
transformation for proving the equivalence (② in Fig. 9). Call-by-name beta-
reduction refers to the beta-reduction found in programming languages with
lazy semantics, which contrary to call-by-value beta-reduction, does not evaluate
the argument before applying substitution. Since we are working in a call-by-
value setting, call-by-name beta-reduction does not always produce an equivalent
program. However, the resulting program is equivalent if, for each case where the
argument would have been evaluated in the original program, all occurrences in
the new program will also be evaluated.

Most other transformations are special cases of constant-folding, e.g., reduc-
ing expressions such as fst(pair(a, b)) to a. Constant-folding does not produce
an equivalent program in general if the terms that are being folded are inside
the body of a lambda. A sufficient criterion for the resulting program to be
equivalent is that the terms being folded are always evaluated.

4.3.2 Proving Side Conditions
In Sect. 3.1 we listed the three different kinds of side conditions used in our
rewrite rules. The first of those, x �∈ FV (t), is purely syntactical and can easily
be checked automatically. While proving that a term is not stuck can be difficult
in general, in our experiments this could usually be reduced to the term being
a value, which again is a syntactical condition. The third kind of side condi-
tion states that two arrays have the same length. This can usually be proven
recursively by reduction to operations that produce arrays of a specific length,
e.g.,

∀n, a, b. length(replicate(n, a)) = length(replicate(n, b)) ,

or to length-preserving operations such as map. Note that it can be necessary
to strengthen loop invariants to carry this fact through a loop, as explained in
Sect. 4.2.

5 Evaluation and Case Study

To demonstrate the feasibility of our approach, we have created a toolchain.
The user specifies a sequence of intermediate programs in a simple imperative
language. These programs are then automatically translated into a formalization
of the previously described functional programming language FFL in Coq . In
addition to generating proof obligations, our toolchain reduces these obligations

Equivalence of Imperative and MapReduce Algorithms 263

using the mentioned structural comparison Diff, and it applies congruence rules
to reconstruct an equivalence proof of the full programs.

Using this toolchain, we have proven the equivalence of imperative and
MapReduces implementations of the PageRank algorithm [5] and the k-means
[20] algorithm in Coq . An extensive description of the PageRank example includ-
ing all intermediate programs can be found in [3]. Figure 10 shows the imper-
ative and the MapReduce implementation of PageRank that we have used in
our experiments. The MapReduce implementation of PageRank shown here is
deterministic when executed on rational numbers due to commutativity and
associativity of addition. However, the algorithm is not deterministic when exe-
cuted using floating point numbers since addition is not associative in this case.
We have not attempted the verification of algorithms based on floating point
numbers in this work.

While we have created the imperative implementations of the two algorithms
ourselves, the MapReduce versions are very close to the implementations accom-
panying the Thrill [4] framework. This reinforces our claim that FFL is capable of
representing MapReduce algorithms and is thereby suitable for this approach. In
total, the formalization of FFL, the rewrite rules, and proofs of various properties,
encompasses about 8000 lines of Coq code. The equivalence proofs of PageR-
ank and k-means each require about 3700 lines of Coq proofs. That includes
the automatically generated translation of the chain of equivalent programs (for
k-means this chain consists of 9 programs while for PageRank it consists of 6
programs), which take up large parts of these proofs. The proofs rely on the
rewrite rules which we have formalized in Coq as well as coupling predicates.

Function PageRank(links, numLinks, n)
begin

ranks ←
Replicate(numLinks, 1

numLinks
);

for i = 1 to n do
ranks’ ← Replicate(numLinks, 0);
for p = 0 to numLinks − 1 do

contrib ← ranks[p]
Length(links[p])

;
foreach q ← links[p] do

ranks’[q] ←
ranks’[q] + contrib;

end
end
for p = 0 to numLinks − 1 do

ranks[p] ←
Dampen(ranks’[p], numLinks);

end
end
return ranks;

end

Function PageRank(links, numLinks, n)
begin

ranks ←
Replicate(numLinks, 1

numLinks
);

for i = 1 to n do
outRanks ← Zip(links,ranks);
contribs ←

FlatMap(
λ(ls, r).

Map(λl.(l, r
Length(ls)

), ls),
outRanks);

rankUpdates ←
Reduce(+, 0, contribs);

ranks’ ← Replicate(numLinks, 0);
foreach (l, r) ← rankUpdates do

ranks’[l] ← r;
end
ranks ←

Map(λr. Dampen(r, numLinks),
ranks’);

end
return ranks;

end

Fig. 10. Imperative (left) and MapReduce (right) versions of the PageRank algorithm
(the function Replicate(n, v) creates an array of length n with all elements set to v;
and Dampen is an arbitrary function).

264 B. Beckert et al.

6 Related Work

A common approach to relational verification and program equivalence is the use
of product programs [1]. Product programs combine the states of two programs
and interleave their behavior in a single program. RVT [13] proves the equiv-
alence of C programs by combining them in a product program. By assuming
that the program states are equal after each loop iteration, RVT avoids the need
for user-specified or inferred loop invariants and coupling predicates.

Hawblitzel et al. [15] use a similar technique for handling recursive func-
tion calls. Felsing et al. [12] demonstrate that coupling predicates for proving
the equivalence of two programs can often be inferred automatically. While the
structure of imperative and MapReduce algorithms tends to be quite different,
splitting the translation into intermediate steps yields programs which are often
structurally similar. We have found that in this case, techniques such as cou-
pling predicates arise naturally and are useful for selected parts of an equivalence
proof.

Radoi et al. [21] describe an automatic translation of imperative algorithms
to MapReduce algorithms based on rewrite rules. While the rewrite rules are
very similar to the ones used in our approach, we complement rewrite rules by
coupling predicates. Furthermore, we are able to prove equivalence for algorithms
for which the automatic translation from Radoi et al. is not capable of producing
efficient MapReduce algorithms. The objective of verification imposes different
constraints than the automated translation – in particular, both programs are
provided by the user, so there is less flexibility needed in the formulation of
rewrite rules.

Chen et al. [7] and Radoi et al. [21] describe languages and sequential seman-
tics for MapReduce algorithms. Chen et al. describe an executable sequential
specification in the Haskell programming language focusing on capturing non-
determinism correctly. Radoi et al. use a language based on a lambda calcu-
lus as the common representation for the previously described translation from
imperative to MapReduce algorithms. While this language closely resembles the
language used in our approach, it lacks support for representing some imperative
constructs such as arbitrary while-loops.

Grossman et al. [14] verify the equivalence of a restricted subset of Spark
programs by reducing the problem of checking program equivalence to the valid-
ity of formulas in a decidable fragment of first-order logic. While this approach
is fully automatic, it limits programs to Presburger arithmetic and requires that
they are synchronized in some way.

To the best of our knowledge, we are the first to propose a framework for
proving equivalence of MapReduce and imperative programs.

7 Conclusion

We have presented a new approach for proving the equivalence of imperative
and MapReduce algorithms. This approach relies on splitting the transforma-
tion into a chain of intermediate programs. The individual equivalence proofs

Equivalence of Imperative and MapReduce Algorithms 265

are then categorized in context-independent and context-dependent transforma-
tions. Equivalence proofs for context-independent transformations are handled
using rewrite rules, while equivalence proofs for context-dependent transforma-
tions are based on coupling predicates. We have demonstrated the feasibility of
end-to-end equivalence proofs using this approach by applying it two well-known
non-trivial algorithms.

While we have hinted at the potential for automating this approach, imple-
menting automation is left as future work. In particular, it would be interesting
to explore whether existing tools for relational verification using coupling pred-
icates can be used or if new tools are necessary. Further future work includes
extending the approach presented here to support the full expressiveness pro-
vided by languages which are used to implement imperative and MapReduce
algorithms.

References

1. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

2. Beckert, B., Bingmann, T., Kiefer, M., Sanders, P., Ulbrich, M., Weigl, A.: Rela-
tional Equivalence Proofs Between Imperative and MapReduce Algorithms. ArXiv
e-prints, January 2018. arXiv:1801.08766

3. Beckert, B., Bingmann, T., Kiefer, M., Sanders, P., Ulbrich, M., Weigl, A.: Proving
equivalence between imperative and mapreduce implementations using program
transformations. In: Third Workshop Models for Formal Analysis of Real Systems
and Sixth International Workshop on Verification and Program Transformation.
Electronic Proceedings in Theoretical Computer Science, vol. 268, pp. 185–199.
Open Publishing Association (2018)

4. Bingmann, T., et al.: Thrill: high-performance algorithmic distributed batch data
processing with C++. In: IEEE International Conference on Big Data, pp. 172–
183. IEEE, December 2016. preprint arXiv:1608.05634

5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998). https://doi.org/10.1016/
S0169-7552(98)00110-X

6. Chambers, C., et al.: FlumeJava: easy, efficient data-parallel pipelines. ACM SIG-
PLAN Notices 45(6), 363–375 (2010)

7. Chen, Y.F., Hong, C.D., Lengál, O., Mu, S.C., Sinha, N., Wang, B.Y.: An Exe-
cutable Sequential Specification for Spark Aggregation (2017). arXiv:1702.02439

8. Chen, Y.-F., Hong, C.-D., Sinha, N., Wang, B.-Y.: Commutativity of reducers. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 131–146. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 9

9. Chen, Y., Song, L., Wu, Z.: The Commutativity Problem of the MapRe-
duce Framework: A Transducer-based Approach. CoRR abs/1605.01497 (2016).
arXiv:1605.01497

10. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

11. Elenbogen, D., Katz, S., Strichman, O.: Proving mutual termination. Form. Methods
Syst. Des. 47(2), 204–229 (2015). https://doi.org/10.1007/s10703-015-0234-3

https://doi.org/10.1007/978-3-642-21437-0_17
http://arxiv.org/abs/1801.08766
http://arxiv.org/abs/1608.05634
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
http://arxiv.org/abs/1702.02439
https://doi.org/10.1007/978-3-662-46681-0_9
http://arxiv.org/abs/1605.01497
https://doi.org/10.1007/s10703-015-0234-3

266 B. Beckert et al.

12. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, pp. 349–360. ASE 2014. ACM, New
York, NY, USA (2014)

13. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of the 46th
Annual Design Automation Conference, pp. 466–471. DAC 2009. ACM, New York,
NY, USA (2009)

14. Grossman, S., Cohen, S., Itzhaky, S., Rinetzky, N., Sagiv, M.: Verifying equivalence
of spark programs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol.
10427, pp. 282–300. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63390-9 15

15. Hawblitzel, C., Kawaguchi, M., Lahiri, S., Rebêlo, H.: Mutual summaries: uni-
fying program comparison techniques. In: Informal proceedings of BOOGIE
2011 workshop (2011). https://www.microsoft.com/en-us/research/publication/
mutual-summaries-unifying-program-comparison-techniques/

16. Kahn, G.: Natural semantics. STACS 87, 22–39 (1987)
17. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using com-

piler IR - combining static verification and dynamic analysis. J. Autom. Reason.
(2017)

18. Klebanov, V., Rümmer, P., Ulbrich, M.: Automating regression verification of
pointer programs by predicate abstraction. J. Formal Methods Syst. Des. 52, 229–
259 (2017)

19. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 54

20. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2),
129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

21. Radoi, C., Fink, S.J., Rabbah, R., Sridharan, M.: Translating Imperative Code to
MapReduce. SIGPLAN Not. 49(10), 909–927 (2014)

22. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project, version 8.6 (2004). http://coq.inria.fr

23. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine
programs using widening to handle recurrences. ACM Trans. Program. Lang. Syst.
34(3), 11:1–11:35 (2012). https://doi.org/10.1145/2362389.2362390

24. White, T.: Hadoop: The Definitive Guide. O’Reilly Media Inc., Sebastopol (2012)
25. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster

computing with working sets. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, pp. 10–10. HotCloud 2010, USENIX Association,
Berkeley, CA, USA (2010). http://dl.acm.org/citation.cfm?id=1863103.1863113

https://doi.org/10.1007/978-3-319-63390-9_15
https://doi.org/10.1007/978-3-319-63390-9_15
https://www.microsoft.com/en-us/research/publication/mutual-summaries-unifying-program-comparison-techniques/
https://www.microsoft.com/en-us/research/publication/mutual-summaries-unifying-program-comparison-techniques/
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1109/TIT.1982.1056489
http://coq.inria.fr
https://doi.org/10.1145/2362389.2362390
http://dl.acm.org/citation.cfm?id=1863103.1863113

Practical Methods for Reasoning About
Java 8’s Functional Programming

Features

David R. Cok(B) and Serdar Tasiran

Amazon Web Services, Seattle, USA
{davidcok,tasirans}@amazon.com

Abstract. We describe new capabilities added to the Java Modeling
Language and the OpenJML deductive program verification tool to sup-
port functional programming features introduced in Java 8. We also
report on the application of the extensions to a secure streaming protocol
library developed by Amazon Web Services and used as a foundation by
services it provides. We found that the application under study used a
small set of functional programming idioms; methods using these idioms
could be verified by techniques that used only first-order logic and did
not need all the features that might be required for full generality of
functional programming.

1 Introduction

Java 8 introduced functional programming features to Java, permitting a func-
tional programming (FP) style along with Java’s imperative style. The features
discussed in this work are function literals, functional interfaces, and implicit
iteration in the Stream API. Verification of programs using these features
requires new specification syntax in the Java Modeling Language (JML) and
new proof techniques implemented in OpenJML. Nominally, reasoning about
functions as first-class objects could require higher-order logic, instead of the
first-order logic used in many current program verification tools. The authors
faced this problem in applying the OpenJML deductive verification tool to an
important Java security protocol library developed by Amazon Web Services
(AWS).

We hypothesized that most use of Java 8 FP in practice follows a small set of
functional programming patterns. We identified three such patterns, developed
constructs in JML for specifying code that uses these FP patterns, and built
support for verifying such specifications in OpenJML, while remaining within
the existing first-order logic paradigm and the capabilities of SMT automated
tools. OpenJML with support for these features was sufficient for us to success-
fully verify the AWS library, which consisted of some 5K lines of Java 8 code.
We discuss the extensions to JML and OpenJML needed to perform deductive
verification for these Java 8 FP patterns and our experience applying these to
the AWS security protocol library. The enhanced version of OpenJML can be
c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 267–278, 2018.
https://doi.org/10.1007/978-3-030-03592-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_15

268 D. R. Cok and S. Tasiran

found at https://www.openjml.org; the GPLv2-licensed source code is available
from the github repository at https://github.com/OpenJML/OpenJML.

2 Deductive Verification, the Java Modeling Language
and the OpenJML Tool

Deductive verification (DV) is a technique in which software code and formal
requirements are each translated into a logical form and then automatically
and statically checked that the implementation conforms to the specification.
Automation is critically important for the technique to become widespread and
for efficiency in application. Thus we do not consider tools that translate into
interactive proof environments. For the Java software under study, we used the
Java Modeling Language (JML) to express specifications and OpenJML as the
DV tool.

JML [4,19] is a language for specifying behavior of (non-concurrent) Java
source code. Its syntax and semantics are similar to its host programming lan-
guage, Java, with extensions appropriate to expressing assertions in a typed
first-order logic appropriate to reasoning about software. JML is largely method-
centric, with syntax to write pre-, frame- and post-conditions for each method,
along with object invariants and other advanced features. JML is widely used
in education about software specification and as a platform for research and
experimentation in specification and reasoning about software.

An example of JML is given in Fig. 1. Syntacticly, JML specifications are
written as structured Java comments (beginning with //@ or /*@). The method
specification is expressed as a sequence of clauses: the requires clause is a pre-
condition, assignable denotes a frame-condition, ensures a post-condition, and
signals the post-condition on throwing an exception. Accompanying tools per-
form both static checking and runtime assertion checking using the JML speci-
fications.

JML is similar in purpose and structure to other Behavioral Interface Spec-
ification Languages [11]; other examples are later languages such as ACSL for
C programs [3], Spec# for C# [23], SPARK for Ada [15], and Dafny [14]; JML
was designed using experience with the Larch tools [10] and with Eiffel [16]. The
KeY tool [1] is also a program verification tool for Java, but addresses only the
pre-generics (Java 4) subset of Java.

OpenJML [5–8,21] is a tool built on the OpenJDK [20] Java compiler; it
translates both Java and JML into a logical form, eventually into SMT-LIB [2,22]
and uses back-end SMT solvers to check whether method implementations and
specifications are consistent.

Related Work. Our work builds on JML and on the OpenJML program veri-
fication tool. Like many other such tools, OpenJML translates the program and
its specifications into a logical form and then uses an SMT solver (in our case,
Z3 [9]) to check the logical verification conditions. Many other languages and
associated program verification tools have supported functional programming
for some time; examples are F*, Dafny, Leon, the Verifast tool for C programs,

https://www.openjml.org
https://github.com/OpenJML/OpenJML

Practical Methods for Reasoning About Java 8’s FP Features 269

C#, and Scala. Some proof systems, such as Coq and Isabelle, are partially inter-
active, whereas OpenJML and most SMT-based tools aim for full automation,
given program annotations. Kassios and Müller [13] showed first-order solutions
to the general case of FP features; here we achieved practical program verifica-
tion with simpler techniques. Unno et al. [18] describe how to infer the types we
use for Specification Interfaces.

Our enhanced OpenJML reported here is unique in addressing the combina-
tion of functional and imperative programming in Java, a widely used language,
using techniques that build on existing verification technology. To some extent
FP techniques could have been used within Java prior to Java 8, such as with
object-oriented callbacks. However, such uses were not common. Now that FP
is explicitly part of Java 8, programmers, such as the authors of the code used
in our case study, are much more likely to use it extensively, making the speci-
fication language and tool enhancements reported in this paper timely.

1 //@ requires i != Integer.MIN_VALUE;
2 //@ assignable \nothing;
3 //@ ensures \result >= 0 && (\ result == i || \result == -i);
4 //@ signals (Exception e) false;
5 int abs(int i);

Fig. 1. Example JML specification of an absolute-value method

3 Verifying Java’s FP Features

We observed that the uses of FP in the software under study consisted of three
code patterns: (a) functional arguments that use general Java library interface
types, (b) function literals as actual arguments, and (c) Stream objects and
operations. These are discussed below, along with four techniques we developed
that enable verification of these FP patterns.

Figure 2 shows examples of Java 8’s FP features, modeled after code in the
library, and discussed below.

3.1 Overly General Function Types

The first specification challenge is shown in Fig. 2(A). Here a function literal (a
lambda expression) is the actual argument (line 7) in a call to a method whose
body (line 5) applies the function to compute the method’s effect. Program
verification tools such as OpenJML work modularly. The implementation of each
method is verified with respect to its specification, using only the specifications
of called methods to model their effects. The method modify takes a Function
argument. This argument type gives little information about modify’s argument,
since Function and similar Java library function interfaces must necessarily have
very general specifications. Thus, considering modify by itself, we can specify
very little about its behavior, because we know very little about the argument

270 D. R. Cok and S. Tasiran

1 // Example A
2 // Function declaration with a FunctionalInterface parameter
3 int value;
4 void modify(Function <Integer ,Integer > map)
5 { value = map.apply(value); }
6 // Using the declaration above
7 { ... ; modify(x->x+1); ... }
8

9 // Example B -- like Example A, but with a local variable
10 Function <Integer ,Boolean > f = x->hasProperty(x);
11 if (f.apply(k)) ...
12

13 // Example C -- Stream API
14 boolean noNulls=true; void check(Object v) {noNulls = noNulls &&(v!=null);}
15 Stream <Object > s = ...; s.forEachOrdered(v -> check(v));

Fig. 2. Characteristic uses of FP features - function literals and Stream operations

map. The core issue in this first use pattern is that too much type information
is lost when the formal argument has the general Function type. Local variable
declarations (e.g., Fig. 2(B)) cause the same information loss.

In line 7, the argument of modify is a lambda expression (x -> x + 1). However,
to reason about the effect of the lambda expression using existing OpenJML-style
modular reasoning we need a specification of its effect. So the second, related
syntactic challenge is that there is no place (in pre-Java-8 JML) to put a specifi-
cation for lambda expressions. For this example, one could infer a specification,
but in general the body of the lambda expression is an arbitrary block of code.

We devised and implemented three techniques to meet these two challenges.

Inlining FunctionalInterface Parameters. First we note that in this exam-
ple the actual argument to modify is a function literal (line 7) (our second use
pattern in the list at the beginning of this section). If the body of modify is
available as source code, then the call to modify can be replaced by an inlined
version of its body, with the actual arguments, in particular, the function literal,
substituted and expanded. The call of modify then becomes simply value =
value + 1, which is easily handled by existing verification techniques. Thus our
first technique for handling type information loss is to inline the called method,
avoiding the conversion to the general Function type. This technique works
when the called method’s body is available, is reasonably small, and any actual
arguments of FunctionalInterface types are function literals. It can be used
when the method does not have a specification. Inlining does not generate any
new proof obligations and can avoid needing any specifications at all for the
called method. Thus it is also a useful technique for small methods, such as get-
ter and setter methods, independent of functional programming considerations.
There are no new proof obligations because the body of the method is being used
as its own specification, and so of course the specification and implementation
are consistent.

Practical Methods for Reasoning About Java 8’s FP Features 271

JML Model Programs. Inlining a method body breaks modularity because it
relies on knowing the body of called methods. If the called method is in a library,
the body may not even be available. We devised a second technique that uses
JML’s model programs. A model program is an alternate specification syntax in
which a method’s behavior is specified using Java-like statements that abstract
the effect of the method. We extended the model program syntax to allow more
statements and in a more usable manner. The modify method is specified as
1 //@ public normal_behavior

2 //@ { value = map.apply(value); }

3 public void modify(Function <Integer ,Integer > map);

In this example, the model program, which is the text within the braces, hap-
pens to duplicate the body of the method. In the more common case, it is a
simplification or abstraction of the body. For instance, if we did not care about
the final value, just that there were no other side-effects, we could write
1 //@ public normal_behavior

2 //@ { havoc value; } // changes value to an unspecified int

3 void modify(Function <Integer ,Integer > map);

Here the havoc statement states that its argument, value, might change to
some arbitrary value; since value is the only field listed, nothing else changes.
So in this technique, a method is given a model program specification; where the
method is called, the model program is inlined in place of the call, along with
asserting or assuming any other specification clauses. This preserves modularity
because we are only using the specification. Model programs work best when
there is a succinct summary of the method being specified, as in this example.

Model programs are just another form of method specification. Thus there
is a proof obligation that the model program, along with other specification
clauses, matches the implementation. As model programs are more expressive,
such proof obligations are typically more complicated than for specifications
consisting of standard clauses. However, a model program is just a sequence of
statements and can be translated just as the implementation is translated. So the
translation of the model program uses the same infrastructure as translation of
Java statements, albeit with some additional model-program-specific statements
to be translated.

The extension to JML consisted of allowing model programs as simply
another clause, written as a block of statements, with beginning and ending
braces, along with relevant proof obligations. Previously model programs were
a separate behavior type.

Specification with Model Interfaces. The above techniques apply in many
cases and simplify the verification engine’s work. But the core problem is that
the type of function objects is usually too general. To solve that problem we
insert a specification type that is more specific than the Java type (our third
technique). For example, suppose it is required that all arguments of modify
have a positive argument and produce a positive result, with no side effects. The
specification for such a method can be encapsulated in an interface like this:

272 D. R. Cok and S. Tasiran

1 interface PositivePureFunction extends Function <Integer ,Integer > {

2 //@ requires i > 0;

3 //@ assignable \nothing;

4 //@ ensures \result > 0;

5 Integer apply(Integer i);

6 }

So far these specifications are classic JML. In order to insert the new type as the
type of a parameter (without changing non-comment Java source), we extended
JML syntax as follows:
1 void modify (/*@{ PositivePureFunction }@*/ Function <Integer ,Integer > map);

2

3 // also in a local declaration:

4 /*@{ PositivePureFunction }@*/ Function <Integer ,Integer > f = ...

Here the type named within the new JML construct /*@{...}@*/ (which is
a Java comment) is the type to be used within specifications; the Java type is
unchanged. Our extension enables such syntax in any declaration. Using such a
specification type creates a type checking obligation that the specification type
is indeed a subtype of the stated Java type. Also this new specification syntax
has two new effects on proof obligations.

– First, the actual argument must be shown to meet the specification stated
by the specification type of the formal argument. In the running example,
the lambda expression x -> x + 1 must be shown to obey the specifications for
apply in PositivePureFunction.

– Second, when proving properties of the body of a method, the formal argu-
ment may be assumed to have the specification type and obey its specification,
not just the more general Java type.

Note that the design of JML ensures that derived classes or interfaces are
by definition behavioral subtypes because specifications are inherited. Thus the
substitution principle automatically holds (if implementations conform to spec-
ifications). Though other syntax for specifying the behavior of Java functional
objects could be designed, the syntax proposed here best fits with current JML
syntax and with the style used by other BISLs.

3.2 Implicit Iteration

The third use pattern is the Stream API illustrated in Fig. 2(C). Here, a function
with side effects is applied to a stream of values, with the iteration implicit.
Operations on Java 8’s Stream objects typically operate on each element of
the stream. Imperative code would write such operations with explicit loops.
Traditional specification paradigms, including JML and OpenJML, require loop
invariants to state properties and reason about the effects of iteration. Stream
operations pose two problems: (1) there are no explicit loops to which to attach
loop invariants, and (2) existing JML syntax cannot express sufficiently strong
specifications of Stream operations to enable successful verification. Our fourth
technique is a means to address this combination of problems.

Practical Methods for Reasoning About Java 8’s FP Features 273

Specifying Stream Operations with Model Programs. Note though that
Stream operations are typically very simple. For example, forEachOrdered in
Fig. 2(C) is a Java library method that just applies the given function to each
Stream element in turn. forEachOrdered can be specified using our enhanced
JML model program syntax, where the model program contains an equivalent
explicit loop with loop specifications and is inlined as part of verification. We
have added such specifications to our Java system library specifications for
forEachOrdered and other methods needed for this project. It is a task for
future work to expand the system library specifications to be sufficient for gen-
eral use. Here count() is a Java method giving the total number of elements in
the stream; \count is a JML token denoting the number seen so far.
1 /*@ { loop_invariant i==\ count && 0<=i && i<=this.count ();

2 loop_modifies i;

3 for (int i = 0; i<this.count (); i++)

4 consumer.accept(this.values[i]);

5 } @*/

6 void forEachOrdered(Consumer <? super T> consumer);

This specification of forEachOrdered is provided by our enhanced OpenJML
along with the Java library. However, it is independent of the context in which
it is used and of consumer’s action; we need something more specific at the call
site, as discussed next.

Reasoning About Implicit Iteration. In Fig. 2(C), forEachOrdered is used
to accumulate the value noNulls, which states whether all stream elements so
far are not null. Our partial specification of this example is shown next:
1 boolean noNulls = true;

2 //@ assignable noNulls;

3 //@ ensures noNulls == (\old(noNulls) && (v != null));

4 void check(Object v) { noNulls = noNulls && (v != null); }

5

6 s.forEachOrdered(v -> check(v));

7 //@ assert noNulls ==(\ forall int i; 0<=i&&i<s.count (); s.values[i]!= null);

Now we would like to establish the assertion on line 7, that noNulls is true if all
stream elements are non-null. In addition to the library specifications, we need
loop properties containing aspects of the user’s code. In the solution we devised,
we write
1 //@ loop_invariant noNulls ==(\ forall int j; 0<=j&&j<\ count; s.values[j]!= null);

2 //@ loop_modifies noNulls;

3 //@ inlined_loop;

4 s.forEachOrdered(v -> check(v));

Note that the loop properties in lines 1–2 can only be stated in the calling
program at the call site. The inlined loop directive instructs the enhanced
OpenJML (a) to inline the model program in forEachOrdered’s specification
and the lambda expression v -> check(v) to produce the combined Java code
(line 4 below) and (b) to combine the loop specifications in the model program
and the user’s loop properties to produce the effective specification in lines 1–3,
enabling the proof of the assertion on line 5.

274 D. R. Cok and S. Tasiran

1 //@ loop_invariant i==\ count && 0<=i && i<=s.count ();

2 //@ loop_invariant noNulls ==(\ forall int j; 0<=j&&j<\count; s.values[j]!= null);

3 //@ loop_modifies noNulls , i;

4 for (int i = 0; i<s.count (); i++) check(s.values[i]);

5 //@ assert noNulls ==(\ forall int j; 0<=j&&j<s.count (); s.values[j]!= null);

So in the technique we devised, we have converted the implicit iteration veri-
fication problem into one that existing OpenJML can handle by combining a
general library method specification with specific call site loop specifications.

4 Our Experience with a Case Study

4.1 Case Study Artifact

The subject of the case study is an implementation of a secure streaming com-
munication protocol that underpins much of the communication between dis-
tributed components in Amazon and AWS (e.g., AWS’s Kinesis service). The
software was a useful target for the case study in this paper for several rea-
sons. First, it was developed without deductive verification as a concern, and
consequently it is an instance of legacy code implementing a design that was
not affected by any constraints of a verification system. Second, it implements a
secure communication protocol that is important to get right. Third, it is highly
used and customers have expressed a desire for infrastructure software of this
kind to be made publicly available along with demonstrations of its correct-
ness. And fourth, the software uses Java 8 and thus is a test bed for verification
technology that applies to both imperative and functional programming styles.

This code is not yet publicly available, as it is Amazon proprietary code.
We are pursuing open-sourcing this code. It is particularly interesting that our
open-sourcing efforts are driven by requests of some key particularly security-
conscious AWS customers (e.g., military and financial). They are requesting that
we open-source the code with our proofs, to help them understand and audit how
we establish security on their behalf. This is why AWS previously open-sourced
the TLS implementation s2n for example. Our proof activities are becoming a
major asset for building customer trust.

4.2 Implementation

We used our enhanced OpenJML to verify this Java security protocol library
developed by AWS. The library enables establishing secure network communica-
tion sessions and composing and decomposing the packet frames that constitute
network messages. OpenJML was extended to be able to parse and type-check
Java 8 syntax. Then, as described above, OpenJML was augmented

– to handle the logical interpretation of Java 8 features,
– to be able to inline the source code bodies of Java methods,
– to implement the syntax and semantics of enhanced JML model programs,
– to implement the syntax and semantics of specification types, and
– to implement the additions for verifying implicit iteration.

Practical Methods for Reasoning About Java 8’s FP Features 275

The properties checked for each method include all the behavioral proper-
ties needed to verify its use by calling methods. These include typical properties
such as the absence of runtime errors, but also that, for example, output arrays
contain the data that is expected given the inputs. At the top level of the library
we used some example and test programs to verify that example end-to-end
uses of the library performed as expected. We did not verify any features using
multi-threaded execution, because that is not yet supported by JML (or Open-
JML). All loops are checked for termination, but there is no automated check
for termination of recursion. However a manual review shows only a single case
of recursion in the library.

4.3 Observations

The source code under scrutiny consisted of about 5K lines of Java code across
about 700 methods in 96 classes in 11 Java packages. The library was written
well before this project and without any design for specification and verification.
The specification task took about a person-month of effort and required about
5K lines of specification; verification requires about 16 h CPU time. After the
informal observation that the techniques described in this paper handled all the
FP uses in the library, we analyzed the FP patterns used:

(a) 20% of the methods contained at least one FP feature;
(b) a manual count identified 230 individual instances of FP features;
(c) 50% of FP uses consisted of function object literals, which in every case

could be inlined for verification purposes;
(d) another 44% were instances of general functional formal parameters or

return types; where needed these were specified by specification interface
types; and

(e) the other 6% were uses of Stream operations.

Thus, the augmented OpenJML supports deductive program verification of
all uses of FP-style code in this library. FP with unconstrained side-effects would
be as difficult to verify as programs containing unconstrained callbacks; both
would pose additional challenges to specification languages and verification tech-
nology. But the FP code under study was written in good FP style: methods were
small, methods typically had no side-effects, objects were typically immutable,
and exceptions were used only for error reporting and not for control-flow. In
this context our set of solutions worked well. Though another programming style
might emphasize a different mix of features, we expect that this basic set will
be commonly used.

The work reported here focussed on verifying the FP features in the library.
About 12% of the library’s methods require as yet unimplemented non-FP fea-
tures having to do with enums, maps, inner classes and concurrency. This remain-
ing implementation and verification is currently in progress.

Note that when using a library (such as the Java system library) that has
specifications, a client of the library simply uses the specifications. Those specifi-
cations do need to be shown to be self-consistent and the library implementation

276 D. R. Cok and S. Tasiran

does need to be shown to conform to the specification, but that is not a task for
the library client.

Although more general uses of FP features were not found in this in-the-wild
software, it certainly is possible to write Java FP code that goes beyond the
features that we found to be most prevalent. Consequently, we are in the process
of implementing a general handling of methods that produce function objects as
results and whose specifications depend on the specifications of function objects
that are arguments to the method. In this we are following the work of Kassios
and Müller mentioned above [13] and noting that of Kanig and Filliâtre [12].

A verification is only as strong as the properties that are verified. In this
work, the specifications of lower-level methods are proved consistent with their
own implementations but also are strong enough to verify routines that call those
methods. At the top levels of the library, we chose a few example programs that
exercise the library’s end-to-end functionality and whose correctness depends
on the correctness and strength of the specifications of the library components.
Some aspects were left intentionally underspecified: for example, the human-
readable content of error messages was not specified or verified, just the fact
that errors were reported under the appropriate circumstances.

5 Conclusion

We identified a set of FP coding patterns that were used in an independently
written Java library, implemented corresponding enhancements to JML and
OpenJML, and successfully verified the FP code within a 5K-line networking
library. We hypothesize that other FP-style Java software will also mostly use
a constrained set of FP features, simplifying the task of implementing support
in Java software analysis tools and enabling practical (industrial) program veri-
fication without full support of all language features. Our work was based on a
real-world, moderate sized software library, but so far just on one; planned work
on other software artifacts will determine to what extent our initial hypotheses
will need to be extended and what additional proof techniques are in fact needed.

In the current state of the art, writing specifications sufficient for verifying
behavioral properties can still require significant manual effort. It is certainly
helpful in achieving correctness that the proof of consistency itself is automated
using SMT solvers. Despite the manual effort, specifications (independent of the
code) are essential to proving behavioral correctness; without specifications one
can at best determine that a set of software does not result in runtime errors or
violate any other implicit language issues. The usability issue of writing specifica-
tions is being partially addressed by separate, independent work on automated
specification inference (e.g., [17]); however, there will always be the need to
review specifications to ensure they match the informal expectations of a pro-
gram. Specifications can also be verbose. That verbosity can also be addressed
by specification inference and appropriate defaults. These usability issues were
set aside in this project as future work that will be informed by our experience
here.

Practical Methods for Reasoning About Java 8’s FP Features 277

Thus some of the topics for immediate work are these:

– completing the features needed to have a full verification of the target library
– further verification case studies to extend the results here and as further data

to design improved usability
– generalizing the handling of function objects.

Tasks for future longer-term activities include the following:

– reducing the specification writing effort using specification inference
– implementing usability improvements to specification verbosity
– identifying specification idioms particularly useful for FP features
– extending the specifications of FP-centric features in the Java system library
– verifying the specifications for Java system library methods against actual

implementations of the library.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book: From Theory to Practice, vol.
10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories, Edinburgh, England (2010)

3. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language, version 1.10 (2013). http://frama-c.cea.fr/
acsl.html

4. Burdy, L., et al.: An overview of JML tools and applications. In: Thomas, A.,
Wan F. (eds.) Eighth International Workshop on Formal Methods for Industrial
Critical Systems (FMICS 2003). Electronic Notes in Theoretical Computer Science
(ENTCS), vol. 80, pp. 73–89. Elsevier, June 2003

5. Cok, D.: Improved usability and performance of SMT solvers for debugging speci-
fications. STTT 12, 467–481 (2010)

6. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

7. Cok, D.R.: OpenJML: software verification for Java 7 using JML, OpenJDK, and
Eclipse. In: Workshop on Formal Integrated Development Environment (F-IDE
2014). EPTCS, vol. 149, pp. 79–92, 06 April 2014, Grenoble, France (2014)

8. Cok, D.R., Kiniry, J.R.: ESC/Java2: uniting ESC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30569-9 6

9. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

10. Garland, S.J., Guttag, J.V.: A guide to LP, the larch prover. Technical report 82,
Digital Equipment Corporation, Systems Research Center, 130 Lytton Avenue,
Palo Alto, CA 94301, December 1991. Order from src-report@src.dec.com

https://doi.org/10.1007/978-3-319-49812-6
http://frama-c.cea.fr/acsl.html
http://frama-c.cea.fr/acsl.html
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-540-30569-9_6
https://doi.org/10.1007/978-3-540-30569-9_6
https://doi.org/10.1007/978-3-540-78800-3_24
http://src.dec.com/

278 D. R. Cok and S. Tasiran

11. Hatcliff, J., Leavens, G.T., Rustan, K., Leino, M., Müller, P., Parkinson, M.: Behav-
ioral interface specification languages. Technical report CS-TR-09-01, University
of Central Florida, School of EECS, Orlando, FL, March 2009

12. Kanig, J., Filliâtre, J.-C.: Who: a verifier for effectful higher-order programs. In:
Proceedings of the 2009 ACM SIGPLAN Workshop on ML, ML 2009, pp. 39–48,
New York. ACM (2009)

13. Kassios, I.T., Müller, P.: Modular specification and verification of delegation with
SMT solvers. Technical report, ETH Zurich (2011)

14. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

15. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with
SPARK. Cambridge University Press (2015)

16. Meyer, B.: Object-Oriented Software Construction. Prentice Hall, New York (1988)
17. Singleton, J.L., Leavens, G.T., Rajan, H., Cok, D.R.: Poster: an algorithm and tool

to infer practical postconditions. In: 2018 IEEE/ACM 40th IEEE International
Conference on Software Engineering (ICSE). IEEE (2018)

18. Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verification
of higher-order functional programs. SIGPLAN Not. 48(1), 75–86 (2013)

19. Many papers regarding JML can be found on the JML web site. http://www.
jmlspecs.org

20. OpenJDK. http://www.openjdk.org
21. http://www.openjml.org
22. http://www.smtlib.org
23. The Spec# web site gives code, documentation and papers. http://research.

microsoft.com/SpecSharp/

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
http://www.jmlspecs.org
http://www.jmlspecs.org
http://www.openjdk.org
http://www.openjml.org
http://www.smtlib.org
http://research.microsoft.com/SpecSharp/
http://research.microsoft.com/SpecSharp/

Verification of Binarized Neural Networks
via Inter-neuron Factoring

(Short Paper)

Chih-Hong Cheng(B), Georg Nührenberg, Chung-Hao Huang,
and Harald Ruess

fortiss - Landesforschungsinstitut des Freistaats Bayern, Munich, Germany
{cheng,nuehrenberg,huang,ruess}@fortiss.org

Abstract. Binarized Neural Networks (BNN) have recently been pro-
posed as an energy-efficient alternative to more traditional learning net-
works. Here we study the problem of formally verifying BNNs by reducing
it to a corresponding hardware verification problem. The main step in
this reduction is based on factoring computations among neurons within
a hidden layer of the BNN in order to make the BNN verification problem
more scalable in practice. The main contributions of this paper include
results on the NP-hardness and hardness of PTAS approximability of
this essential optimization and factoring step, and we design polynomial-
time search heuristics for generating approximate factoring solutions.
With these techniques we are able to scale the verification problem to
moderately-sized BNNs for embedded devices with thousands of neurons
and inputs.

1 Introduction

Neural networks are used for perception and scene understanding [12,16,20]
and also for control and decision making [4,9,14,23] in autonomous systems.
Implementations of artificial neural networks, however, are very power-intensive
due to complex floating point arithmetics. Binarized Neural Networks (BNNs),
which are based on bit-level arithmetic, have therefore recently been proposed
[6,11] as an attractive alternative to more traditional neural networks for
resource-constrained embedded applications (e.g. based on FPGAs [1]). BNNs
also demonstrate satisfactory performance on a number of standard benchmark
datasets in image recognition including MNIST, CIFAR-10 and SVHN [6].

Here we study the verification problem for BNNs. Given a trained BNN and a
specification of its intended input-output behavior we develop verification proce-
dures for establishing that the given BNN indeed meets its intended specification
for all possible inputs. For solving the verification problem of BNNs, we build
on well-known methods from the hardware verification domain (Sect. 4). How-
ever, even with efficient neuron-to-circuit encoding we were not able to verify
BNNs with thousands of inputs and hidden nodes as encountered in some of our
embedded systems case studies.
c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 279–290, 2018.
https://doi.org/10.1007/978-3-030-03592-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_16

280 C.-H. Cheng et al.

Table 1. An example of computing the output
of a BNN neuron, using bipolar domain (up) and
using 0/1 boolean variables (down).

index j 0 (bias node) 1 2 3 4

x
(l−1)
j +1 (constant) +1 −1 +1 +1

w
(l)
ji −1 (bias) +1 −1 −1 +1

x
(l−1)
j w

(l)
ji −1 +1 +1 −1 +1

im
(l)
i +1

x
(l)
i +1, as im

(l)
i ≥ 0

index j 0 (bias node) 1 2 3 4

x
(l−1)
j 1 1 0 1 1

w
(l)
ji 0 (bias) 1 0 0 1

x
(l−1)
j ⊕ w

(l)
ji 0 1 1 0 1

of 1’s in x
(l−1)
j ⊕ w

(l)
ji 3

x
(l)
i 1, as (3 ≥ � 5

2 �)

n
(l)
i

w
(l)
0i

w
(l)
1i

w
(l)

dl−1i

x
(l−1)
0 = +1

x
(l)
i

x
(l)
i = (im(l)

i ≥ 0) ?+1 : -1

im
(l)
i =

∑d(l−1)

j=0
w

(l)
ji x

(l−1)
j

node structure

input-output function under ±1

where

x
(l−1)
1

x
(l−1)
dl−1

x
(l)
i =

∑d(l−1)

j=0
w

(l)
ji x

(l−1)
j

l = Ll < L (hidden layer) (output layer)

Fig. 1. Computation inside a neu-
ron of a BNN, under bipolar
domain ±1.

It turns out that one critical ingredient for efficient BNN verification is to
factor computations among neurons in the same layer, which is possible due to
the binary weights of inter-neuron connections in BNNs. Notice, however, that
these factorings techniques are not directly applicable to floating-point based
neural networks [5,7,10,15,19]. The key theorem regarding the hardness of find-
ing optimal factoring as well as the hardness of inapproximability (Sect. 4.2)
leads to the design of polynomial time search heuristics for generating factor-
ings. These factorings substantially increase the scalability of formal verification
via SAT solving (Sect. 5) to moderately-sized BNNs for embedded applications
with thousands of neurons and inputs.

2 Related Work

There has been a flurry of recent results on formal verification of neural net-
works (e.g. [5,7,10,15,19]). These approaches usually target the formal verifi-
cation of floating-point arithmetic neural networks (FPA-NNs). Huang et al.
propose an (incomplete) search-based technique based on satisfiability modulo
theories (SMT) solvers [8]. For FPA-NNs with ReLU activation functions, Katz
et al. propose a modification of the Simplex algorithm which prefers fixing of
binary variables [10]. This verification approach has been demonstrated on the
verification of a collision avoidance system for UAVs. In our own previous work
on neural network verification we establish maximum resilience bounds for FPA-
NNs based on reductions to mixed-integer linear programming (MILP) problems
[5]. The feasibility of this approach has been demonstrated, for example, by ver-
ifying a motion predictor in a highway overtaking scenario. The work of Ehlers
[7] is based on sound abstractions, and approximates non-linear behavior in
the activation functions. Scalability is the overarching challenge for these for-
mal approaches to the verification of FPA-NNs. Case studies and experiments

Verification of Binarized Neural Networks via Inter-neuron Factoring 281

reported in the literature are usually restricted to the verification of FPA-NNs
with a couple of hundred neurons.

Around the time (Oct 9th, 2017) we first release of our work regarding formal
verification of BNNs, Narodytska et al have also worked on the same problem
[17]. Their work focuses on efficient encoding within a single neuron, while we
focus on computational savings among neurons within the same layer. One can
view our result and their results being complementary.

3 Preliminaries

Let B be the set of bipolar binaries ±1, where +1 is interpreted as “true” and
−1 as “false”. A Binarized Neural Network (BNN) [6,11] consists of a sequence
of layers labeled from l = 0, 1, . . . , L, where 0 is the index of the input layer, L is
the output layer, and all other layers are so-called hidden layers. Superscripts (l)

are used to index layer l-specific variables. Elements of both inputs and outputs
vectors of a BNN are of bipolar domain B.

Layers l are comprised of nodes n
(l)
i (so-called neurons), for i = 0, 1, . . . , d(l),

where d(l) is the dimension of the layer l. By convention, n
(l)
0 is a bias node and

has constant bipolar output +1. Nodes n
(l−1)
j of layer l − 1 can be connected

with nodes n
(l)
i in layer l by a directed edge of weight w

(l)
ji ∈ B. A layer is fully

connected if every node (apart from the bias node) in the layer is connected to all
neurons in the previous layer. Let w(l)

i denote the array of all weights associated
with neuron n

(l)
i . Notice that we consider all weights in a network to have fixed

bipolar values.
Given an input to the network, computations are applied successively from

neurons in layer 1 to L for generating outputs. Figure 1 illustrates the computa-
tions of a neuron in bipolar domain. Overall, the activation function is applied
to the intermediately computed weighted sum. It outputs +1 if the weighted
sum is greater or equal to 0; otherwise, output −1. For the output layer, the
activation function is omitted. For l = 1, . . . , L let x

(l)
i denote the output value

of node n
(l)
i and x(l) ∈ B

|d(l)|+1 denotes the array of all outputs from layer l,
including the constant bias node; x(0) refers to the input layer.

For a given BNN and a relation φrisk specifying the undesired property
between the bipolar input and output domains of the given BNN, the BNN
safety verification problem asks if there exists an input a to the BNN such that
the risk property φrisk(a, b) holds, where b is the output of the BNN for input a.

It turns out that safety verification of BNN is no simpler than safety ver-
ification of floating point neural networks with ReLU activation function [10].
Nevertheless, compared to floating point neural networks, the simplicity of bina-
rized weights allows an efficient translation into SAT problems, as can be seen
in later sections.

Theorem 1. The problem of BNN safety verification is NP-complete.

282 C.-H. Cheng et al.

Proof. Given a BNN and a relation φrisk specifying the undesired property
between the bipolar input and output domains of the given BNN, the BNN
safety verification problem asks if there exists an input a to the BNN such that
the risk property φrisk(a, b) holds, where b is the output of the BNN for input a.

(NP) Given an input, compute the output and check if φrisk(a, b) holds can
easily be done in time linear to the size of BNN and size of the property formula.

(NP-hardness) The NP-hardness proof is via a reduction from 3SAT to BNN
safety verification. Consider variables x1, . . . , xm, clauses c1, . . . , cd where for
each clause cj , it has three literals lj1 , lj2 , lj3 . We build a single layer BNN with
inputs to be x0 = +1 (constant for bias), x1, . . . , xm, xm+1 (from CNF variables),
connected to d neurons.

For neuron n1
j , its weights and connection to previous layers is decided by

clause cj .

– If lj1 is a positive literal xi, then in BNN create a link from xi to neuron n1
j

with weight −1. If lj1 is a negative literal xi, then in BNN create a link from
xi to neuron n1

j with weight +1. Proceed analogously for lj2 and lj3 .
– Add an edge from xm+1 to n1

j with weight −1.
– Add an edge with weight -1 from x0 to n1

j as bias term.

For example, consider the CNF having variables x1, . . . , x6, then the trans-
lation of the clause (x3 ∨ ¬x5 ∨ x6) will create in BNN the weighted sum com-
putation (−x3 + x5 − x6) − x7 − 1.

Assume that x7 is constant +1, then if there exists any assignment to make
the clause (x3 ∨¬x5 ∨x6) true, then by interpreting the true assignment in CNF
to be +1 in the BNN input and false assignment in CNF to be −1 in the BNN
input, the weighted sum is at most −1, i.e., the output of the neuron is −1. Only
when x3 = false, x5 = true and x6 = false (i.e., the assignment makes the clause
false), then the weighed sum is +1, thereby setting output of the neuron to be
+1.

Following the above exemplary observation, it is easy to derive that 3SAT
formula is satisfiable iff in the generated BNN, there exists an input such that
the risk property φrisk := (xm+1 = +1 → (

∧n
i=1 x

(1)
i = −1)) holds. It is done by

interpreting the 3SAT variable assignment xi := true in CNF to be assignment
+1 for input xi in the BNN, while interpreting xi := false in 3SAT to be −1 for
input xi in the BNN. ��

4 Verification of BNNs via Hardware Verification

The BNN verification problem is encoded by means of a combinational miter [3],
which is a hardware circuit with only one Boolean output and the output should
always be 0. The main step of this encoding is to replace the bipolar domain
operation in the definition of BNNs with corresponding operations in the 0/1
Boolean domain.

Verification of Binarized Neural Networks via Inter-neuron Factoring 283

We recall the encoding of the update function of an individual neuron of
a BNN in bipolar domain (Eq. 1) by means of operations in the 0/1 Boolean
domain [6,11]: (1) perform a bitwise XNOR (⊕) operation, (2) count the number
of 1s, and (3) check if the sum is greater than or equal to the half of the number of
inputs being connected. Table 1 illustrates the concept by providing the detailed
computation for a neuron connected to five predecessor nodes. Therefore, the
update function of a BNN neuron (in the fully connected layer) in the Boolean
domain is as follows.

x
(l)
i = geq⌈ |d(l−1)|+1

2

⌉(count1(w(l)
i ⊕x(l−1))), (1)

where count1 simply counts the number of 1s in an array of Boolean variables,
and geq⌈ |d(l−1)|+1

2

⌉(x) is 1 if x ≥ ⌈ |d(l−1)|+1
2

⌉
, and 0 otherwise. Notice that the

value
⌈ |d(l−1)|+1

2

⌉
is constant for a given BNN. Here we omit details, but spec-

ifications in the bipolar domain can also be easily re-encoded in the Boolean
domain.

4.1 From BNN to Hardware Verification

We are now ready for stating the basic decision procedure for solving BNN ver-
ification problems. This procedure first constructs a combinational miter for a
BNN verification problem, followed by an encoding of the combinational miter
into a corresponding propositional SAT problem. Here we rely on standard trans-
formation techniques as implemented in logic synthesis tools such as ABC [3] or
Yosys [24] for constructing SAT problems from miters. The decision procedure
takes as input a BNN network description, an input-output specification φrisk

and can be summarized by the following workflow:

1. Transform all neurons of the given BNN into neuron-modules. All neuron-
modules have identical structure, but only differ based on the associated
weights and biases of the corresponding neurons.

2. Create a BNN-module by wiring the neuron-modules realizing the topological
structure of the given BNN.

3. Create a property-module for the property φrisk. Connect the inputs of this
module with all the inputs and all the outputs of the BNN-module. The
output of this module is true if the property is satisfied and false otherwise.

4. The combination of the BNN-module and the property-module is the miter.
5. Transform the miter into a propositional SAT formula.
6. Solve the SAT formula. If it is unsatisfiable then the BNN is safe w.r.t. φrisk;

if it is satisfiable then the BNN exhibits the risky behavior being specified in
φrisk.

4.2 Counting Optimization

The goal of the counting optimization is to speed up SAT-solving times by
reusing redundant counting units in the circuit and, thus, reducing redundancies

284 C.-H. Cheng et al.

1
1

1

1

1

1

1

0
0

0

0
0
0
0

0

0
0

n
(l)
1

XNOR ⊕

count1 geq3

n
(l)
2

count1 geq3

n
(l)
3

count1 geq3

0

XNOR ⊕

XNOR ⊕

n
(l−1)
0

n
(l−1)
1

n
(l−1)
2

n
(l−1)
3

n
(l−1)
4

n
(l−1)
5

Fig. 2. One possible factoring
to avoid redundant counting.

V1 V2

1

2

3

5

6

7

8

(b)

n
(l)
1

n
(l)
2

n
(l)
3

n
(l)
δ

n
(l−1)
5

n
(l−1)
6

n
(l−1)
7

n
(l−1)
8

n
(l)
δ

XNOR ⊕

count1 geq

1

1

n
(l)
1

XNOR ⊕

count1 geq1
1

n
(l)
2

XNOR ⊕

count1 geq

1

n
(l)
3

XNOR ⊕

count1 geq

1

1

1

1

1

1

(c)(a)

Fig. 3. From bipartite graph (a) to BNN where
all weights are with value 1 (b), to optimal fac-
toring (c).

in the SAT formula. This method involves the identification and factoring of
redundant counting units, illustrated in Fig. 2, which highlights one possible
factoring. The main idea is to exploit similarities among the weight vectors
of neurons in the same layer, because the counting over a portion of the weight
vector has the same result for all neurons that share it. The circuit size is reduced
by using the factored counting unit in multiple neuron-modules. We define a
factoring as follows:

Definition 1 (factoring and saving). Consider the l-th layer of a BNN where
l > 0. A factoring f = (I, J) is a pair of two sets, where I ⊆ {1, . . . , d(l)},
J ⊆ {1, . . . , d(l−1)}, such that |I| > 1, and for all i1, i2 ∈ I, for all j ∈ J ,
we have w

(l)
ji1

= w
(l)
ji2

. Given a factoring f = (I, J), define its saving sav(f) be
(|I| − 1) · |J |.
Definition 2 (non-overlapping factorings). Two factorings f1 = (I1, J1) and
f2 = (I2, J2) are non-overlapping when the following condition folds: if (i1, j1) ∈
f1 and (i2, j2) ∈ f2, then either i1
= i2 or j1
= j2. In other words, weights
associated with f1 and f2 do not overlap.

Definition 3 (k-factoring optimization problem). The k-factoring optimization
problem searches for a set F of size k factorings {f1, . . . , fk}, such that any two
factorings are non-overlapping, and the total saving sav(f1) + · · · + sav(fk) is
maximum.

For the example in Fig. 2, there are two non-overlapping factorings f1 =
({1, 2}, {0, 2}) and f2 = ({2, 3}, {1, 3, 4, 5}). {f1, f2} is also an optimal solution
for the 2-factoring optimization problem, with the total saving being (2 − 1) ·
2+ (2− 1) · 4 = 6. Even finding one factoring f1 which has the overall maximum

Verification of Binarized Neural Networks via Inter-neuron Factoring 285

saving sav(f1), is computationally hard. This NP-hardness result is established
by a reduction from the NP-complete problem of finding maximum edge biclique
in bipartite graphs [18].

Theorem 2 (Hardness of factoring optimization). The k-factoring optimization
problem, even when k = 1, is NP-hard.

Proof. The proof proceeds by a polynomial reduction from the problem of finding
maximum edge biclique in bipartite graphs(MEB) [18]1. Given a bipartite graph
G, this reduction is defined as follows.

1. For v1α, the α-th element of V1, create a neuron n
(l)
α .

2. Create an additional neuron n
(l)
δ

3. For v2β , the β-th element of V2, create a neuron n
(l−1)
β .

– Create weight w
(l)
βδ = 1.

– If (v1α, v2β) ∈ E, then create w
(l)
βα = 1.

This construction can clearly be performed in polynomial time. Figure 3 illus-
trates the construction process. It is not difficult to observe that G has a maxi-
mum edge size κ biclique {A;B} iff the neural network at layer l has a factoring
(I, J) whose saving equals (|I| − 1) · |J | = κ. The gray area in Fig. 3-a shows the
structure of maximum edge biclique {{2, 3}; {6, 8}}. For Fig. 3-c, the saving is
(|{n(l)

δ , n
(l)
2 , n

(l)
3 }| − 1) · 2 = 4, which is the same as the edge size of the biclique.

��
Furthermore, even having an approximation algorithm for the k-factoring

optimization problem is hard - there is no polynomial time approximation scheme
(PTAS), unless NP-complete problems can be solved in randomized subexponen-
tial time. The proof follows an intuition that building a PTAS for 1-factoring
can be used to build a PTAS for finding maximum complete bipartite subgraph
which also has known inapproximability results [2].

Theorem 3. Let ε > 0 be an arbitrarily small constant. If there is a PTAS
for the k-factoring optimization problem, even when k = 1, then there is a
(probabilistic) algorithm that decides whether a given SAT instance of size n
is satisfiable in time 2nε

.

Proof. We will prove the Theorem by showing that a PTAS for the k-factoring
optimization problem can be used to manufacture a PTAS for MEB. Then the
result follows from the inapproximability of MEB assuming the exponential time
hypothesis [2].

1 Let G = (V1, V2, E) be a bipartite graph with vertex set V1 � V2 and edge set E
connecting vertices in V1 to vertices in V2. A pair of two disjoint subsets A ⊂ V1

and B ⊂ V2 is called a biclique if (a, b) ∈ E for all a ∈ A and b ∈ B. Thus, the
edges {(a, b)} form a complete bipartite subgraph of G. A biclique {A;B} clearly
has |A| · |B| edges.

286 C.-H. Cheng et al.

Assume that A is a ρ-approximation algorithm [2] for the k-factoring opti-
mization problem. We formulate the following algorithm B:
Input: MEB instance M (a bipartite graph G = (V,E))
Output: a biclique in G

1. perform reduction of proof of Theorem2 to obtain k-factoring instance F :=
reduce(M)

2. factoring (I, J) := A(F)
3. return (I \ {n

(l)
δ }, J)

Remark: step 3 is a small abuse of notation. It should return the original vertices
corresponding to these neurons.

Now we prove that B is a ρ-approximation algorithm for MEB: Note that by
our reduction two corresponding MEB and k-factoring instances M and F have
the same optimal value, i.e., Opt(M) = Opt(F).

In step 3 the algorithm returns (I \ {n
(l)
δ }, J). This is valid since we can

assume w.l.o.g. that I returned by A contains n
(l)
δ . This neuron is connected to

all neurons from the previous layer by construction, so it can be added to any
factoring. The following relation holds for the number of edges in the biclique
returned by B:

‖I \ {n
(l)
δ }‖ · ‖J‖ = (‖I‖ − 1) · ‖J‖ (2a)

≥ ρ · Opt(F) (2b)
= ρ · Opt(M) (2c)

The inequality in step (2b) holds by the assumption that A is a ρ-
approximation algorithm for k-factoring and (2c) follows from the construction
of our reduction. Equations (2) and the result of [2] imply Theorem 2. ��
As finding an optimal factoring is computationally hard, we present a polynomial
time heuristic algorithm (Algorithm 1) that finds factoring possibilities among
neurons in layer l. The main function searches for an unused pair of neuron i and
input j (line 3 and 5), considers a certain set of factorings determined by the
subroutine getFactoring (line 6) where weight w

(l)
ji is guaranteed to be used (as

input parameter i, j), picks the factoring with greatest sav() (line 7) and then
adds the factoring greedily and updates the set used (line 8).

The subroutine getFactoring() (lines 10–14) computes a factoring (I, J)
guaranteeing that weight w

(l)
ji is used. It starts by creating a set I, where each

element Ij′ ∈ I is a set containing the indices of neurons whose j′-th weight
matches the j′-th weight in neuron i (the condition (w(l)

j′i′ = w
(l)
j′i) in line 11). In

the example in Fig. 4a, the computation generates Fig. 4b where I3 = {1, 2, 3}
as w

(l)
31 = w

(l)
32 = w

(l)
33 = 0. The intersection performed on line 12 guarantees

that the set Ij′ is always a subset of Ij – as weight wji should be included, Ij

already defines the maximum set of neurons where factoring can happen. E.g.,
I3 changes from {1, 2, 3} to {1, 2} in Fig. 4c.

Verification of Binarized Neural Networks via Inter-neuron Factoring 287

Algorithm 1. Finding factoring possibilities for BNN.
Data: BNN network description (cf Sect. 3)
Result: Set F of factorings, where any two factorings of F are non-overlapping.

1 function main():
2 let used := ∅ and F := ∅;

3 foreach neuron n
(l)
i do

4 let fopti := empty factoring;

5 foreach weight w
(l)
ji where (i, j) �∈ used do

6 fij = getFactoring(i, j, used);

7 if sav(fij) > sav(fopt
i) then fopt

i := fij ;

8 used := used ∪ {(i, j) | (i, j) ∈ fopt
i }; F := F ∪ {fopt

i };

9 return F ;

10 function getFactoring(i, j, used):
11 build I := {I0, ..., Id(l−1)} where Ij′ :=

{i′ ∈ {0, ..., d(l)} ∣
∣ w

(l)

j′i′ = w
(l)

j′i ∧ (i′, j′) �∈ used};

12 foreach Im ∈ I do Im := Im
⋂

Ij ;
13 build J := {J0, . . . , Jj′ , . . . , Jd(l−1)} where Jj′ :=

{j′′ ∈ {0, ..., d(l−1)} ∣
∣ Ij′ ⊆ Ij′′};

14 return (I, J) := (Ij∗ , Jj∗) where Ij∗ ∈ I, Jj∗ ∈ J, and
(|Ij∗ | − 1) · |Jj∗ | = maxj′∈{0,...,d(l−1)} (|I ′

j | − 1) · |J ′
j | ;

(a) (b)

after

(c) (d)

index I Jintersecting I0
I

0
1
2
3
4
5

0
0
1
0

1
1
0
0
0
0
1

0
0
1
0
0
1

{1, 2}
{1}

{1}
{1}

{1, 2}
{1, 2, 3}

{1, 2}
{1}

{1}
{1}

{1, 2}
{1, 2}

{0, 2, 3}
{0, 1, 2, 3, 4, 5}
{0, 2, 3}
{0, 2, 3}
{0, 1, 2, 3, 4, 5}
{0, 1, 2, 3, 4, 5}

n
(l)
1 n

(l)
2 n

(l)
3

1

Fig. 4. Executing getFactoring(1, 0, ∅), meaning that we consider a factoring which
includes the top-left corner of (a). The returned factoring is highlighted in thick lines.

The algorithm then builds a set J of all the candidates for J . Each element
Jj′ contains all the inputs j′′ that would benefit from Ij′ being the final result
I. Based on the observation mentioned above, Jj′ can be built through superset
computation between elements of I (line 13, Fig. 4d). After we build I and J,
finally line 14 finds a pair of (Ij∗ , Jj∗) where Ij∗ ∈ I, Jj∗ ∈ J with the maximum
saving (|I∗

j |−1)·|J∗
j |. The maximum saving as produced in Fig. 4 equals (|{1, 2}|−

1) · |{0, 2, 3}| = 3.
There are only polynomial operations in this algorithm such as nested for

loops, superset checking and intersection which makes the heuristic algorithm
polynomial. When one encounters a huge number of neurons and long weight

288 C.-H. Cheng et al.

vectors, we further partition neurons and weights into smaller regions as input to
Algorithm 1. By doing so, we find factoring possibilities for each weight segment
of a neuron and the algorithm can be executed in parallel.

5 Evaluation and Outlook

We have created a verification tool, which first reads a BNN description based on
the Intel Nervana Neon framework2, generates a combinational miter in Verilog
and calls Yosys [24] and ABC [3] for generating a CNF formula. No further opti-
mization commands (e.g., refactor) are executed inside ABC to create smaller
CNFs. Finally, Cryptominisat5 [21] is used for solving SAT queries. The exper-
iments are conducted in a Ubuntu 16.04 Google Cloud VM equipped with 18
cores and 250 GB RAM, with Cryptominisat5 running with 16 threads. We
use two different datasets, namely the MNIST dataset for digit recognition [13]
and the German traffic sign dataset [22]. We binarize the gray scale data to ±1
before actual training. For the traffic sign dataset, every pixel is quantized to 3
Boolean variables.

Table 2 summarizes the result of verification in terms of SAT solving time,
with a timeout set to 90 min. The properties that we use here are characteristics
of a BNN given by numerical constraints over outputs, such as “simultaneously
classify an image as a priority road sign and as a stop sign with high confi-
dence” (which clearly demonstrates a risk behavior). It turns out that factoring
techniques are essential to enable better scalability, as it halves the verification
times in most cases and enables us to solve some instances where the plain app-
roach ran out of memory or timed out. However, we also observe that solvers
like Cryptominisat5 might get trapped in some very hard-to-prove properties.
Regarding the instance in Table 2 where the result is unknown, we suspect that

Table 2. Verification results for each instance and comparing the execution times
of the plain hardware verification approach and the optimized version using counting
optimizations.
ID # inputs # neurons

hidden

layer

Properties being investigated SAT/UNSAT SAT solving

time (normal)

SAT solving

time

(factored)

MNIST 1 784 3 × 100 out1 ≥ 18 ∧ out2 ≥ 18 (≥ 18%) SAT 2m 16.336 s 0m53.545 s

MNIST 1 784 3 × 100 out1 ≥ 30 ∧ out2 ≥ 30 (≥ 30%) SAT 2m 20.318 s 0m 56.538 s

MNIST 1 784 3 × 100 out1 ≥ 60 ∧ out2 ≥ 60 (≥ 60%) SAT timeout 10m 50.157 s

MNIST 1 784 3 × 100 out1 ≥ 90 ∧ out2 ≥ 90 (≥ 90%) UNSAT 2m 4.746 s 1m 0.419 s

Traffic 2 2352 3 × 500 out1 ≥ 90 ∧ out2 ≥ 90 (≥ 18%) SAT 10m 27.960 s 4m 9.363 s

Traffic 2 2352 3 × 500 out1 ≥ 150 ∧ out2 ≥ 150 (≥ 30%) SAT 10m 46.648 s 4m 51.507 s

Traffic 2 2352 3 × 500 out1 ≥ 200 ∧ out2 ≥ 200 (≥ 40%) SAT 10m 48.422 s 4m 19.296 s

Traffic 2 2352 3 × 500 out1 ≥ 300 ∧ out2 ≥ 300 (≥ 60%) unknown timeout timeout

Traffic 2 2352 3 × 500 out1 ≥ 475 ∧ out2 ≥ 475 (≥ 95%) UNSAT 31m 24.842 s 41m 9.407 s

Traffic 3 2352 3 × 1000 out1 ≥ 120 ∧ out2 ≥ 120 (≥ 12%) SAT out-of-memory 9m 40.77 s

Traffic 3 2352 3 × 1000 out1 ≥ 180 ∧ out2 ≥ 180 (≥ 18%) SAT out-of-memory 9m 43.70 s

Traffic 3 2352 3 × 1000 out1 ≥ 300 ∧ out2 ≥ 300 (≥ 30%) SAT out-of-memory 9m 28.40 s

Traffic 3 2352 3 × 1000 out1 ≥ 400 ∧ out2 ≥ 400 (≥ 40%) SAT out-of-memory 9m 34.95 s

2 https://github.com/NervanaSystems/neon/tree/master/examples/binary.

https://github.com/NervanaSystems/neon/tree/master/examples/binary

Verification of Binarized Neural Networks via Inter-neuron Factoring 289

the simultaneous confidence value of 60% for the two classes out1 and out2, is
close to the value where the property flips from satisfiable to unsatisfiable. This
makes SAT solving on such cases extremely difficult for solvers as the instances
are close to the “border” between SAT and UNSAT instances.

In the future, we plan to directly synthesize propositional clauses without the
support of third party tools such as Yosys in order to avoid extraneous trans-
formations and repetitive work in the synthesis workflow. Similar optimizations
of the current verification tool chain should result in substantial performance
improvements.

Acknowledgments. We thank Dr. Ljubo Mercep from Mentor Graphics for indicat-
ing to us some recent results on quantized neural networks, Dr. Alan Mishchenko from
UC Berkeley for his kind suggestions and support regarding ABC, and Hugo A. Andrade
from Xilinx for exchanging the view of BNN.

References

1. Umuroglu, Y., et al.: FINN: a framework for fast, scalable binarized neural network
arXiv preprint arXiv:1612.07119 (2017)

2. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for maximum
edge biclique, minimum linear arrangement, and sparsest cut. SIAM J. Comput.
40(2), 567–596 (2011)

3. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

4. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for
direct perception in autonomous driving. In: ICCV, pp. 2722–2730 (2015)

5. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

6. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: training deep neural networks with weights and activations constrained
to +1 or -1. arXiv preprint arXiv:1602.02830 (2016)

7. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

8. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

9. Huval, B., et al. An empirical evaluation of deep learning on highway driving. arXiv
preprint arXiv:1504.01716 (2015)

10. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

11. Kim, M., Smaragdis, P.: Bitwise neural networks. arXiv preprint arXiv:1601.06071
(2016)

http://arxiv.org/abs/1612.07119
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
http://arxiv.org/abs/1602.02830
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-63387-9_1
http://arxiv.org/abs/1504.01716
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/1601.06071

290 C.-H. Cheng et al.

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS, pp. 1097–1105 (2012)

13. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

14. Lenz, D., Diehl, F., Le, M.T., Knoll, A.: Deep neural networks for Markovian inter-
active scene prediction in highway scenarios. In: Intelligent Vehicles Symposium
IV. IEEE (2017)

15. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks. arXiv preprint arXiv:1706.07351 (2017)

16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CPVR, pp. 3431–3440. IEEE (2015)

17. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verify-
ing properties of binarized deep neural networks. arXiv preprint arXiv:1709.06662
(2014)

18. Peeters, R.: The maximum edge biclique problem is NP-complete. Discret. Appl.
Math. 131(3), 651–654 (2003)

19. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

20. Sermanet, P., Eigen, D., Zhang, X. , Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
integrated recognition, localization and detection using convolutional networks.
arXiv preprint arXiv:1312.6229 (2013)

21. Soos, M.: The Cryptominisat 5 set of solvers at sat competition 2016. In: Sat
Competition 2016, p. 28 (2016)

22. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recog-
nition benchmark: a multi-class classification competition. In: IEEE International
Joint Conference on Neural Networks, pp. 1453–1460 (2011)

23. Sun, L., Peng, C., Zhan, W., Tomizuka, M.: A fast integrated planning and control
framework for autonomous driving via imitation learning (2017). arXiv preprint
arXiv:1707.02515

24. Wolf, C., Glaser, J., Kepler, J.: Yosys-a free verilog synthesis suite. In: Proceedings
of the 21st Austrian Workshop on Microelectronics (Austrochip) (2013)

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1709.06662
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1707.02515

The Map Equality Domain

Daniel Dietsch, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz(B),
and Andreas Podelski

University of Freiburg, Freiburg im Breisgau, Germany
{dietsch,heizmann,hoenicke,nutz,podelski}@cs.uni-freiburg.de

Abstract. We present a method that allows us to infer expressive invari-
ants for programs that manipulate arrays and, more generally, data that
are modeled using maps (including the program memory which is mod-
eled as a map over integer locations). The invariants can express, for
example, that memory cells have changed their contents only at loca-
tions that have not been previously allocated by another procedure. The
motivation for the new method stems from the fact that, although state-
of-the-art SMT solvers are starting to be able to check the validity of
more and more complex invariants, there is not much work yet on their
automatic inference. We present our method as a static analysis over an
abstract domain that we introduce, the map equality domain. The main
challenge in the design of the method lies in scalability; given the expres-
siveness of the invariants, it is a priori not clear that a corresponding
static analysis can be made scalable. Preliminary experiments with a pro-
totypical implementation of the method allow us to cautiously conclude
that may indeed be the case.

1 Introduction

At least since McCarthy’s theory of arrays [20], it has been standard to use logical
properties over arrays or maps in program analysis and verification.1 The need
for expressive properties over maps becomes urgent when we model dynamically
allocated memory (the heap of a program) as maps, which has become the
standard, e.g., in the setting where the Boogie verification language is used [19] .
Many of the state-of-the-art SMT solvers used for program verification support
the theory of maps; see, e.g., [1,3,6,7,11,13].

These SMT solvers can check the validity of increasingly complex invari-
ants, which is useful in the setting of verification where invariants are provided,
typically in the annotation of the program. The automatic inference of such
invariants is, however, an altogether different task, and it is fair to say that work
in this direction has just started (see Sect. 3 on related work).

Following the framework of abstract interpretation [8,9], we phrase our
method as a static analysis that is constructed from an abstract domain. Specif-
ically, we introduce the map equality domain, an abstract domain for three cat-
egories of logical properties over maps: equalities between arbitrary expressions
1 We use the mathematical term of maps in order to keep the distinction with the

idiom of arrays in practical programming languages such as C and Java.

c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 291–308, 2018.
https://doi.org/10.1007/978-3-030-03592-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_17

292 D. Dietsch et al.

involving (an arbitrary number of) maps (this includes the pointwise equality
between two maps), disequalities between arbitrary expressions involving maps,
and a third category called weak equivalences which is original to this work (for
the relationship to existing concepts see Sect. 3).

The formulation of logical properties with weak equivalences accommodates
the situation where it is more convenient to specify the positions where two maps
may differ (“equal up to . . . ”) rather than specifying the set of positions where
they don’t. For example, in a program, the present value of an array may arise
from the initial value of the array from a series of updates after the execution of
a loop over the array indices. Thus, for example, weak equivalences allow us to
express a logical property saying that memory cells have changed their contents
only at locations that have not been previously allocated by another procedure.
It is generally quite common that we need to put different maps into relation
(say, the map that models the contents of memory cells and the map that tracks
which memory cells have been allocated). Thus, we will use weak equivalences
to express that two maps are equal up to a set of positions, where the set of
positions itself is defined by the value of each position under a third map.

The three categories in the abstract domain are mutually intertwined in the
sense that the presence of one immediately entails the need of the two other ones.
Thus, the derivation of a weak equivalence may necessitate the prior derivation
of an equality and the prior derivation of a disequality, and so on. For example
to derive the disequality i �= j one may need to derive the equality a = b and
the disequality a[i] �= b[j]; to derive the equality between the maps a and b one

may need to derive the weak equivalence a
q=i

==== b (meaning “a and b may only
differ at indices q where q = i holds”) and the equality a[i] = b[i]; and to derive

the equality a[i] = b[i] one may need to derive the weak equivalence a
c[q]=1

====== b
and the equality c[i] �= 1.

Contribution. The contribution of this paper is to introduce the new method,
a static analysis based on an abstract domain with the new notion of weak
equivalences. We argue that this analysis infers highly expressive invariants and
is sufficiently scalable to be useful in practice.

The expressivity of the derived invariants is witnessed by the fact that they
suffice to prove a rather complex framing condition of a procedure that writes to
an unbounded number of newly allocated non-contiguous memory cells, as our
example in Sect. 2 shows. We are not aware of any other method that derives
a safe inductive invariant for this example (and certainly not one for which
scalability has been demonstrated).

Given the expressiveness of the invariants, it is not clear that a corresponding
static analysis can be made scalable. Preliminary experiments with a prototyp-
ical implementation of the method allow us to cautiously conclude that this is
the case. Our experiments on a set of benchmarks from SV-COMP [2] show that
the method can derive invariants in an acceptable time frame on a large number
of programs.

The Map Equality Domain 293

Road Map. We will continue with the example, which gives an intuition for our
notion of weak equivalence and its expressive power. After that we will describe
the map equality domain formally and give proofs that its abstract operators
overapproximate their concrete counterparts. Last, we present an evaluation of
the scalability of our domain.

2 Example

Figure 1 shows an example program, in the syntax of Boogie [19], an intermediate
language which is used for the verification of programs in practical programming
languages such as C and Java. The correctness is specified through the assert
statement in line 10. It amounts to a framing condition: a memory cell that is
marked valid before a procedure call is never overwritten during execution of the
call. We do not know of an existing method that can derive this invariant. We
will next explain how our method based on the map equality domain can derive
the required invariant.

The Program. The program uses three global variables, the maps (over the inte-
gers) content, next, and valid. They represent, respectively, the contents of
the memory, a linked list (where each entry in next is interpreted as a pointer
to the next element of the list), and the account of which memory locations
are already in use (here valid[i] = 1 means that the memory at location i has
already been allocated). The procedure main has three parts. First, it picks an
allocated memory location p and stores the memory content at p into the vari-
able value. Next, it calls the procedure initList (which may possibly change
the value of the global variables). The assertion in line 10 expresses that the
procedure call does not change the content-map at position p. The procedure
initList initializes a list of nondeterministic length. It makes sure that the
memory cells have not been allocated before and are marked as allocated after-
wards. It returns a variable that stores the head position of the list. The task of
lines 19 to 21 is to pick a formerly unallocated memory location and mark it as
allocated. In the remainder of the loop, the new memory location is prepended
to the list and content is set to −1 at the newly allocated location.

Correctness of the Program. To prove correctness we need to show that
content[p] remains unchanged during execution of the procedure call in line
9. Thus we have to show that the value that i has in line 24, is never the
same as p. However p is not visible in initList, so it cannot be the essence
of why initList has the desired property. The deeper reason why initList
never writes to p is that the program tracks which positions have already been
written to in the valid-map and never writes to the same position twice. Thus
a safe inductive invariant for initList could state the fact that content remains
unchanged for all positions q that are marked as already taken (valid[q] = 1)
at procedure entry.

294 D. Dietsch et al.

1 var va l id , next , content : [i n t] i n t ;
2
3 procedure main () ;
4 modifies va l id , next , content ;
5 implementation main () {
6 var p , newListHead , va lue : i n t ;
7 assume va l i d [p] == 1 ;
8 value := content [p] ;
9 ca l l newListHead := i n i t L i s t () ;

10 assert content [p] == value ;
11 }
12
13 procedure i n i t L i s t () r e tu rn s (r e s : i n t) ;
14 modifies va l id , next , content ;
15 implementation i n i t L i s t () r e tu rn s (r e s : i n t) {
16 var i , head : i n t ;
17 head := 0 ;
18 while (∗) {
19 havoc i ;
20 assume va l i d [i] == 0 ;
21 va l i d [i] := 1 ;
22 next [i] := head ;
23 head := i ;
24 content [i] := −1;
25 }
26 r e s := head ;
27 }

Fig. 1. Example program in Boogie syntax with assert statement (line 10). Our method
derives the required invariant (“the procedure initList never writes the map content

at any position that has the value 1 under the map valid)”.

Weak Equivalences. So we need to relate the maps, content and old(content)
in way that allows us to express that they only differ at positions q where
old(valid)[q] = 0. (The Boogie-keyword old refers to the state of each global
variable at procedure entry.) Fortunately, (extended) weak equivalences are a
perfect match for this kind of property.

We write a weak equivalence between a and b with exceptions Φ(q) like this:

a
Φ(q)

==== b

The intuitive meaning of the above weak equivalence is:

a and b are equal on all index positions except for the positions q where
Φ(q) evaluates to true; no statement is made about these positions.

Weak equivalences can be expressed as formulas in the theory of maps with one
universal quantifier. The following weak equivalence is an inductive invariant for

The Map Equality Domain 295

the procedure initList:

content
old(valid)[q]=0

============ old(content)

This constraint precisely captures the property of initList we described
already. Before the procedure call the following holds.

valid[p] = 1 ∧ content[p] = value

In order to show the assertion correct, the procedure invariant must guarantee
that content at position p remains unchanged through the procedure execution,
i.e., content[p] = old(content)[p]. The above weak equivalence allows us to
draw this conclusion if the following formula is unsatisfiable.

valid[p] = 1 ∧ valid = old(valid) ∧ old(valid)[q] = 0 ∧ q = p

The first three conjuncts represent our base knowledge when combining the
information from directly before the procedure call and directly before proce-
dure exit. The last conjunct is used to test if, given the base knowledge, p is a
valid choice for q, where q represents all the positions where the weak equiva-
lence edge does not make an equality statement content[q] = old(content)[q].
Because the formula is unsatisfiable, we can conclude that p is not one of these
exceptions. Thus content[p] = old(content)[p] = value holds in line 10, after
the procedure call and our analysis derives the desired property.

3 Related Work

Our work is related to the line work that uses abstract interpretation to infer low-
level information about a program’s dynamically allocated memory. Chang and
Leino [4] propose an abstract domain with equalities, congruence and a weaker
notion of weak equivalence than ours. Their domain does not accomodate the
propagation of disequalites, which is crucial in the context of our work.

The notion of weak equivalence was also used in the context of decision
procedures. Both Stump et al. [21] and Christ and Hoenicke [5] presented decision
procedures for the quantifier-free theory of arrays using weak (also called partial)
equivalences. The weak equivalences used in all those works are a special case
of ours where the formula describing the exceptions to equivalence is limited to
set of index terms, i.e., the quantified variable q cannot appear inside an array
access.

Gulwani and Tiwari [16] introduce an abstract domain that tracks equalities
and disequalities (they actually track equalities and may-equalities). In contrast
to our domain their domain allows quantifier alternation and a much higher
nesting depth of quantifiers, while we only allow (implicit) universal quantifica-
tion where the depth is bounded to the maximum dimension of the maps that
occur in the program. Thus our domain can be expected to scale to significantly
more complex programs. Gange et al. [14] apply congruence with uninterpreted

296 D. Dietsch et al.

functions to enhance an existing abstract interpretation by inferring additional
equality information. In contrast to our work they don’t consider disequalities
nor do they have a special treatment for maps (in particular updates to maps).

Cousot, Cousot and Logozzo propose a functor domain for extending existing
abstract domains to array analyses [10]. Although instantiations of their functor
also reasons about maps their approach is mostly orthogonal to ours. Their focus
lies in reasoning about the contents of the maps in some parameter domain, while
our domain has its strength in relating different maps as a whole by weak (or
strong) equivalences.

To summarize, in the above line of work, precursors of our abstract domain
have been defined. None of them is able (has been shown to be able) to derive
the expressive invariants that our analysis is able to derive.

Another way of inferring invariants about maps is by Craig interpolation.
Brillout et al. [3] present a way derive quantified Craig interpolants in the theory
of arrays. Hoenicke and Schindler [18] present a way to derive quantifier-free
predicates in the theory of maps (enhanced by a special predicate) through
Craig interpolation.

4 Preliminaries

In this section we fix our notation for map expressions and programs. Our analy-
sis will derive constraints over map expressions given by the following grammar.

Exp ::= x | lit | e[e′]

x represents a variable from some variable set V , lit represents a literal, and
e[e′] represents a select-expression. To highlight that an expression e depends on
some variables in the set X, we write e ∈ Exp(X). For expressions that are used
as maps (indices) we also use the letters a, b (i, j).

Note that the store function, which is also in the theory of arrays’ signature,
does not occur in Exp. We write store-expressions as e〈e′ � e′′〉. While the pro-
grams we consider may contain store-expressions, we do not include them in Exp
because they can be expressed by weak equivalences and thus do not occur in
the values of the abstract domains we will present.

We assume a nonempty set Sort as our base sort. From Sort we construct
map sorts of any dimensionality, so our expression can have any sort in

Sorts
def
=

⋃

n∈N0

(Sortn → Sort).

The function sort : Exp → Sorts assigns a sort to each expression. If e, e′ are two
expressions with sort(e) = Sortn → Sort for n > 0 and sort(e′) = Sort , then
the select expression e[e′] has the sort Sortn−1 → Sort .

The interpretation function [[·]] : Exp → ⋃
n∈N0

(Sortn → Sort) assigns each
expression a value from the corresponding sort. The interpretation of a literal is
always the same, for variables it depends on some additional valuation function.

The Map Equality Domain 297

The interpretation of a select-expression e[e′] is the evaluation of the map e at
position e′, i.e., [[e[e′]]] = [[e]]([[e′]]).

We fix a set of program variables Var . A program state s is a mapping from
the program variables to their respective sort, formally:

States
def
= {s | s : Var → Sorts}

Our formulas are generated by the following grammar.

Formulas ::= � | ⊥ | e = e′ | e = e′〈e′′ � e′′′〉 | ¬ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′ | ∃x. ϕ | ∀x. ϕ

e = e′ is a proper formula only if the expressions e, e′ ∈ Exp, have the same
sort. In addition to (dis-)equalities between expressions in Exp we allow equali-
ties between expressions and store-expressions. If the input program has nested
stores, they are flattened by introducing auxilliary variables. For e〈e′ � e′′〉 to
be a proper expression, e has to have some map-sort Sortn → Sort for n > 0,
e′ must have sort Sort , and e′′ must have the sort Sortn−1 → Sort . e〈e′ � e′′〉
has the same sort as e. The interpretation of the store-expression e〈e′ � e′′〉 is a
copy of the map e, where the element at index e′ has been replaced by value e′′,
formally:

[[e〈e′ � e′′〉]] def
= v
→

{
[[e′′]] if v = [[e′]]
[[e]](v) otherwise

An interpretation of a formula is a pair (A, s). The structure A must give the
above-described symbols their according meaning. Valuation s maps variables to
values in their sorts. We write (A, s) |= ϕ if an interpretation fulfills a formula.

A formula over the program variables ϕ ∈ Formulas(Var) denotes the set of
program states that fulfills the formula, formally:

[[ϕ]] = {s ∈ States | there exists a structure A s.t. (A, s) |= ϕ}
A program is given through a transition formula, which is a formula over

the primed and unprimed program variables: T ∈ Formulas(Var ∪Var ′), where
Var ′ = {v′ | v ∈ Var}. The concrete post -operator relates a set of states, given
through a formula over the program variables S ∈ Formulas(Var), to a new set
of states as follows. We first conjoin the respective formulas. Second we project
away all unprimed program variables, through existential quantification. Third
we substitute all primed program variables by their unprimed versions (denoted
by ·[Var ′ ←�Var]). Formally:

post([[S]], T)
def
= [[∃x1 . . . xn. S ∧ T [Var ′ ←�Var]]] where Var = {x1, . . . , xn}

The basic ingredients of an abstract domain, as introduced in [8], are a set
of elements D, also called the abstract values, and a concretisation function
γ : D → 2States , which gives the elements a meaning by assigning each abstract
value a set of program states. An abstract domain also requires a partial order

298 D. Dietsch et al.

operator �, a join operator �, and a meet operator �. Last, we need an abstract
post operator post# : D × Formulas(Var ∪ Var ′) → D. An abstract domain
induces a static analysis that will compute an inductive invariant for each given
program by repeatedly applying post# to the program until a fixpoint is reached.
In our setting, convergence of this operation has to be ensured by the above
operators (we do not use a widening operator). Two abstract domains D,D′ can
be combined to the Cartesian product domain D × D′. The operators of the
subdomain can be used to obtain operators for the product in a straightforward
manner. The precision of the Cartesian product can be increased by giving a
reduction operator ρ : D × D′ → D × D′. ρ may propagate constraints between
the values of the subdomains D and D′ in order to obtain a smaller abstract value
while not changing its concretisation, the following has to hold: ρ((A,A′)) �
(A,A′) and γ(ρ((A,A′))) = γ(A) ∩ γ(A′).

Intuitively, we call operators sound with respect to the concretisation func-
tion γ if we can guarantee that a program analysis built from them will over-
approximate the program’s behaviour, we speak of a precision loss insofar the
overapproximation is not tight. Let A,B ∈ D be any two elements from the
abstract domain D, then we call the operators �,�,� sound with respect to γ
if 1. γ is monotonous with respect to �, i.e., A � B =⇒ γ(A) ⊆ γ(B), 2. �
overapproximates the union of state sets, i.e., γ(A � B) ⊇ γ(A) ∪ γ(B), 3. �
overapproximates the intersection of state sets, i.e., γ(A�B) ⊇ γ(A)∩γ(B). We
call an abstract post operator post# sound if it overapproximates the concrete
post operator post , i.e., for any abstract value A and any transition relation T
the following holds: post(γ(A), T) ⊆ γ(post#(A, T)).

Typically, abstract value represents conjunctive constraints. The disjunctive
completion allows for disjunctive abstract values by maintaining sets of abstract
values. The generalisations of the operators for this case are straightforward.

5 The Map Equality Domain

We introduce the map equality domain by introducing its building blocks, the
domain of equalities and disequalities, and the weak equivalence domain, and
then combining them in a reduced product. Afterwards we define the abstract
post operator for the map equality domain.

5.1 The Domain of Equalities and Disequalities

The domain of equalities and disequalities (short: ED) tracks equalities and
disequalities over program expressions and keeps them closed under function
congruence. Handling equalities with uninterpreted functions is standard knowl-
edge, however some aspects still require special attention. First, the full-precision
join operator for a domain involving congruence closure is not computable [17].
Therefore, each element of ED maintains a finite set of tracked expressions to
which propagations are limited. Furthermore, complete propagation of disequal-
ities is expensive, so we limit ourselves to those that can be done by a simple
propagation rule.

The Map Equality Domain 299

An abstract value in ED consists of three parts: a finite set of expressions,
exp ⊂fin Exp, and two relations ∼ and �∼ over these expressions ∼, �∼⊆ exp×exp.
We define the reduction operator for domain of equalities and disequalities, ρED ,
as the exhaustive application of the rules in Fig. 2. The operator ρED applies a
closure such that ∼ is a congruence relation with respect to �∼ and with respect
to the select-function ·[·], but only insofar expressions in exp are concerned.

Formally, we define the domain of equalities and disequalities as follows.

ED
def
= {ρED((∼, �∼, exp)) | ∼, �∼⊆ exp2, exp ⊂fin Exp} ∪ {⊥ED}

To describe an abstract value in the domain of equalities and disequalities,
we sometimes use informal notation like (a ∼ b ∧ i �∼ j) to denote the value
ρED(({(a, b)}, {(i, j)}, {a, b, i, j})) ∈ ED .

Semantically, the relation ∼ represents equality while the relation �∼ repre-
sents disequality, as is reflected by the concretisation function γ:

γ((∼, �∼, exp))
def
= [[

∧

(e,e′)∈∼
e = e′ ∧

∧

(e,e′)∈�∼
e �= e′]] γ(⊥ED)

def
= ∅

We will sometimes abuse notation and use γ(A) to denote the corresponding
formula instead of the formula’s denotation.

Operators for ED . As a first step, all of our operators align the expression sets
of their operands.

(∼A, �∼A, expA) ◦ (∼B , �∼B , expB)
def
= ρED((∼A, �∼A, expA ∪ expB))

◦ ρED((∼B , �∼B , expA ∪ expB)) where ◦ ∈ {�,�,�}

After this alignment, we can define inclusion, meet, and join using standard set
operators ⊇,∩,∪ respectively. Furthermore, ⊥ED is smaller than all elements, it
is neutral with respect to the join operator, and an annihilator with respect to
the meet operator.

Intuitively an abstract value A is smaller (i.e. stronger) than abstract value B,
if it has the same or more equality and disequality constraints. The join operator
keeps exactly those constraints that are present in both operands, whereas the
meet operator keeps those that are present in at least one of the operands. A
detailed definition and soundness proof can be found in the appendix.

Precision of ED . Our propagation rules in ρED are complete in the sense that
whenever an abstract value A ∈ ED has an empty concretisation, it is reduced
to ⊥ED as they incorporate the standard decision procedure for the theory of
equality with uninterpreted functions [12].

On the other hand the join operator does not compute the least upper bound
of its operand in ED and thus incurs a precision loss. An example is the join
A � B where A = a[i] ∼ 0 ∧ i ∼ b[j] and B = a[k] ∼ 0 ∧ k ∼ b[j]. Here, the
value C = a[b[j]] ∼ 0 is an upper bound and is smaller than A � B, which does

300 D. Dietsch et al.

e ∼ e
(refl)

e ◦ e′ ◦ ∈ {∼, }∼�
e′ ◦ e

(symm)
e ∼ e′ e′ ∼ e′′

e ∼ e′′ (trans)

e �∼ e′′ e ∼ e′

e′ �∼ e′′ (�∼-cong)
e ∼ e′ e �∼ e′

⊥ED

(contr)
lit �∼ lit′ (lit)

a ∼ b i ∼ j {a[i], b[j]} ⊆ exp

a[i] ∼ b[j]
(fw-cong)

a ∼ b a[i] �∼ b[j]
i �∼ j

(bw-cong)

Fig. 2. The propagation rules that the reduction operator ρED applies. The rules ensure
that ∼ is an equivalence relation, that ∼ and �∼ are compatible, and that two syntac-
tically different literals are unequal. The rule fw -cong (bw -cong) introduces equalities
(disequalities) according to the congruence axiom of the select-function

not contain any constraints. Furthermore, the reduction operator ρED does not
derive all disequalities that follow from a constraint. The rule bw -cong derives
some disequalities. However for performance reasons no complete rule is given.
For example the implication a[i][j] �= a[j][i] =⇒ i �= j is valid but it is is not
covered by one of our rules.

Disjunctive Completion Operators for ED . As a preparation for the next subsec-
tion, we extend the lattice operators for ED to disjunctions of elements of ED .
The concretisation γ is given as the disjunction of the element’s concretisations.
Let Φ,Φ′ ⊆ ED be subsets of ED , then we define the usual operators as follows.

Φ � Φ′ if for each ϕ′ ∈ Φ′ there exists ϕ ∈ Φ such that ϕ � ϕ′

Φ � Φ′ def
= Φ ∪ Φ′ Φ � Φ′ def

= {ϕ � ϕ′ | ϕ ∈ Φ,ϕ′ ∈ Φ′}
It is easy to see that the operators � and � for the disjunctive completion are
sound and precise with respect to γ. However, the partial order operator is only
sound, as we have no efficient precise way of checking if an element of ED implies
a disjunction of elements of ED .

5.2 The Weak Equivalence Domain

The elements of the weak equivalence domain (short: WE) are weak equivalence
graphs. Like an element of ED , a weak equivalence graph keeps a finite set of
expressions, exp ⊂fin Exp. The expressions in exp form the nodes of a weak
equivalence graph.

Let a, b ∈ exp be two maps. An edge a
Φ(q)

==== b in a weak equivalence graph
is labeled with an element Φ of the disjunctive completion of ED . Φ constrains
elements from exp ∪Q where Q = {q1, q2 . . .} is a set of special variables disjoint

The Map Equality Domain 301

from Exp. Intuitively, Φ(q) expresses all exceptions to equivalence of a and b.
Note that q represents indices for multidimensional maps; the i-th component
of q, is used to access the maps a and b at dimension i. At every index q such

that Φ(q) holds, a
Φ(q)

==== b does not constrain a or b. At every index q such that

Φ(q) does not hold, a
Φ(q)

==== b implies that a[q] ∼ b[q] must hold.

Weak equivalence graphs. A weak equivalence graph has the following form.

(Φ∼, exp) = {a
Φ(q)

==== b) | a, b ∈ exp, sort(a) = sort(b), Φ ⊆ ED ,

ϕ ∈ Φ have expression set exp}
The weak equivalence domain contains all weak equivalence graphs, formally:

WE
def
= {(Φ∼, exp) | (Φ∼, exp) is a weak equivalence graph}

We give the concretisation functions for a weak equivalence edge and for a weak
equivalence graph as follows.

γ(a
Φ(q)

==== b)
def
= [[∀q. (

∨

ϕ(q)∈Φ(q)

γ(ϕ(q))) ∨ a[q] = b[q]]]

γ((Φ∼, exp))
def
= [[

∧

w∈Φ∼

γ(w)]]

We maintain certain well-formedness conditions on weak equivalence graphs.

Instead of keeping two parallel weak equivalence edges a
Φ=== b and a

Φ′
=== b,

we insert a single edge whose label expresses the conjunction of the two labels,

a
Φ�Φ′

===== b and we drop the other two edges.
Also, weak equivalence edges are propagated in a graph, in order to fulfill

a variant of the triangle inequality. Intuitively, when maps a and b are equal
except for some exceptions described by Φ, and b and c are equal except for some
exceptions described by Φ′, then a and c must be equal except for at indices that
fulfill Φ or Φ′. We exhaustively apply the following propagation rule.

a
Φ=== b b

Φ′
=== c

a
Φ∪Φ′

===== c
(Δ)

We give the standard operators for abstract interpretation for WE as follows.

(Φ∼, exp) � (Φ∼
′
, exp) if for all a, b in exp with a

Φ′
=== b ∈Φ∼

′
, a

Φ=== b ∈Φ∼ : Φ � Φ′

(Φ∼, exp) ◦ (Φ∼
′
, exp)

def
= ({a

Φ◦Φ′
===== b | a

Φ=== b ∈Φ∼, a
Φ′

=== b ∈Φ∼
′
} for ◦ ∈ {�,�}

Proposition 1. The operators �,�,� on weak equivalence graphs are sound
with respect to γ.

Proof. Weak equivalence graphs directly inherit their soundness from the oper-
ators for the disjunctive completion of ED , which they are built from. ��

302 D. Dietsch et al.

a
Φ(q)
===== b ψ Φ(q) 	 ψ
 ⊥

a ∼ b
(ext)

a ∼ b

a
⊥=== b

(strongtoweak)

a
Φ(q1,q+)
======= b i ∼ j {a[i], b[j]} ⊆ exp

a[i]
Φ(i,q)
===== b[j]

(roweq)
a[i]

Φ(q)
===== b[j] i ∼ j

a
{q1 �∼i}∪Φ(q+)
=========== b

(roweq−1)

Fig. 3. Propagation rules for the map equality domain. The reduction operator ρ is
defined as the exhaustive application of these rules. The +-operator shifts the variable
indices in a vector of qi-variables, i.e., (q1, q2, . . .)

+ = (q2, q3, . . .).

Store-expressions vs. Weak Equivalences. An equality between an expression and
a store-expression can be expressed through an equality and a weak equivalences
according to the equivalence below. We will later exploit this to convert the
transition formula T to an abstract value T#.

a = b〈i � v〉 ≡ (a[i] = v ∧ ∀q. q = i ∨ a[q] = b[q])

5.3 The Map Equality Domain

The map equality domain is the reduced product of the domain of equalities and
disequalities with the domain of weak equivalences, formally:

MED
def
= {ρ((∼, �∼,

Φ∼, exp)) | (∼, �∼, exp) ∈ ED , (Φ∼, exp) ∈ WE}

The reduction operator ρ is given through the propagation rules in Fig. 3.
The rule ext allows us to convert a weak equivalence to an equality, provided

we can show that the label of the weak equivalence edge is inconsistent in con-
junction with all other constraints we have derived. In order to check if the label
of a weak equivalence edge Φ(q) is inconsistent with some other constraints we
have derived, we have to compute the meet of the label with the whole abstract
value, possibly including weak equivalences.

In general we don’t store weak equivalence edges whose labels do not depend
on any variable from the set Q. If such a label is inconsistent, we store an equality
instead, according to the ext-rule. If it is consistent, we overapproximate it to
the tautological constraint. We have to reflect equalities between maps not only
in the ED-part of an abstract value, but also in the weak equivalence graph
according to the strongtoweak -rule.

The rule roweq states that we can propagate a weak equivalence constraint
between two maps a, b with label Φ(q1, q) to the submaps of a and b at position
i, when we replace the variable q1 in Φ by i and decrement the subscript of each
variable in the vector q. Intuitively we project Φ to the statements it makes
about a and b at position i. The rule roweq−1 states that any weak equivalence
constraint between maps a and b we have derived for some index position i can
be propagated to the encompassing maps of higher dimension when we shift the

The Map Equality Domain 303

qj-indices by one and state that we put no constraint on any position other than
i by adding a disjunct q1 �∼ i.

Applying ρ does not alter the concretisation of an abstract value: We consider
the concretisation formulas of each constraint in the rules and observe that the
implication formula corresponding to each rule is valid.

Operations and Properties. The operators �,�,� for the map equality domain
are defined as is standard for a reduced product, i.e., let A = (AED , AWE),
B = (BED , BWE) be two elements of the map equality domain, then

A � B if AED � BED and AWE � BWE

A ◦ B
def
= ρ(AED ◦ BED , AWE ◦ BWE) where ◦ ∈ {�,�}

Proposition 2. The operators �,�,� for the map equality domain are sound
with respect to γ.

Proof. The soundness of the reduced product follows directly from the soundness
of the factor domains and the reduction operator.

To give a feeling for the reduction rules of ρ and the precision of the map
equality domain we give to examples.

Example 1. The roweq-rules allow us to handle multidimensional stores trans-
parently. Say we have an equality between a map and a two-dimensional store
expression b = a〈i1 � a[i1]〈i2 � x〉〉. We expect to obtain the weak equivalence

edge a
q1=i1∧q2=i2========== b. We convert the nested store to two weak equivalences:

b
q1=i1===== a ∧ b[i1]

q1=i2===== a[i1] ∧ b[i1][i2] = x

From roweq−1 we get b
q1 �=i1,q2=i2========= a, which strengthens the leftmost conjunct

to our expected result as we can see through the following equivalence.

(q1 ∼ i1) � (q1 �∼ i1 ∧ q2 ∼ i2) ≡ (q1 ∼ i2 ∧ q2 ∼ i2)

Example 2. A source of imprecision of the ρ-operator is that it does not consider
on how many positions two weakly equivalent maps might differ, for instance the
abstract value written below is not reduced to ⊥ even though its concretisation
is empty.

a
q=i

==== b ∧ a[k] �∼ b[k] ∧ a[j] �∼ b[j] ∧ k �∼ j

5.4 Abstract Post Operator

We define the abstract post operator for the map equality domain analo-
gously to the concrete post operator in Sect. 4. We replace the transition for-
mula T by an abstract value T# ∈ MED , we replace projection through exis-
tential quantification by a special abstract projection operator π#, and we

304 D. Dietsch et al.

replace conjunction by the meet operator. We define the abstract post opera-
tor post# : MED ×Formulas(Var ∪Var ′) → MED for the map equality domain
as follows.

post#(A, T)
def
= π#

Var (A � T#)[Var ′ ←�Var]

Next, we will define π# and T# and prove soundness of post#.

Abstract Transition Formula T#. We assume without restriction that T is purely
conjunctive (use disjunctive completion otherwise). We can write T as follows.

T =
∧

(e,e′)∈∼
e = e′ ∧

∧

(e,e′)∈�∼
e �= e′ ∧

∧

(e,i,e′)∈weq

∀q. q = i ∨ e[q] = e′[q]

We construct a weak equivalence graph Φ∼, and an expression set exp using the
above-define sets ∼, �∼, weq .

Φ∼def
= {e

q1=i
===== e′ | (e, i, e′) ∈ weq} exp

def
= {e | e occurs in ∼, �∼ or weq}

From these ingredients we construct T#: T# def
= ρ(∼, �∼,

Φ∼, exp)

Proposition 3. T# precisely captures the meaning of T , i.e., γ(T#) ≡ T .

Proof. The formula γ(T#) is syntactically equal to the rewritten form of T .

Abstract Projection Operator π#. The operator π# must fulfill two prerequesites.
First, the resulting abstract value may not contain any of the projected-away
variables. Second, the projected value must overapproximate the original value,
i.e., γ(π#

V (A)) ⊇ γ(A). We start with the naive projection operator πnv and later
refine it to the more precise operator π#. We will define how to project away
one variable, the generalization to a set of variables is straightforward.

Projecting away a variable affects all expressions that depend on the variable.
We define dependent expressions and dependent pairs for variable x in expression
set exp as the least fixpoint of the following constraints:

x ∈ depexp(x)

e ∈ depexp(x) ∧ e[e′] ∈ exp =⇒ e[e′] ∈ depexp(x)

e′ ∈ depexp(x) ∧ e[e′] ∈ exp =⇒ e[e′] ∈ depexp(x)

We lift the notion of dependent expressions to expression pairs as follows.

deppairs
exp (x)

def
= (depexp(x) × exp) ∪ (exp × depexp(x))

We define a naive projection operator πnv as follows.

πnv
x ((∼, �∼,

Φ∼, exp))
def
= (∼ \deppairs

exp (x), �∼ \deppairs
exp (x), πnv

x (
Φ∼), exp \ depexp(x))

πnv
x (

Φ∼)
def
= {a

{πnv
x (ϕ1),...,π

nv
x (ϕn)}

================ b | a, b �∈ depexp(x), a
{ϕ1,...,ϕn}

========= b ∈Φ∼}

The Map Equality Domain 305

Intuitively, πnv simply drops all constraints that contain the projected variable
x or an expression that depends on x.

While πnv is a proper projection according to our criteria, we would incur a
drastic precision loss if we used it without further customization.

Example 3. Let A = (i ∼ j ∧ a[i] ∼ k) with exp = {i, j, k, a[j]} be a value in
MED and assume we want to project i. Then, because a[i] depends on i we have
to project it, too, and we would end up with the empty abstract value. But if
a[j] were in exp we could retain the constraint a[j] ∼ k. ��

This loss in precision is a consequence of our strategy to restrict all propaga-
tions to expressions in exp. In order to avoid this problem as much as possible
we allow π# to enhance exp before removing any constraints.

Let A ∈ MED be an abstract value and let x be a variable we want to
project from A. The projection operator π#proceeds in two steps. In the first
step it alternates applications of the rules from 4 and the reduction operator ρ
until no more new expressions can be introduced. Afterwards it applies the naive
projection operator πnv .

One danger of using π# is that it may introduce unboundedly many expres-
sions during repeated applications of post#. In our experience this case is very
rare in practice. We avoid nontermination by setting a limit to the nesting depth
of the expressions that are added, which effectively limits the number of added
expressions during a run of the analysis to a finite amount.

a ∼ b i ∼ j a[i] ∈ dep(x, exp)
b[j] ∈ exp

(π#-fw-cong)

a
Φ(q1,q+)
======= b i ∼ j a[i] ∈ dep(x, exp) Φ(i, q+)
 ⊥

b[j] ∈ exp
(π#-roweq)

a
Φ(q1,q+)
======= b i ∼ j a[i] ∈ dep(x, exp) Φ(i, q+) depends on q

b[j] ∈ exp
(π#-roweq’)

Fig. 4. Inference rules describing how π# may add expressions to exp. The rules corre-
spond to rules from ρ and are tailored such that ρ can infer a constraint for each newly
introduced expression. The upper two rules allow ρ to add an equality constraint, the
third rule allows ρ to add a weak equivalence.

Proposition 4. The abstract projection π# overapproximates projection
through existential quantification, i.e., [[∃x. γ(A)]] ⊆ γ(π#

x (A)).

Proof. Pick A ∈ MED . Step 1 in our algorithm does not change the concretisa-
tion of A because neither enhancing exp nor applying ρ does so. Clearly πnv

x (A)
is weaker than A, i.e., γ(A) ⊆ γ(πnv

x (A)). Because ∃ is monotonous we can con-
clude ∃x. γ(A) ⊆ ∃x. γ(πnv

x (A)). Because πnv
x (A) does not depend on x, we also

know ∃x. γ(πnv
x (A)) ≡ γ(πnv

x (A)) holds. ��

306 D. Dietsch et al.

Soundness of the map equality domain. We show that the map equality domain
is sound and that a fixpoint computation in it terminates.

Theorem 1 (Soundness of post#). The abstract post operator post# is
sound, i.e., for any abstract value A ∈ MED and any transition T ∈
Formulas(Var ,Var ′) the following holds.

post(γ(A), T) ⊆ γ(post#(A, T))

Proof. The proof goal follows directly from the fact that T# overapproximates
T , that the meet operator � is sound (i.e. overapproximates ∧), and that the pro-
jection operator overapproximates projection through existential quantification.

��
Theorem 2 (Termination of fixpoint computation). post# converges on
any program, i.e., for every transition relation T , there is a number of iterations
n ∈ N such that post#n(�, T) is a fixpoint.

Proof. The proof goal holds because T# has a finite number of expressions, π#

may only introduce a finite number of expressions, and there are only finitely
many elements of MED for a fixed set of expressions exp. ��

Table 1. The results of running our implementation on the benchmarks from the
memsafety category of the SV-COMP benchmarks. The rows correspond to subfolders
in the benchmark set. The columns show on how many benchmarks a fixpoint was
found after a given amount of time up to five minutes as well as the total amount of
files in each folder.

Folder #files <30 s <120 s <300 s

array-examples 4 4 4 4

array-memsafety 65 46 54 58

forester-heap 25 0 0 0

heap-manipulation 7 1 1 1

ldv-memsafety 105 82 82 82

ldv-memsafety-bitfields 10 10 10 10

list-ext-properties 19 8 10 10

list-properties 6 0 0 0

locks 13 13 13 13

memsafety 287 170 192 197

memsafety-ext 18 0 0 0

memsafety-ext2 10 0 0 0

ntdrivers-simplified 10 3 9 10

The Map Equality Domain 307

6 Evaluation

We have implemented our method within the abstract interpretation plugin [15]
of the Ultimate framework2. For elements of ED we use a union-find data
structure and the standard congruence closure algorithm [12]. The full reduc-
tion operator (in particular triggering the expensive rules Δ and ext) is applied
only before operations that may suffer from a precision loss, namely join and pro-
jection. We have implemented basic caching to represent the order relation �.

As our benchmark set we chose the programs from the memsafety category
of SV-COMP 20183. This category is focused on memory operations, which
Ultimate translates into operations on maps.

We ran Ultimate in version 0.1.23-a5595af with a memory limit of 6 GB and
a timelimit of 300 s on a machine with an 3.4 GHz Intel i7-2600 CPU. Table 1
shows the results of our experiments. While the method finished in under thirty
seconds on the majority of benchmark tasks there is still a large set of bench-
marks where the analysis needs more time. Still the experiments allow us to
cautiously conclude that our method can be made scalable. Nevertheless a lot
of work, in particular in exploring a wide range of possible optimizations, lies
ahead of us until we obtain a practical tool.

References

1. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

2. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 20

3. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: Program verification via Craig
interpolation for presburger arithmetic with arrays. In: VERIFY@IJCAR of EPiC
Series in Computing, vol. 3, pp. 31–46. EasyChair (2010)

4. Chang, B.-Y.E., Leino, K.R.M.: Abstract interpretation with alien expressions and
heap structures. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 147–163.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30579-8 11

5. Christ, J., Hoenicke, J.: Weakly equivalent arrays. In: Lutz, C., Ranise, S. (eds.)
FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 119–134. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24246-0 8

6. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31759-0 19

7. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

2 https://github.com/ultimate-pa/ultimate.
3 https://sv-comp.sosy-lab.org/2018.

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-540-30579-8_11
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-36742-7_7
https://github.com/ultimate-pa/ultimate
https://sv-comp.sosy-lab.org/2018

308 D. Dietsch et al.

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks, pp.
269–282, ACM Press, New York (1979)

10. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL, pp. 105–118. ACM (2011)

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

12. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. J. ACM 27(4), 758–771 (1980)

13. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

14. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: An abstract
domain of uninterpreted functions. In: Jobstmann, B., Leino, K.R.M. (eds.)
VMCAI 2016. LNCS, vol. 9583, pp. 85–103. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49122-5 4

15. Greitschus, M., Dietsch, D., Podelski, A.: Loop invariants from counterexamples.
In: Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp. 128–147. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66706-5 7

16. Gulwani, S., Tiwari, A.: An abstract domain for analyzing heap-manipulating low-
level software. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
379–392. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-
3 42

17. Gulwani, S., Tiwari, A., Necula, G.C.: Join algorithms for the theory of unin-
terpreted functions. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS,
vol. 3328, pp. 311–323. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30538-5 26

18. Hoenicke, J., Schindler, T.: Efficient interpolation in the theory of arrays.
In: SMT Workshop (2017). http://smt-workshop.cs.uiowa.edu/2017/papers/
SMT2017 paper 4.pdf

19. Leino, R.: This is Boogie 2. Microsoft Research, June 2008
20. McCarthy, J.: Towards a mathematical science of computation. In: IFIP Congress,

pp. 21–28 (1962)
21. Stump, A., Barrett, C.W., Dill, D.L., Levitt. J.R.: A decision procedure for an

extensional theory of arrays. In: LICS, pp. 29–37. IEEE Computer Society (2001)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-540-73368-3_42
https://doi.org/10.1007/978-3-540-73368-3_42
https://doi.org/10.1007/978-3-540-30538-5_26
https://doi.org/10.1007/978-3-540-30538-5_26
http://smt-workshop.cs.uiowa.edu/2017/papers/SMT2017_paper_4.pdf
http://smt-workshop.cs.uiowa.edu/2017/papers/SMT2017_paper_4.pdf

Loop Detection by Logically Constrained
Term Rewriting

Naoki Nishida1 and Sarah Winkler2(B)

1 Department of Computing and Software Systems, Graduate School of Informatics,
Nagoya University, Nagoya, Japan

nishida@i.nagoya-u.ac.jp
2 Department of Computer Science, University of Innsbruck, Innsbruck, Austria

sarah.winkler@uibk.ac.at

Abstract. Logically constrained rewrite systems constitute a very gen-
eral rewriting formalism that can capture simplification processes in var-
ious domains as well as computation in imperative programs. In both of
these contexts, nontermination is a critical source of errors. We present
new criteria to find loops in logically constrained rewrite systems which
are implemented in the tool Ctrl. We illustrate the usefulness of these
criteria in three example applications: to find loops in LLVM peephole
optimizations, to detect looping executions of C programs, and to estab-
lish nontermination of integer transition systems.

Keywords: Constrained rewriting · Nontermination · Loops

1 Introduction

Rewriting in presence of side constraints captures simplification processes in var-
ious areas, such as expression rewriting in compilers, theorem provers, or SMT
solvers [11,14,15,17]. But also computations in an imperative program can be
seen as rewrite sequences according to a constrained rewrite system describ-
ing the control flow graph [7]. In both cases the imposed side constraints can
typically be expressed as formulas over a decidable logic. Logically constrained
term rewrite systems (LCTRSs) [12] formalize a very general rewriting mech-
anism that can express both of these settings, as well as earlier formalisms of
constrained rewriting (cf. [12]). Side constraints of LCTRSs can employ an arbi-
trary first-order logic which contains propositional logic and equality, though
their application for practical analysis tasks requires decidability of the logic
under consideration. But thanks to the impressive progress of SMT solving in
the last two decades, we can use theories including, for instance, integer as well
as bitvector arithmetic and arrays. This renders LCTRSs a powerful analysis
tool in a wide range of areas, including program verification [7].

This work is partially supported by JSPS KAKENHI Grant Number JP18K11160 and
FWF (Austrian Science Fund) project T789.

c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 309–321, 2018.
https://doi.org/10.1007/978-3-030-03592-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_18&domain=pdf
http://orcid.org/0000-0001-8697-4970
http://orcid.org/0000-0001-8114-3107
https://doi.org/10.1007/978-3-030-03592-1_18

310 N. Nishida and S. Winkler

Termination is a key property of simplification and computation processes,
and loops are the most common violation thereof. We consider an example from
the field of compiler optimizations.

Example 1. The Instcombine pass in the LLVM compilation suite performs peep-
hole optimizations to simplify expressions in the intermediate representation.
The current optimization set contains over 1000 simplification rules to e.g.
replace multiplications by shifts or perform bitwidth changes. About 500 of them
have recently been translated into the domain-specific language Alive [14,15]. The
following simplification is an example rule in this format.

Name: MulDivRem 9
Pre: C < 0 && isPowerOf2(abs(C))
%Op0 = sub %Y, %X
%r = mul %Op0, C

=>
%sub = sub %X, %Y
%r = mul %sub, abs(C)

It consists of a precondition labelled Pre, a left-hand side (the expression
before the arrow =>), and the right-hand side (the expression after the arrow).
Both expressions are defined by a sequence of variable assignments. The last
variable on each side—in this case %r—identifies the pattern to be replaced.
This simplification can also be represented by the following LCTRS rule, using
a side constraint over bitvector arithmetic:

mul(sub(y, x), c) → mul(sub(x, y), abs(c)) [c <s #x0 ∧ isPowerOf2(abs(c))] (1)

The Instcombine optimization suite is community-maintained, and unintended
interference of rules may occur. For instance, for 16-bit integers where #x8000 is
the smallest representable integer value, Rule (1) in combination with constant
folding admits the following loop since abs(#x8000) evaluates to #x8000:

mul(sub(x, x),#x8000) → mul(sub(x, x), abs(#x8000)) → mul(sub(x, x),#x8000)

In this paper we present new criteria to recognize loops in LCTRSs. We imple-
mented them in the Constrained Rewrite tooL Ctrl [13], which can now for
instance detect the loop shown in Example 1. In order to illustrate the useful-
ness of our criteria, we discuss applications in three example domains: (1) finding
loops in the Instcombine optimization suite, (2) detecting loops in C programs,
and (3) establishing nontermination of integer transition systems.

The remainder of this paper is structured as follows. In Sect. 2 we recall
preliminaries about logically constrained rewrite systems. We present our non-
termination criteria in Sect. 3. Afterwards, we outline our implementation within
the tool Ctrl in Sect. 4, and report on detecting loops in some example application
areas in Sect. 5. In Sect. 6 we conclude.

Loop Detection by Logically Constrained Term Rewriting 311

2 Preliminaries

We assume familiarity with term rewrite systems [1], but briefly recapitulate the
notion of logically constrained rewriting [7,12] that our approach is based on.

We consider an infinite set of variables V and a sorted signature F = Fterms∪
Ftheory such that T (F ,V) denotes the set of terms over this signature. Symbols in
Fterms are called term symbols, while Ftheory contains theory symbols. A term in
T (Ftheory,V) is called a theory term. For a non-variable term t = f(t1, . . . , tn),
we write root(t) to obtain the top-most symbol f . A position p is an integer
sequence used to identify subterms of a given term. The subterm of t at position
p is defined as t|ε = t, and if t = f(t1, . . . , tn) then t|ip = ti|p. The result of
replacing the subterm of a term t at position p by s is denoted t[s]p. A context
C is a term with a single occurrence of a designated constant �, and we write
C[t] to denote the term obtained by replacing � in C by t. A substitution σ is a
mapping from variables to terms. We write Dom(σ) and Ran(σ) for its domain
and range, while tσ denotes the application of σ to a term t.

Terms over logical symbols are associated with a fixed semantics. To this
end, we assume a mapping I that assigns to every sort ι occurring in Ftheory

a carrier set I(ι), and an interpretation J that assigns to every symbol f ∈
Ftheory a function fJ . For every sort ι occurring in Ftheory we assume a set
Valι ⊆ Ftheory of value symbols, such that all c ∈ Valι are constants of sort ι and
J constitutes a bijective mapping between Valι and I(ι). Hence there exists a
constant symbol for every value in the carrier set. We write Val for

⋃
ι Valι. The

interpretation J naturally extends to theory terms without variables by setting
[f(t1, . . . , tn)]J = fI([t1]J , . . . , [tn]J). Theory symbols and term symbols are
supposed to overlap only on values, i.e., Fterms ∩Ftheory ⊆ Val holds. We assume
a sort bool such that I(bool) = B = {�,⊥} with values Valbool = {true, false}
such that trueJ = �, and falseJ = ⊥. Moreover we consider a theory symbol
≈ for equality. Theory terms of sort bool are called constraints. A substitution
σ which satisfies σ(x) ∈ Val for all x ∈ Dom(σ) is also called an assignment.
A constraint ϕ is valid if [ϕγ]J = � for all assignments γ, and satisfiable if
[ϕγ]J = � for some assignment γ.

Logically Constrained Rewriting. We consider constrained rewriting as developed
in [7,12]. A constrained rewrite rule is a triple � → r [ϕ] where �, r ∈ T (F ,V),
� �∈ V, ϕ is a constraint, and root(�) ∈ Fterms \ Ftheory. If ϕ = true then the
constraint is omitted, and the rule denoted as � → r. A set of constrained
rewrite rules is called a logically constrained term rewrite system (LCTRS for
short).

In order to define rewriting using constrained rewrite rules, a substitution
σ is said to respect a constraint ϕ if ϕσ is valid and σ(x) ∈ Val for all x ∈
Var(ϕ). A calculation step s →calc t satisfies s = C[f(s1, . . . , sn)] for some f ∈
Ftheory \ Val, t = C[u], si ∈ Val for all 1 � i � n, and u ∈ Val is the value
symbol of [f(s1, . . . , sn)]J . In this case f(x1, . . . , xn) → y [y ≈ f(x1, . . . , xn)]
is a calculation rule, where y is a variable different from x1, . . . , xn. A rule step
s →�→r [ϕ] t satisfies s = C[�σ], t = C[rσ], and σ respects ϕ. For an LCTRS

312 N. Nishida and S. Winkler

R, we also write →rule, R to refer to the relation {→α}α∈R, and denote →calc ∪
→rule, R by →R. The subscript R is dropped if clear from the context.

Example 2. Consider the sorts int and bool, and let Ftheory consist of symbols ·,
+, −, �, and � as well as values n for all n ∈ Z, with the usual interpretations
on Z. Let Fterms = Val ∪ {fact}. The LCTRS R consisting of the rules

fact(x) → 1 [x � 0] fact(x) → fact(x − 1) · x [x − 1 � 0]

admits the following rewrite steps:

fact(2) →rule fact(2 − 1) · 2 (as 2 − 1 � 0 is valid)
→calc fact(1) · 2 →rule (fact(1 − 1) · 1) · 2 (as 1 − 1 � 0 is valid)
→calc (fact(0) · 1) · 2 →rule (1 · 1) · 2 (as 0 � 0 is valid)
→+

calc 2

An LCTRS R is terminating if →R is well-founded. A loop is a rewrite
sequence of the form t →+

R C[tσ]. Due to the sequence t →+
R C[tσ] →+

R
C2[tσ2] →+

R · · · existence of a loop implies nontermination. For example, a
rewrite rule f(x, y) → h(f(−x, g(y))) [x � 0] gives rise to the loop where
t = f(0, y), C = h(�), and σ = {y �→ g(y)}:

f(0, y) →rule h(f(−0, g(y))) →calc h(f(0, g(y))) →rule h(h(f(−0, g(g(y))))) →calc · · ·

Rewriting Constrained Terms. The notion of rewriting for unconstrained terms
considered so far is used to model the actual simplification and computation
processes in practice. But for the sake of analysis it is convenient to also define a
notion of rewriting on constrained terms, for instance to capture the composition
of rewrite rules.

To that end, a constrained term is a pair s [ϕ] of a term s and a constraint ϕ.
Two constrained terms s [ϕ] and t [ψ] are equivalent, denoted by s [ϕ] ∼ t [ψ], if
for every substitution γ respecting ϕ there is some substitution δ that respects
ψ such that sγ = tδ, and vice versa. For example, fact(x) · x [x = 1 ∧ x <
y] ∼ fact(1) · y [y > 0 ∧ y < 2] holds, but these terms are not equivalent to
fact(x) · y [x = y] or fact(1) [true]. Next we define rewriting on constrained
terms.

Definition 1

– A calculation step s [ϕ] →calc t [ϕ ∧ x ≈ f(s1, . . . , sn)] needs to satisfy
s = C[f(s1, . . . , sn)] for some f ∈ Ftheory \ Fterms and t = C[x] such that
s1, . . . , sn ∈ Var(ϕ) ∪ Val and x is a fresh variable.

– A constrained rewrite rule α : � → r [ψ] admits a rule step s [ϕ] →α t [ϕ] if
ϕ is satisfiable, s = C[�σ], t = C[rσ], σ(x) ∈ Val ∪ Var(ϕ) for all x ∈ Var(ψ),
and ϕ ⇒ ψσ is valid.

Given an LCTRS R, we again write →rule, R for {→α}α∈R. The main rewrite
relation →R on constrained terms is defined as ∼ · (→calc ∪ →rule, R) · ∼.

Loop Detection by Logically Constrained Term Rewriting 313

For example, the LCTRS from Example 2 and the constraint ϕ = x � 1∧y �
0 admit the rule step fact(x + y) [ϕ] →rule fact(x + y − 1) · (x + y) [ϕ], while
fact(x + y) [ϕ] →calc fact(z) [ϕ ∧ z ≈ x + y] is a possible calculation step.

We next define narrowing on constrained terms (cf. the notion of chains [4]).

Definition 2. A constrained rewrite rule α : � → r [ψ] admits a narrowing step
s [ϕ] �μ

α,p t [ϕ′] if s = s[s′]p, the terms s′ and � are unifiable with mgu μ, the
resulting term is t = (s[r]p)μ, ϕ′ = (ϕ ∧ ψ)μ, and ϕ′ is satisfiable.

We also write s [ϕ] μ
α �t [ϕ′] if α : � → r [ψ] admits a step t [ϕ′] �μ

r→� [ψ]

s [ϕ]. The following lemma shows the crucial correspondence between narrowing
and rewriting, which ensures correctness of our loop detection shown in Sect. 4.

Lemma 1 (Lifting Lemma). Suppose α : � → r [ψ] admits a narrowing step
s [ϕ] �μ

α,p t [ϕ′], where ϕ′ = (ϕ ∧ ψ)μ. Then sμ [ϕ′] →α,p t [ϕ′].

Proof. We have sμ|p = �μ and can perform a rewrite step because ϕ′ = (ϕ∧ψ)μ
is satisfiable, and ϕ′ ⇒ ψμ is valid. The result is indeed sμ[rμ] = (s[r]p)μ = t. ��

3 Loop Criteria

Our aim is to detect loops in LCTRSs. More precisely, given an LCTRS R we
want to find rewrite sequences t →+

R C[tσ] on unconstrained terms. A natural
approach to this end from standard rewriting is unfolding [19]: one tries to
compose (instances of) rewrite rules such that the final term of the resulting
rewrite sequence contains (an instance of) the initial term. For our setting, this
requires to rewrite constrained terms. But a rewrite sequence t [ϕ] →+

R C[tσ] [ψ]
on constrained terms where the final term contains the initial term need not
imply a loop: this depends on whether the constraints can remain satisfied after
repeated execution of the respective rewrite steps. In this section we consider
a rewrite sequence t [ψ] →+

R C[tσ] [ψ] and look for sufficient criteria such that
these steps give rise to a loop. If there exists a ψ as above then we abbreviate
this by t →+

ψ,R C[tσ] and call it a loop candidate.
The following criterion was presented in [18, Theorem 2].

Lemma 2. Let R be an LCTRS, and ψ a constraint. Suppose t →+
ψ,R C[tσ] for

a term t, context C, and substitution σ such that σ(x) ∈ T (Ftheory,V) for all
x ∈ Var(ψ), ψ is satisfiable, and ψ =⇒ ψσ valid. Then R is nonterminating.

As a nontermination criterion, Lemma 2 has the disadvantage that it cannot
detect loops which occur only for specific input values, such as the loop from
Example 1. We next propose two criteria which remedy this shortcoming.

Lemma 3. Let R be an LCTRS, and ψ a constraint. Suppose that t →+
ψ,R C[tσ]

for some term t, context C, and substitution σ such that σ(x) ∈ T (Ftheory,V)
for all x ∈ Var(ψ), and ψ ∧

∧
y∈Dom(σ) y ≈ yσ is a constraint satisfied by some

assignment α. Then R is nonterminating because of the loop tα →+
R C[tσα].

314 N. Nishida and S. Winkler

Proof. If ψ ∧
∧

y∈Dom(σ) y ≈ yσ is satisfied by an assignment α then ψα is valid,
and [yα]J = [yσα]J for all y ∈ Dom(σ). Thus tσα →∗

calc tα such that there is a
loop tα →+

R C[tσα] →∗
calc C[tα] →+

R · · ·. ��

Example 3. Returning to Example 1, the two rewrite steps

mul(sub(y, x), c) [ϕ] →rule mul(sub(x, y), abs(c)) [ϕ] →calc mul(sub(x, y), c′) [ψ]

constitute a loop candidate, where ϕ = c <s #x0000 ∧ isPowerOf2(abs(c)) and
ψ = ϕ ∧ c′ = abs(c). We thus have t [ψ] →+

R C[tσ] [ψ] for t = mul(sub(y, x), c),
C = �, and σ = {y �→ x, c �→ c′}, such that σ(z) is a logical term for all z in
ψ. The formula ψ ∧ x = y ∧ c = c′ is satisfiable by any assignment such that
α(x) = α(y) and α(c) = α(c′) = #x8000, which exhibits the loop in Example 1:

mul(sub(x, x),#x8000) → mul(sub(x, x), abs(#x8000)) → mul(sub(x, x),#x8000)

The criterion of Lemma 3 is rather restrictive in that it demands the start-
ing term to occur again as a subterm after some (calculation) steps. The next
criterion adds some flexibility in this respect.

Lemma 4. Let R be an LCTRS, and ψ a constraint. Suppose that t →+
ψ,R C[tσ]

for some term t, context C, and substitution σ such that σ(x) ∈ T (Ftheory,V) for
all x ∈ Var(ψ). Suppose Dom(σ) = {y1, . . . , yn}, and let ρ = {y1 �→ z1, . . . , yn �→
zn} be a renaming to fresh variables z1, . . . , zn.

If ∀y1 . . . yn.(ψ =⇒ ψσ) ∧ ψρ is satisfiable by α then R is nonterminating
because of the loop tρα →+

R C[tσρα].

Proof. We write y for y1 . . . yn and assume that χ = ∀y.(ψ =⇒ ψσ) ∧ ψρ is
satisfied by some assignment α, so Ran(α) ⊆ Val. We can assume Dom(α)∩{y} =
∅ since there are no free occurrences of yi in χ. There must be some assignment
β such that α = β � α|{zi}, and we abbreviate γ = ρα|{zi}. By assumption ψρα
holds, which coincides with ψβγ because Ran(β) ⊆ Val and Dom(β) ∩ {y} = ∅.
Moreover ∀y.(ψ =⇒ ψσ)βα|{zi} holds, and we have

(∀y.(ψ =⇒ ψσ)βα|{zi}) = (∀y.(ψβ =⇒ ψσβ))α|{zi} as Dom(β) ∩ {y} = ∅

= (∀y.(ψβ =⇒ ψσβ)) because z are fresh
= (∀y.(ψβ =⇒ ψβσ)) as Dom(β) ∩ {y} = ∅

Thus ψβγ′ implies ψβσγ′ for all substitutions γ′ with Dom(γ′) = {y}. Since
Dom(σkγ) = {y} the constraint ψβσkγ = ψσkβγ = ψσkρα holds for all k � 0.
Hence we have the loop

tρα →+
R C[tσρα] →+

R C2[tσ2ρα] →+
R · · · ��

Example 4. Consider the following LCTRS R0 with constraints over the integers:

f(x, y) → f(x + 1 − y, y) − 1 [y �= 1 ∧ x � 0]

Loop Detection by Logically Constrained Term Rewriting 315

The rule constitutes a loop candidate: We have t →+
ψ,R C[tσ] for t = f(x, y),

C = � − 1, and σ = {x �→ x + 1 − y} with Dom(σ) = {x}. The formula

∀x (y �= 1 ∧ x � 0 =⇒ (y �= 1 ∧ (x + 1 − y) � 0)) ∧ y �= 1 ∧ z � 0

is satisfied e.g. by the assignment α(y) = α(z) = 0. Thus we can detect the loop

f(0, 0) →R f(0 + 1 − 0, 0) →+
calc f(1, 0) →R f(1 + 1 − 0, 0) →+

calc f(2, 0) → · · ·

Note that this loop is not captured by the criteria in Lemmas 2 and 3.

It is clear that Lemma 4 subsumes Lemma 2— satisfiability of ψ and validity
of ψ =⇒ ψσ in Lemma 2 implies satisfiability of ∀y1 . . . yn.(ψ =⇒ ψσ) ∧ ψρ in
Lemma 4. The LCTRS R0 from Example 4 indicates the existence of an example
for which Lemma 4 can detect a loop but Lemmas 2 or 3 do not. The following
example shows the remaining relationship between Lemmas 2, 3, and 4.

Example 5. A loop of the LCTRS R1 = { f(x) → f(x) [x � 0] } can be detected
by Lemmas 2, 3, and 4. A loop of the LCTRS R2 = { f(x) → f(x + 1) [x � 0] }
can be detected by Lemmas 2 and 4 but not by Lemma 3. A loop of the LCTRS
R3 = { f(x, y) → f(x + y, y) [x � 0] } can be detected by Lemmas 3 and 4 but
not by Lemma 2. A loop of the LCTRS R4 = { f(x, y) → f(y + 1, x − 1) [x �
0 ∧ y � 0] } can be detected by Lemma 3 but not by Lemmas 2 or 4.

The relationship between the different criteria is summarized in Fig. 1.

Lemma 2

Lemma 3Lemma 4

R1R2 R3 R4R0

Fig. 1. Relationship between the criteria implied by Lemmas 2, 3, and 4.

4 Implementation

We extended the tool Ctrl [13] by nontermination techniques that exploit the
criteria presented in Sect. 3. Optionally a starting term can be given, i.e., two
modes are supported:

(a) Given an LCTRS R, find a loop t →+
R C[tσ].

(b) Given an LCTRS R and a starting term u, find a loop reachable from u,
i.e., a sequence u →∗

R t →+
R C[tσ].

316 N. Nishida and S. Winkler

To that end our implementation searches loop candidates t →+
ϕ,R C[tσ] which

satisfy the criteria in Lemmas 2–4. An input file in the ctrs format specifies the
logical theory to be used, the signature, the rewrite rules, and a query to fix the
problem statement for Ctrl, i.e., the requested analysis or transformation task.
To support nontermination analysis, we provide loops as a query in input files:

QUERY loops t

where the optional argument t is a term from which a loop should be reachable.
Ctrl offers theory specifications for integers and arrays, and we added bitvectors
for this work. Alternatively, a user-defined theory specification can be used.

We next describe how our implementation detects loops. Following the idea
of unfolding [19], we construct sequence tuples (s → t [ψ], S) where s → t [ψ] is
a constrained rewrite rule, S = [(α1, p1), . . . , (αk, pk)], αi is a rule of the form
�i → ri [ϕi] and pi are positions for all 0 � i � k such that there is the rewrite
sequence s [ψ] →α1,pi

· · · →αk,pk
t [ψ].. In either of the modes (a) and (b), we

proceed in five steps as follows.

(1) Using the dependency pair (DP) framework present in Ctrl [12], the problem
is split into strongly connected components of the dependency graph. This
results in a set of DP problems of the form (P,R), where P is a set of depen-
dency pairs and R the given LCTRS. (Basically this amounts to splitting the
problem into rules P that are applied at the root of a term and rules R that
can be applied below. Then potential cycles in the call graph are identified,
and only upon these the analysis continues; see [12] for details.)
The following steps are then performed for each of these DP problems:

(2) The set of initial sequence tuples T0 is determined. In case of (a), we take
the set of all single-step sequences (� → r [ϕ], [(� → r [ϕ], ε)]) such that
� → r [ϕ] ∈ P. In case of (b), this set is restricted to those tuples where a
rewrite sequence u →ϕ,R v[�] was found.

(3) Given tuples Ti, we define T f
i+1 for forward and T b

i+1 for backward unfolding:

T f
i+1 = {(sτ → u [χ], Sf) | (s → t [ψ], S) ∈ Ti, β ∈ Q and t [ϕ] �τ

β,q u [χ]}
T b

i+1 = {(uτ → t [χ], Sb) | (s → t [ψ], S) ∈ Ti, β ∈ Q and u [ϕ] τ
β,q �s [χ]}

Here Q abbreviates P ∪R, Sf = S ++ [(β, q)] and Sb = [(β, q)] ++ S, where
++ denotes list concatenation.

(4) Let T =
⋃

i�n Ti for some n. By the construction of Ti and Lemma 1, we
have s [ψ] →+

R∪P t [ψ] for all (s → t [ψ], S) ∈ T . If t = C[s′] for some C and
s′ such that s and s′ are unifiable with mgu μ and ψμ is satisfiable, then
sμ [ψμ] →+

R∪P C[sμ] [ψμ] is a loop candidate.
(5) We finally use Lemmas 2, 3, and 4 to check whether there are input values

for which the loop candidates correspond to actual loops.

Since it is known that forward and backward unfolding are incomparable
in general [19], both methods are supported. The tool as well as input files
corresponding to the examples used in this paper can be found on-line1.
1 http://cl-informatik.uibk.ac.at/users/swinkler/lctrs loops.

http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_loops

Loop Detection by Logically Constrained Term Rewriting 317

5 Applications

We now illustrate the loop support of Ctrl in three different application domains.

LLVM Instcombine Simplifications

We transformed the around 500 simplifications in the Alive language mentioned
in Example 1 into LCTRSs using bitvector theory as background logic. These
simplifications are split into domains. We tested Ctrl on the simplification sets
for addition and subtraction, multiplication and division, shifts, bitwise logical
operations, and select operations, as well as on their union. Table 1 summarizes
our results. The columns refer to the different domains, and loops refers to the
set of rules involved in all loops found in the work [16] discussed below. The rows
indicate how many loops of length at most 3 were found by Ctrl using forward
(fw) and backward (bw) unfolding, respectively, and how much time was required.
In general forward unfolding seems to be more useful than backward unfolding.

Table 1. Instcombine loops found via forward (fw) and backward (bw) unfolding.

rules add-sub mul-div shift and-or select loops all

66 118 75 180 85 43 518

fw 3-loops 4 8 4 22 2 40 51

Time (s) 16 80 9 3601 24 25 >32k

bw 3-loops 4 8 4 10 2 27 TO

Time (s) 29 727 9 8400 21 24 TO

A dedicated tool alive-loops to detect loops in the Instcombine opti-
mizations was presented in [16]. We briefly compare our criteria to their app-
roach: First of all, we found the same loops with Ctrl that were exhibited by
alive-loops, modulo combination and nesting of loops. But the loop check
applied in alive-loops is different: It amounts to the search for a loop candi-
date t →+

ψ,R C[tσ] such that ψ =⇒ ψσ is satisfiable. While this is obviously a
necessary condition it is in general not sufficient:

Example 6. As an (artificial) example, consider the constrained rewrite rule
and(#x0, x) → and(#x0, x �u #x1) [x > #x0]. It gives rise to a loop candidate
t →+

ψ,R tσ where ψ = x > #x0, t = and(#x0, x), and σ = {x �→ x �u #x1}.
The constraint ψ =⇒ ψσ is satisfiable. But logically shifting x to the right
will eventually result in a bit vector #x0000, hence no such loop exists. Indeed
alive-loops finds a spurious loop in this example, but Ctrl does not.

By the correctness proofs of Lemmas 3 and 4, such false positives can be excluded
for Ctrl. Moreover alive-loops is limited in that it restricts to loop candidates
which are not size-increasing.

We remark that not all loops found by Ctrl or alive-loops can actually
occur in the LLVM Instcombine pass since the rule set is applied with a particular
strategy, such that certain optimizations can “shadow” other ones. Thus it needs
to be checked by hand whether the detected potential loops can actually occur.

318 N. Nishida and S. Winkler

Loops in Integer Transition Systems

Integer term rewriting has been introduced as a rewriting formalism which
natively supports integer operations, to be applied to rewrite-based program
analysis [6]. The integer transition system Velroyen08-alternKonv.jar-obl-8
from the Termination Problem Database 9.02 corresponds to the following
LCTRS:

f1 0 main(x, y) → f81 0(x′, y′) [x > 0 ∧ y > −1 ∧ y = x′] (1)
f81 0(x, y) → f81 0(x′, y′) [x < 0 ∧ x > −3 ∧ x + 2 = x′] (2)
f81 0(x, y) → f81 0(x′, y′) [x > 0 ∧ x < 3 ∧ x − 2 = x′] (3)
f81 0(x, y) → f81 0(x′, y′) [x < −2 ∧ x < −1 ∧ x < 0 ∧ −x − 2 = x′] (4)
f81 0(x, y) → f81 0(x′, y′) [x > 2 ∧ −x + 2 = x′] (5)

init(x, y) → f1 0 main(x′, y′) (6)

where the starting term is of the form init(x, y). It admits the following rewrite
steps which contain a loop:

init(1, 1)
(6)−−→ f1 0 main(1, 1)

(1)−−→ f81 0(1,−1)
(3)−−→ f81 0(−1, 0)

(2)−−→ f81 0(1,−1)

(where the arrows are decorated with the applied rule). Ctrl can easily show
nontermination within less than 2 seconds by exploiting Lemma 3. This is also
the case for the similar system alternKonv rec, while in the Termination Com-
petition 20173 both of these problems remained unsolved.

Loops in C Programs

Consider the following C program implementing binary search [10]:

int bsearch(int a[], int k, unsigned int lo, unsigned int hi) {
unsigned int mid;
while (lo < hi) {

mid = (lo + hi)/2;
if (a[mid] < k)

lo = mid + 1;
else if (a[mid] > k)

hi = mid - 1;
else

return mid;
}
return -1;

}

2 http://termination-portal.org/wiki/TPDB.
3 http://www.termination-portal.org/wiki/Termination Competition 2017.

http://termination-portal.org/wiki/TPDB
http://www.termination-portal.org/wiki/Termination_Competition_2017

Loop Detection by Logically Constrained Term Rewriting 319

It admits a loop for inputs lo=1 and hi=UINT MAX if a[0] < k. Abstracting from
the array accesses, this program can be represented by the following LCTRS:

bsearch(k1, lo1, hi1) → u2(k1, lo1, hi1, rnd1)
u2(k1, lo1, hi1,mid2) → u3(k1, lo1, hi1, (lo1 + hi1) /u #x02) [lo1 <u hi1]
u3(k1, lo1, hi1,mid2) → u5(k1, (mid2 + #x01), hi1,mid2) [mid2 <u k1]
u3(k1, lo1, hi1,mid2) → u6(k1, lo1, (mid2 − #x01),mid2) [mid2 � k1 ∧ mid2 > k1]
u6(k1, lo1, hi1,mid2) → u9(k1, lo1, hi1,mid2)
u3(k1, lo1, hi1,mid2) → return(mid2) [mid2 � k1 ∧ mid2 � k1]
u5(k1, lo1, hi1,mid2) → u9(k1, lo1, hi1,mid2)
u9(k1, lo1, hi1,mid2) → u10(k1, lo1, hi1,mid2)

u10(k1, lo1, hi1,mid2) → u2(k1, lo1, hi1,mid2)
u2(k1, lo1, hi1,mid2) → return(#xff) [lo1 �u hi1]

Ctrl can prove existence of a loop that is reachable from a term of the form
bsearch(x, y, l, h) below one second, using Lemma 3.

6 Conclusion

We presented new criteria to recognize loops in LCTRSs, and implemented these
in the constrained rewrite tool Ctrl. In order to demonstrate applicability of such
nontermination support, we investigated three example domains.

For the case of LLVM Instcombine optimizations, we confirmed all loops
found by the tool alive-loops [16], and argued that in contrast to this previous
work our criteria do not give rise to false positives. We moreover showed how Ctrl
can be used to detect loops in a C program and in integer transition systems.

Extensive work on nontermination detection has been done in the past for
both domains, c.f. [2,5,10] and [3,9], for example. A thorough evaluation of our
criteria by means of comparison with tools such as [2,3,9] is left for future work.
Rather than claiming our implementation superior to other tools, we consider
the work presented in this paper a proof of concept that nontermination crite-
ria for LCTRSs are applicable to a wide range of domains. In contrast to tools
designed for integer transition systems, C programs, or LLVM Instcombine opti-
mizations, we can treat all these applications uniformly with our criteria: Due to
the generality of LCTRSs, the same implementation can be applied to a variety
of background theories such as integer or bitvector arithmetic or arrays.

In future work we want to investigate further application domains such as
simplifications performed in the preprocessing phase of SMT solvers [8,17]. More-
over, it would be interesting to find criteria for nonlooping nontermination of
LCTRSs.

Acknowledgements. The authors thank the anonymous referees for their helpful
comments.

320 N. Nishida and S. Winkler

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

2. Borralleras, C., Brockschmidt, M., Larraz, D., Oliveras, A., Rodŕıguez-Carbonell,
E., Rubio, A.: Proving termination through conditional termination. In: Legay, A.,
Margaria, T. (eds.) TACAS 2017. Heidelberg, vol. 10205, pp. 99–117. Springer,
Cham (2017). https://doi.org/10.1007/978-3-662-54577-5 6

3. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: Temporal
property verification. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 387–393. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 22

4. Falke, S., Kapur, D.: A term rewriting approach to the automated termination anal-
ysis of imperative programs. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI),
vol. 5663, pp. 277–293. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02959-2 22

5. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: Proceedings of the 22nd RTA, Leibniz International
Proceedings in Informatics, vol. 10, pp. 41–50 (2011). https://doi.org/10.4230/
LIPIcs.RTA.2011.41

6. Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P., Falke, S.: Proving termination
of integer term rewriting. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp.
32–47. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02348-4 3

7. Fuhs, C., Kop, C., Nishida, N.: Verifying procedural programs via constrained
rewriting induction. ACM TOCL 18(2), 14:1–14:50 (2017). https://doi.org/10.
1145/3060143

8. Ganesh, V., Berezin, S., Dill, D.: A decision procedure for fixed-width bit-vectors.
Technical report, Stanford University (2005)

9. Giesl, J., et al.: Analyzing program termination and complexity automatically with
AProVE. JAR 58(1), 3–31 (2017). https://doi.org/10.1007/s10817-016-9388-y

10. Gupta, A., Henzinger, T., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving
non-termination. SIGPLAN Not. 43(1), 147–158 (2008). https://doi.org/10.1145/
1328897.1328459

11. Hoder, K., Khasidashvili, Z., Korovin, K., Voronkov, A.: Preprocessing techniques
for first-order clausification. In: Proceedings of the 12th FMCAD, pp. 44–51 (2012)

12. Kop, C., Nishida, N.: Term rewriting with logical constraints. In: Fontaine, P.,
Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp.
343–358. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-
4 24

13. Kop, C., Nishida, N.: Constrained term rewriting tooL. In: Davis, M., Fehnker,
A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 549–557.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7 38

14. Lopes, N., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole
optimizations with Alive. In: Proceedings of the 36th PLDI, pp. 22–32 (2015).
https://doi.org/10.1145/2737924.2737965

15. Lopes, N., Menendez, D., Nagarakatte, S., Regehr, J.: Practical verification of
peephole optimizations with Alive. Commun. ACM 61(2), 84–91 (2018). https://
doi.org/10.1145/3166064

16. Menendez, D., Nagarakatte, S.: Termination-checking for LLVM peephole opti-
mizations. In: Proceedings of the 38th International Conference on Software Engi-
neering, pp. 191–202 (2016). https://doi.org/10.1145/2884781.2884809

https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-642-02959-2_22
https://doi.org/10.1007/978-3-642-02959-2_22
https://doi.org/10.4230/LIPIcs.RTA.2011.41
https://doi.org/10.4230/LIPIcs.RTA.2011.41
https://doi.org/10.1007/978-3-642-02348-4_3
https://doi.org/10.1145/3060143
https://doi.org/10.1145/3060143
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1145/1328897.1328459
https://doi.org/10.1145/1328897.1328459
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-662-48899-7_38
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/3166064
https://doi.org/10.1145/3166064
https://doi.org/10.1145/2884781.2884809

Loop Detection by Logically Constrained Term Rewriting 321

17. Nadel, A.: Bit-vector rewriting with automatic rule generation. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 663–679. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9 44

18. Nishida, N., Sakai, M., Hattori, T.: On disproving termination of constrained term
rewriting systems. In: Proceedings of the 11th WST (2010)

19. Payet, É.: Loop detection in term rewriting using the eliminating unfoldings. Theor.
Comput. Sci. 403(2–3), 307–327 (2008). https://doi.org/10.1016/j.tcs.2008.05.013

https://doi.org/10.1007/978-3-319-08867-9_44
https://doi.org/10.1016/j.tcs.2008.05.013

Store Buffer Reduction in the Presence of
Mixed-Size Accesses and Misalignment

Jonas Oberhauser(B)

Saarland University, Saarbrücken, Germany
jonas@wjpserver.cs.uni-saarland.de

Abstract. Näıve programmers believe that a multi-threaded execution
of their program is some simple interleaving of steps of individual threads.
To increase performance, modern Intel and AMD processors make use
of store buffers, which cause unexpected behaviors that can not be
explained by the simple interleaving model.

Programs that in the simple interleaving model obey one of various
programming disciplines do not suffer from these unexpected behaviors
in the presence of store buffers. These disciplines require that the pro-
gram does not make use of several concrete features of modern proces-
sors, such as mixed-size/misaligned memory accesses and inter-processor
interrupts. A common assumption is that this requirement is posed only
to make the formal description and soundness proof of these disciplines
tractable, but that the disciplines can be extended to programs that
make use of these features with a lot of elbow grease and straightforward
refinements of the programming discipline.

In this paper we discuss several of such features where that assump-
tion is correct and two such features where it is not, namely mixed-
size/misaligned accesses and inter-processor interrupts. We base our dis-
cussion on two programming disciplines from the literature. We present
solutions and discuss some context, including a claim in the C11 stan-
dard that contradicts our findings.

Our work is based directly on the roughly 500 page PhD thesis of
the author, which includes a formal treatment of the extensions and a
detailed soundness proof.

1 Introduction

Memory speed has not been able to keep up with the growth of processor speed
for decades. To avoid a serious performance bottleneck, processor designers
decouple memory and processing by several optimizations, such as introduc-
ing special buffers and executing instructions out of order. The effect of these
methods is visible at the program level, where in multi-threaded executions they
cause behaviors that can not be explained by any simple interleaved executions,
such as accesses to a lock protected data structure being executed outside the
critical section.

As a result, programmers designing safety-critical systems have three choices:
(1) understand in depth the specific architecture and optimizations used by the
c© Springer Nature Switzerland AG 2018
R. Piskac and P. Rümmer (Eds.): VSTTE 2018, LNCS 11294, pp. 322–344, 2018.
https://doi.org/10.1007/978-3-030-03592-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03592-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-03592-1_19

Store Buffer Reduction in the Presence of Mixed-Size Accesses 323

0 x = 1; y = 1;

1 if (y == 0) if (x == 0)

2 // critical section // critical section

Listing 1: A mutual exclusion protocol. In simple interleavings, at most one of
the threads (possibly neither) can enter the critical section. In the presence of
store buffers, both threads can enter the critical section.

target platform, and show that the code works on that specific platform, (2) use
a tool that analyzes the program and proves that the code is correct on the target
platform, or (3) use a reduction theorem which proves that if the program obeys
some programming discipline in the idealized interleaving model, the platform
will execute the code as if the platform implemented the idealized interleaving
model.

We believe that in most cases, the third option is the best one, especially when
the system in question is developed in a high-level language, where compiler
optimizations can interact with hardware optimizations in unexpected ways.
To make this work, high-level languages in practice come themselves with a
programming discipline, which is then used to make sure that the compiled
code for each platform obeys a software discipline for that platform. Reduction
theorems are then used to prove the correctness of the compiler, rather than just
of individual programs.

One of the less aggressive hardware optimizations, used among others by
x86-64 processors, are so called store buffers, which work like thread-local FIFO
to-do lists: when a thread executes a store to a memory location, the store is not
actually performed but rather added to its local store buffer as a ‘to-do item’,
and the program can continue execution without needing to wait for the store
to be performed. When executing a load, the processor forwards from the most
recent local store buffer item that stores to the same location, or from memory
if no such item exists. This preserves the expected semantics in single-threaded
executions.

The canonical example for how store buffers cause unexpected behaviors is
shown in Listing 1. As in all examples we assume all variables are initialized
to zero. The shown code provides mutual exclusion in all simple interleaved
executions: the first thread to make a step will change x resp. y to 1 and thus
prevent the other thread from entering the critical section. In the presence of
store buffers, the first step of each thread does not change memory, only the local
store buffer. By the time the threads read y resp. x to evaluate the condition
of the if-statements, assignments to x resp. y can still be in the store buffers
of the other thread; thus both threads can potentially read zero and enter the
critical section.

To avoid this behavior, programmers can add so called memory barriers,
which drain the store buffer. Interlocked read-modify-write operations (RMW)
are memory barriers, as well as the stand-alone barrier for which we will used
the keyword fence. By adding a fence between lines 0 and 1 in both threads,
the mutual exclusion is restored: the first thread to execute the memory barrier

324 J. Oberhauser

must have executed its assignment to x resp. y, which is therefore 1 and prevents
the other thread from entering the critical section.

The goal is then to find a software discipline that is easy for a compiler to
implement, and which uses memory barriers sparingly as they negate the perfor-
mance benefits of store buffers. Several programming disciplines and variations
thereof have been developed ([Obe15,CS10,CCK14,Owe10] and others), but all
require that the program does not make use of several concrete features of mod-
ern processors, such as:

1. memory accesses which completely ignore the store buffer and therefore have
the potential to break even single-threaded code

2. mixed-size accesses or misaligned accesses, which create memory accesses that
overlap but do not have the same memory footprint

3. inter-processor interrupts, which create a second channel through which com-
munication is possible

4. transport-triggered memory, which performs complex operations as a side-
effect of a store, and can possibly affect multiple memory locations

5. untrusted code that may violate the discipline, e.g., in the form of code calling
into a library, or user programs

6. code modification, e.g., for operating systems that can swap code pages, or
for just-in-time compilation

The reason that the usage of these features is precluded is that they consid-
erably blow up the formal models of computation and the soundness proof of the
disciplines. The simplification comes with the hope that the software disciplines
can survive in the presence of these features with only minor changes. In his
recent PhD thesis [Obe17], the author carried out that work for one particu-
larly efficient and practical discipline from the literature, the dirty-bit method
of Cohen and Schirmer [CS10]. That hope is justified for most features listed
above, with the following two exceptions:

1. for mixed-size/misaligned accesses, where the discipline requires a new, and
not-so-obvious rule

2. for inter-processor interrupts (IPIs), certain guarantees that can be provided
by hardware must be discarded in the idealized model, i.e., the semantics of
IPIs in the idealized model is weaker than that in those hardware implemen-
tations.

In this paper we discuss two particular software disciplines from the litera-
ture, the well-known triangular-race-freedom (TRF) of Owens [Owe10], and the
more efficient dirty-bit method (more precisely, its ownership-free restatement
by Oberhauser [Obe15]). We show how they fail in minor and easily-repaired
ways for most of these features and in major ways for mixed-size memory and
IPIs by providing counterexamples. We also show how the dirty-bit method can
be extended to deal with these features.

Store Buffer Reduction in the Presence of Mixed-Size Accesses 325

2 Data Races and Shared Accesses

Informally, a data race occurs if multiple threads concurrently access the same
memory location, and at least one of the accesses modifies that memory location.
Two terms in this description are ambiguous:

‘concurrently’. There are several ways to make this precise; for us, two memory
operations are concurrent if they are executed by different threads and right
after each other.

‘modifies’. An atomic compare-and-swap (CAS) operation

t = casx c → v

returns the current value of a memory location x, and if that value compares
equal to compare value c, changes the value of x to a new value v. If the
values of c and v are equal, or the values of c and x are unequal, does the
CAS modify memory? We consider the answers to these questions to be yes
and no, respectively.

We require that all memory operations involved in a data race are tagged
as shared in some way in the program code. In listings we will use curly braces
around a variable in a memory operation if the access caused by that memory
operation is involved in a data race on that variable. For example, a correctly
annotated version of the code from Listing 1 is given in Listing 2.

0 {x} = 1; {y} = 1;

1 if ({y} == 0) if ({x} == 0)

2 // critical section // critical section

Listing 2: A correctly annotated version of the mutual exclusion protocol from
Listing 1.

In a sense, this is our high-level language software discipline. Note how it does
not mention specifics about hardware optimizations or memory barriers. This
is very similar to programming disciplines of real languages, such as Java or
C11/C++11, where memory operations that have data races need to be tagged
in some way—such as use of the volatile keyword in Java—but one has to be
careful, as the definitions of ‘concurrently’ and ‘modifies’ can be subtly different
from those given here, as discussed in detail in Sect. 8.

3 Low-Level Programming Disciplines

Triangular race freedom (TRF) was one of the first non-trivial programming
disciplines for store buffer reduction. It defines as a triangular race a race between
a read and a write, where the thread executing the read may have a write (to
a different address) in its store buffer. The part of the different address makes
little difference in practice and in the examples discussed here, so we drop that
portion. Note that the read in question must be shared, which allows us to
simplify the discipline to the following rule.

326 J. Oberhauser

TRF. Between each write and a later shared read on the same thread, the thread
must execute a memory barrier.

Note there does not need to be a unique memory barrier between each pair
of writes and shared reads on the same thread; multiple writes can be separated
from multiple shared reads by a single memory barrier.

The dirty-bit1 discipline (DB) is a more efficient version of the previous
discipline. Rather than all writes, only shared writes make a memory barrier
necessary:

DB. Between each shared write and a later shared read on the same thread, the
thread must execute a memory barrier.

Observe that both TRF and DB require that in the code in Listing 2, a memory
barrier must be placed between lines 0 and 1.

4 Formal Model and Relation to the Real World

Computation in multi-core systems above the hardware level is inherently non-
deterministic. Even more so in the presence of store buffers, inter-processor inter-
rupts, and asynchronous components such as devices or memory management
units (MMUs). Not only is the order of steps non-deterministic between these
units, but also within each step there may be non-deterministic choices: for exam-
ple, an MMU step may non-deterministically choose to translate one of several
virtual addresses.

We model this non-determinism by using labels (or actions) in deterministic
labeled transition systems (LTS): the non-determinism is encoded in the actions.
These actions thus both distinguish between the threads (and asynchronous
components, which are modeled as threads), and provide any non-deterministic
choices. For example, the label of an MMU transition would identify the exact
virtual address to be translated, thus replacing a single non-deterministic choice
by several deterministic transitions. States record the state of each unit, of the
shared memory, and of the store buffer of each processor, which is a finite but
unbounded sequence of outstanding stores. Processor actions can add new ele-
ments to the tail of their store buffer, and store buffer actions pop the head of
the store buffer and commit it to memory.

Not all states have an outgoing transition for each possible action. For exam-
ple, store buffer actions are only enabled when the store buffer is non-empty, and
MMU actions that translate a virtual address can be disabled when the page
table does not allow translation of that virtual address at the moment.

1 We call the discipline the dirty-bit discipline because in the original paper, Cohen
and Schirmer use a dirty bit for each thread that records whether a shared write has
been executed by a thread since its last memory barrier; to check whether a program
obeys the discipline, one checks that the dirty bit is zero when executing a shared
read (which is not itself a memory barrier).

Store Buffer Reduction in the Presence of Mixed-Size Accesses 327

We distinguish between two machines: the store buffer machine, which is
implemented by the real hardware, and the idealized machine without store
buffers, which is seen by the programmer. Each machine is modeled as its own
LTS. In a simplified setting, these LTS’s differ in only one central point2: an
action which would place a store into the store buffer in the store buffer machine
will in the idealized machine execute the store immediately.

To sidestep irrelevant details and to make our results reusable, e.g., for cus-
tom ISAs or other TSO architectures such as RISCV zTSO, we leave most of the
transition systems uninterpreted. To show that we have not abstracted away any
relevant details, we have instantiated3 our generalized transition systems with
the formal model of MIPS86 of Schmaltz [Sch13], which takes the base ISA of
MIPS and adds to it several features of x86, as described in the formal model
of x86 of Degenbaev [Deg12]. This instantiation also shows that our formaliza-
tions of the extensions described in this paper match the formal model of x86 of
Degenbaev.

In 2016 in the classroom our group presented a gate-level design of a pipelined
MIPS86 multi-processor and a simulation proof between the deterministic gate-
level design and the non-deterministic ISA [LOP16]. Except for store buffers and
inter-processor interrupts, this design has also been implemented and tested4 on
FPGA in Verilog/HDL by Zahran [Zah16].

Our model can also be instantiated with simplified processor models that
do not include any of the features presented in this paper, such as the abstract
operational model of x86-TSO presented in [OSS09]. However, this match is not
1:1 as the model presented there spreads interlocked operations across multiple
transitions, whereas we use a single transition for each interlocked operation,
which is allowed at most to (1) fetch an instruction, (2) read any number of values
from the memory system, (3) write back to memory and the processor registers
(where each of these steps may depend on the values returned by previous steps).
We are not aware of any interlocked operations of x86 that can not be modeled
with a single such transition, but if the need should arise, one could extend
the model to allow for an arbitrary number of nested reads and writes. As a
final note, all additional restrictions placed by our software discipline (beyond
those of [Obe15]) are always satisfied on simplified processor models; thus the
programmer only has to ‘pay’ for those extensions to the programming model
she uses.

2 For technical reasons, store buffer actions are allowed in the idealized machine, but
are simply no-ops.

3 The instantiation with MIPS86 can be found in the PhD thesis of the author [Obe17]
and takes up 36 pages (not counting arithmetic and logical operations, for which
we could literally reuse the definitions of Schmaltz). For comparison, the formal
specification of MIPS86 takes up 52 pages, the condensed formal model of x86 by
Degenbaev takes up 200 pages, and the informal instruction manual of x86 [Int10]
takes up over 2000 pages.

4 During testing, a few bugs were still found and fixed in this design; mostly indexing
and spelling errors that we overlooked when checking the pencil and paper proofs.
Mechanizing these proofs and thus fully eliminating all such bugs is future work.

328 J. Oberhauser

5 Theorem and Correctness Proof

We define as a computation an infinite sequence of transitions. We say two
computations are equivalent if they agree for all n and each thread i on (1) what
the n-th action of thread i is, and (2) what values are returned from the memory
system during that transition.

Our theorem then states that if every computation of the idealized machine
obeys the software discipline, then for each store buffer machine computation
we can find an equivalent idealized computation.

The theorem is proven by a reordering of the sequence of actions of the store
buffer machine execution, where actions are only reordered if they do not race.
Clearly one would like to use the conditions of the software discipline to show
that the actions in question can not race, but this is not immediately possible
because we require that the software discipline be obeyed only in the idealized
machine. As a result, the proof of this theorem is rather long and difficult. The
original mechanized proof by Cohen and Schirmer for the baseline machine,
published in text form only in Chen’s PhD thesis [Che16], takes up roughly 70
pages. A simpler pencil-and-paper proof (described by the author in [Obe15])
still takes up 15 pages as a detailed proof sketch, and when written down in full
detail takes up 30 pages (this version of the proof is unpublished). We briefly
discuss the structure of this simpler proof. We focus only on high-level ideas,
and omit several details and strategies that are necessary to make the proofs go
through; for these, we refer the reader to [Obe17].

The proof has three central steps. In the first step, we define a synchronization
relation between actions in a computation: an earlier action t and a later action
k are synchronized iff any of the following hold:

1. t executes a shared store and k executes a shared read which reads from the
store executed in action t,

2. they belong to the same thread,
3. t executes a shared read-modify-write operation such as a compare-and-swap

operation (CAS) which reads from an address modified by k, and which could
thus be prevented from modifying memory if executed after k,

4. t is synchronized with some action l which is itself synchronized with k.

We then show that in all idealized machine computations, if an action t executes
a store and a later action k reads from or overwrites one of the addresses modified
by that store, then t and k must be synchronized or shared. Another way to view
this is that the same races are found by considering adjacent memory accesses
(as we have defined in Sect. 2) and by looking at synchronization relations.

To prove this theorem, we try to reorder the two actions next to each other.
In a nutshell, this either fails because we hit upon a data race that prevents
us from reordering two transitions, in which case the racing accesses must be
shared and we can construct the chain of shared accesses we are looking for; or
the reordering succeeds, and now have a data race between the two transitions
in question, which must thus be shared.

Store Buffer Reduction in the Presence of Mixed-Size Accesses 329

In the second step, we show a weakened form of the main theorem where we
only prove for store buffer machine computations of a certain form that there is
an equivalent idealized machine computation. In particular, only for those where
no thread executes a shared action while another thread has a shared store in
its store buffer.

The key insight here is that any store s which is in the store buffer of any
thread i can only be read or overwritten by other threads if there is a chain
involving a shared write r (for release) of thread i and a later shared read a (for
acquire) of some other thread; but because store buffers are first-in first-out,
that releasing store r can not leave the store buffer before the original store s.
The shared read a can by assumption only be executed when shared store r,
and by extension store s, have left the buffer, and thus idealized machine (where
the store was executed immediately) and store buffer machine (where the store
was executed when it left the buffer) agree about the state of memory; thus the
shared read a will see the same values in both machines.

In the third step, we show that all store buffer computations can be reordered
into an equivalent store buffer computation of that form. The key idea is to
recursively unroll the sequence of actions in the order of shared accesses, while
keeping the order of actions of each thread intact. In the recursive step from t
to t+1, we have by recursion created a computation equivalent to the original
one where the computation consisting of the first t actions has the desired form.
If the next action does not enter a store into a store buffer, nothing has to be
reordered and we are done. Otherwise, we choose the first action k made by the
thread that makes the next shared access, and reorder that action to position t.
We then show that the resulting computation is still equivalent to the original
computation.

To show equivalence, we need to show in particular that all transitions after
t observe the same values in memory. This is the most difficult part of the proof.
The central issue is the fact that actions between t and k which do not execute
a shared access in the store buffer machine can still execute a shared access in
the idealized machine, namely if they put a shared store into the store buffer
(which in the idealized machine is executed immediately). These stores may race
with transition k in the idealized machine. Let for the sake of argument s be
such a store which modifies some value read by action k. Imagine now that
action k executes a compare-and-swap operation (CAS) which only writes back
to memory if that value satisfies some condition, which happens to become false
when s changes memory. Note that in the store buffer machine, s is not executed
and k changes memory. Consider now an action l—executed after the action that
executes s, but before action k—which reads from the memory region modified
by k. In the original store buffer machine computation l would not see any values
written by k because it is executed before k; but after the reordering action k
is now executed before l, which could thus potentially see the value written by
action k, in which case the computations would not be equivalent.

Without mixed-size accesses, this situation is only possible if store s and
actions k and l all access the same address. In this case, one can show that store

330 J. Oberhauser

{x} = 1; // T {y} = 1; // T

t = y; // U u = {x}; // T

Listing 3: A mixture of trusted (T) code and untrusted (U) code. The trusted
code obeys the programming discipline and correctly annotates all races as
shared. The untrusted code does not.

s and action l must be executed by the same thread, and that in the store buffer
machine, action l will forward the value from store s and ignore values written
by action k. With this key observation, it is a pure technicality to complete the
proof.

Obviously, the last part of this proof falls apart in the presence of mixed-size
accesses, and we need a new, more complicated argument. We will get into more
detail in Sect. 8. Apart from this, the structure of the proof stays the same.

6 Untrusted Code

Operating systems need to be correct no matter the code of user processes.
When operating system and untrusted user processes can concurrently access the
same memory, this raises several questions: how to deal with races between user
processes and the OS? How can we model the transition between the OS, which
obeys the software discipline, and user processes, which may ignore the software
discipline out of ignorance or malice? Can malicious user code somehow break
the idealized programming model of an OS that otherwise obeys the discipline,
leading to unsound verification results?

Clearly, races between the untrusted code and the trusted code can break
the correctness of trusted code. Consider, for example, Listing 3, where the load
from y is part of untrusted code. Disciplines TRF and DB do not require us to
insert a memory barrier between the store to x and the load from y in Thread
1. Thus if Thread 1 is executed before Thread 2, but its store is still buffered
when Thread 2 reads from x, both threads can read a zero—a result impossible
in simple interleavings.

Obviously the problem here is that the untrusted code can race with the
trusted code without using the necessary memory barriers. The simplest way
to resolve the problem in this example is to add a new rule, which is to drain
the store buffer when entering untrusted code. To completely hide store buffers
during execution of trusted code, we strengthen this and add the following rule:

Switch. While a write may be in the store buffer, a thread may not switch
between trusted and untrusted code.

In our formal model, the transition relation of the idealized machine is now
defined by a case split: if a thread is currently executing trusted code, actions of
that thread use the simplified semantics where stores that would be placed into
the store buffer in the store buffer machine are instead executed immediately.
If a thread is currently executing untrusted code, actions of that thread behave

Store Buffer Reduction in the Presence of Mixed-Size Accesses 331

exactly like they would in the store buffer machine, i.e., they put stores into the
store buffer.

We allow races between threads running trusted code, and threads running
untrusted code as well as with their store buffers, in which case the memory
access of the trusted code must be annotated as shared5. As long as the memory
accesses of untrusted code are restricted by some means, e.g., memory protection
in case the untrusted code is a user thread, this works well.

As a final remark, we believe that the memory barrier upon switching from
untrusted to trusted code is not strictly necessary. We believe that without it,
one would obtain a slightly weaker programming model, where the store buffer
of the untrusted code is visible and still active during the execution of trusted
code, until one reaches either (1) a memory barrier or (2) a shared write. In this
model, stores of the trusted code would still be executed immediately, and local
stores would bypass the untrusted code’s store buffer completely. Note that on
x86-64, both jumps to the interrupt service routine (e.g., after a system call)
and returns to user code are memory barriers, so it may be that in most cases
there is nothing to be gained by relaxing this restriction.

7 Transport-Triggered Memory

Some memory-mapped registers in x86 do not behave like normal memory. Stores
to these registers have atomic side-effects on other registers. Among others these
are the end-of-interrupt (EOI) port in the local advanced programmable interrupt
controller (APIC), and the I/O register select port (ioregsel) of the I/O APIC.
The EOI port is coupled with the in-service register (ISR), which in a bit-array
records all interrupt levels that are currently being serviced by an interrupt
handler; any store to the EOI register atomically clears the bit corresponding to
the highest priority active interrupt in the ISR. The value written to the EOI is
dropped and the value of the EOI remains unchanged by the store. We call such
memory regions, which do not behave like regular memory, transport-triggered
registers (TTRs)6.

In our formal model, this side effect is applied as part of the transition that
executes a store to a TTR (possibly the store buffer step committing that store to
memory), thus ensuring atomicity. For example, after a transition that executes
store to the EOI, the bit corresponding to the highest priority active interrupt in
the ISR is cleared; but the ISR is unchanged while that store is being buffered
in the store buffer.

We also need to widen our definition of races: a store to a TTR is considered
racing with loads and stores to one of the registers that may be modified as a
side effect of the store.

5 In contrast, in [Obe17], operations of untrusted code are considered shared by
default, so technically all accesses are shared, but the rule DB must only be sat-
isfied by trusted code. The results are the same.

6 After transport-triggered architectures [Cor97], which forego normal instructions in
favor of transport-triggered registers.

332 J. Oberhauser

EOI = 1;

done = (ISR == 0);

Listing 4: A hypothetical program finishing an interrupt, and then checking
whether all interrupts have been resolved.

o: cas {x} 0→ t; s: {x} = u;
l: v = x;

Listing 5: A simple program with two racing accesses to variable x.

To see how TTRs can interfere with store buffer reduction, consider the
program7 in Listing 4.

In a simple interleaved execution of a single thread, the instructions are
carried out in order, and the value of ISR is changed as an atomic side-effect of
the store to EOI.

In the presence of store buffers, the store to EOI might still be in the store
buffer when the thread executes the load from ISR. Since the store has not
been executed yet, the value of ISR has not yet been updated either; the thread
will read a stale value and incorrectly conclude that there are still unresolved
interrupts when the last interrupt has just been resolved.

Obviously, there are no races in the code in Listing 4, as there is only a single
thread. Thus none of the accesses have to be shared and no memory barriers are
needed based on the rules of the programming discipline we have so far. Even
more restrictive disciplines such as data-race freedom (DRF) [Owe10], which
requires a complete absence of races except on lock variables, is insufficient,
since there are no races. We add a simple rule8:

TTR: Insert a memory barrier between a store to a TTR and a read from any
register that could be modified as a side-effect of that store.

Compilers of high-level languages such as C are usually not aware of which
memory regions are TTRs, but rely on the programmer to point out these
regions, e.g., by use of the volatile qualifier in C.

8 Mixed-Size/Misaligned Accesses

In a simple processor where each memory access changes a single, indivisible
memory location, multiple memory accesses that race must have the same mem-
ory footprint. Therefore in the code in Listing 5, all three possible execution
orders for CAS operation o racing with store s, and a later load l, have the same
final state:
7 In real x86, the ISR is too large to allow this simple test for zero; this does not matter

for the sake of argument given here.
8 The PhD thesis uses a stronger rule, where all accesses to transport-triggered mem-

ory regions are considered shared. This rule is only used in a single lemma, which is
also implied by the rule below.

Store Buffer Reduction in the Presence of Mixed-Size Accesses 333

o: cas {x[0:3]} 0→ t0, . . . , t3; s: {x[0:1]} = u0, u1;

l: v = x[0:3];

Listing 6: Accesses to the four bytes of variable x. CAS o modifies all four bytes
x[0:3], writing the value ti into byte i. Store s only modifies the first two bytes
x[0:1]. Load l can therefore also see the combination u0, u1, t2, t3 of bytes
written by o and s.

o → s → l: Load l sees the value written by s, which overwrites o and leaves the
final memory state as

x = u ∧ v = u

Since l and o are not adjacent, they are not concurrent, and do not race.
s → o → l: The comparison of o fails, and o does not modify memory. Thus load

l sees the value written by s, and the final state is

x = u ∧ v = u

Since l and o do not modify memory, they do not race.
s → l → o: The comparison of o fails, and o does not modify memory. Load l

sees the value written by s, and the final state is

x = u ∧ v = u

Since l and o do not modify memory, they do not race.

We observe that the annotation of l as local is correct. When executing the
program in the presence of store buffers, store s can be in the store buffer when
load l and store o are executed, which gives rise to an additional interesting
possibility:

l → o → s: In this case, l will forward from the value of s, which overwrites the
value of o

x = u ∧ v = u

This execution happens to be indistinguishable from the interleaved executions
above, since the store s completely hides the successful execution of CAS oper-
ation o.

In the presence of mixed-size or misaligned accesses, however, memory
accesses can overlap without having the same footprint. The CAS operation
o in the adapted program in Listing 6 can not be hidden by the smaller store s.

In the interesting store buffer execution l → o → s, load l does not see any
bytes written by o, but the final state of x includes such bytes

x[0:3] = u0, u1, t2, t3 ∧ v = u0, u1, 0, 0.

334 J. Oberhauser

o:cas {x[1:2]} 0→ t1, t2; s: {x[0:1]} = u0, u1;

l: v = x[2:3];

Listing 7: The problem can be replicated using same-size accesses with different
alignment.

struct lockref {
union {

aligned u64 lock count;

struct {
spinlock t lock;

unsigned int count;

};
};

};

Listing 8: A lockref. One thread may use a double-word CAS access to update
the lock and the reference count while another thread may concurrently access
lock and count individually.

In the interleaving model, the only state in which bytes written by o are in
the final value of x is o → s → l, where o is executed before s, but in this
execution l also sees the bytes written by o

v = u0, u1, t2, t3.

Again we observe that there is no race between l and o in the idealized model,
and there is still no need to annotate l as a shared read. Thus the program as
written above obeys DB and also the stricter TRF, but has new behaviors in
the presence of store buffers; the disciplines are unsound.

Almost the same program can also be written using misalignment instead of
mixed-size accesses, as the code in Listing 7 shows.

One simple way to forbid this is to require that accesses involved in a data
race must have the same size and alignment. This would forbid the program
in Listing 6 since operations o and s have different size. However, some efficient
algorithms actually would like to use concurrent mixed-size memory accesses.
A good example is the code of a Linux lockref [loc] shown in Listing 8, which
implements a lock protected reference counter. A thread can go through the lock
by locking, operating on the counter, and then unlocking. Alternatively, a thread
can use a single double-word CAS operation that accesses both lock and reference
count, checks that the lock is free, and changes the reference count only if the
lock is free, without ever taking the lock. Obviously the code involves mixed-size
races between CAS and LOCK operations, but also concurrent accesses between
a local read to count (in code that acquired the lock) and double-word CAS to
lock count which is not modifying.

Our solution is to forbid executions of the shape given in Listing 9, which we
call delayed RMW races, and which satisfy all of the following conditions:

Store Buffer Reduction in the Presence of Mixed-Size Accesses 335

cas {x,y} c → t;
{x} = u;
.../* no memory barrier,

no stores to y */

v = y;

Listing 9: A delayed RMW race. A CAS modifies variables x and y just before
a store to x by a second thread might prevent the CAS from succeeding. A later
load reads from y (which is not an alias for x), with no memory barriers or stores
to y preventing us from witnessing the store to x after the load from y in the
presence of store buffers.

1. A read-modify-write operation (RMW) is executed right before a store of a
second thread, and the RMW reads variables that will be modified by the
store

2. by executing only actions of the second thread, one eventually executes a read
that sees some part of the write of the RMW, i.e., their memory footprints
overlap and there are no writes between the store and the read that completely
overwrite the overlapping region

3. the store can be in the store buffer when the read is executed.

NoDelayedRMW. There are no delayed RMW races.

Note that TRF is a strengthening of DB since all writes, not just shared
writes, require a memory barrier. There is a dual strengthening where instead
all reads, not just shared reads, require a memory barrier. We call this rule FRT.

FRT. Between each shared write and a later read on the same thread, the thread
must execute a memory barrier.

This rule implies freedom from delayed RMW-races: the store is shared, and can
thus not be in the store buffer when the read is executed. Unlike TRF or DB, it
would thus be sound in the presence of mixed-size/misaligned accesses.

Unlike the other extensions described in this document, this extension and
the rule NoDelayedRMW add considerable proof effort. The proof outlined in
Sect. 5 fails in the proof of step three, where our simplifying observation—that
all memory accesses involved in the races must be using the same address—is
no longer valid. Let like in that outline k execute the CAS operation that we
wish to reorder to position t, s be a store racing with k, and l execute a load
accessing some addresses modified by k.

We want to apply the rule NoDelayedRMW to show that any modifications
made by k are invisible to l due to forwarding. Ideally, store s and actions k and l
would be part of a delayed RMW race; but this is not necessarily the case because
not all actions between s and l belong to the same thread. We now create an
auxiliary computation in with a delayed RMW race by sorting all actions between
t and l by thread, with the lowest thread being the thread executing action l. For
sorting we use bubble sort [Knu98], which has the advantages of being stable and
only swapping adjacent actions, which together with the fact that those actions

336 J. Oberhauser

are by choice of k not shared makes it easy to show that the actions between
t and l still observe the same values from memory. In the auxiliary (sorted)
computation, all actions from position t until action l are now made by the same
thread.

In the auxiliary computation, we now move action k right before the first store
s′ before action l that races with it (the case where no such store exists is handled
more easily and omitted here). Now we show with rule NoDelayedRMW that
there are no delayed RMW races, and thus the overlapping region between k and
l must be completely overwritten by some other writes between actions k and l.
These other stores obviously already exist in the original computation. Since all
actions between k and l in the auxiliary (sorted) computation are made by the
same thread as l and bubble sort is stable, these stores are also already between
position t and action l in the original schedule.

Thus when we move action k to position t in the original schedule, modi-
fications by action k are not observed by action l because all loads from the
overlapping region are resolved via forwarding from these other writes.

Another important comparison to make here is with the C11/C++11 memory
model and its definition of a data race. Rather than looking at memory accesses
of adjacent accesses in a computation, C11 uses a synchronization relation like
the one defined in Sect. 5 to define races. Recall that we proved that there is
no difference between these two methods of identifying races. Boehm and Adve
[BA08] proved a similar theorem for a formal memory model of C11. Indeed,
their proof is used as a justification [c11b] for the following excerpt of the C11
draft [c11a] in Sect. 5.1.2.4.

“[...] data races, as defined here, and with suitable restrictions on the use
of atomics, correspond to data races in a simple interleaved (sequentially
consistent) execution.”

Surprisingly, this claim is wrong. The reason for this is that each of these
three documents defines ‘concurrently’ and ‘modifies’ (cf. Sect. 2) differently.

1. In our definition, a CAS with a failed test is not ‘modifying’. For ‘concurrently’
we either use adjacent memory accesses or those not synchronized by our
synchronization relation.

2. In C11 (both in the standard draft and in the formalization of Batty
[BOS+11]), a CAS with a failed test is also not considered to be ‘modifying’
memory and ‘concurrently’ is defined by the C11 synchronization relation,
but that synchronization relation is missing the third part of our definition
(which synchronizes an RMW with a later store that ‘disables’ it).

3. Boehm and Avde define ‘concurrently’ using the C11 synchronization relation,
but define a CAS to always be ‘modifying’ (even if the test fails).

In other words, we have here three subtly distinct classifications of races, two
of which can be stated either in terms of adjacent accesses or of unsynchronized
accesses. Sadly, the classification used by the C11 standard is not among them.
Recall in particular the example from Listing 5, where in the simple interleaved

Store Buffer Reduction in the Presence of Mixed-Size Accesses 337

model there is no race between o and s; but in the C11 definition of a synchro-
nization relation, CAS operation o is not synchronized with l in the execution
o → s → l and thus there is a race which is not correctly annotated.

As a final note, observe that including RMWs that do not modify memory in
the definition of a data race is a strengthening of our suggested solution, since
it implies that the read in a delayed RMW race would need to be shared—and
both DB and TRF would require a memory barrier between the shared write
and the shared read, precluding the write from possibly being in the store buffer
when the read is executed.

9 Inter-processor Interrupts

There are generally two possible types of semantics for inter-processor interrupts
(IPIs), which are easily explained by analogy. The first type is the ‘fire alarm’
semantics. When you receive the interrupt, you drop everything you are doing
right now and head for the interrupt service routine. The second type is the ‘tax
return’ semantics. When you receive the interrupt, you let it rest on your desk
for a long (and possibly unbounded) time, but eventually you have to sit down
and spend the time resolving the interrupt.

In our formal models, when an APIC action delivers a ‘fire alarm’ IPI, it
modifies a processor register of the receiving processor which is read during
each action of that processor. Thus the receiving processor reacts to the IPI on
its next action. When an APIC delivers a ‘tax return’ IPI, it changes instead
a memory-mapped register which is read by the processor only during special
actions that snoop for pending interrupts, thus allowing the processor to ignore
the interrupt by executing actions that do not snoop for interrupts.

While the first type of semantics seems preferable and has been suggested
in some work (e.g., in the formal semantics of MIPS86 by Schmaltz [Sch13]),
this semantics is not stable under store buffer reduction, and hardware that
implements ‘fire alarm’ IPIs must for store buffer reduction be abstracted by
a model that only supports tax return interrupts, unless the store buffers are
drained as a side-effect of the APIC action that delivers the IPI. This is not done
by any real processor that we are aware of, and so formal models of IPIs in a
simple interleaving model should always use ‘tax return’ semantics for IPIs.

We begin by detailing the way interrupts are sent. A thread has access to
two ‘magic’ variables that allows it to send interrupts, the interrupt controller’s
target

APIC.target

which contains the id of a thread to be interrupted, and the interrupt controller’s
status flag

APIC.pending

which distinguishes whether the interrupt has been received by the target (value
is 0) or not (value is 1).

338 J. Oberhauser

APIC.target = Thread2; s: x = 1;

APIC.pending = 1;

while (APIC.pending);

l: t = x;

Listing 10: Thread 1 interrupts Thread 2 by setting the target to Thread 2,
the status flag to 1, and then polling the status flag until it becomes zero.

To send an interrupt a thread sets the target and changes the status flag
to 1, then polls the status flag until it becomes zero. An example is shown in
Listing 10, where load l can only be executed after the IPI was received by Thread
2. We observe that the semantics of this program depends on the semantics
of interrupts. With fire alarm interrupt semantics, store s can only be executed
before the interrupt is received, since after receiving the interrupt Thread 2 must
immediately go to the interrupt service routine (not shown here). This allows
for the following orders of load l, store s, and delivery of the IPI (step ipi):

s → ipi → l: The load sees the store, the final configuration is

x = t = 1

ipi → l: The store is never executed, the final configuration is

x = t = 0

Observe that in none of these execution orders there is a race between s and l,
since they are never concurrent. Thus the lack of shared annotations in the code
in Listing 10 is in accordance with our programming discipline.

With tax return interrupt semantics, the store s can be executed after the
interrupt is received, since the interrupt only has to be taken eventually, not
immediately. This allows two additional executions:

ipi → s → l: The load sees the store, the final configuration is

x = t = 1

ipi → l → s: The load does not see the store, which still changes the value of x

x = 1 ∧ t = 0

Not only is there now a race between s and l, which therefore need to be anno-
tated, but also there is a new possible final configuration. To make sure that
the thread which received the IPI has really been interrupted, one needs there-
fore a slightly more complicated protocol: the interrupt service routine of the
interrupted thread has to acknowledge the interrupt through a shared variable.

We also look at what happens in the presence of store buffers, which can
be either drained when receiving an IPI or not drained. The presence of store
buffers does not change the possible final states of the individual executions, only

Store Buffer Reduction in the Presence of Mixed-Size Accesses 339

Table 1: A matrix of all possible combinations of executions and IPI semantics.
‘FA’ stands for fire-alarm, ‘TR’ for tax-return, ‘No SB’ for the absence of store
buffers, ‘Drain’ for the presence of store buffers which are drained when receiving
the IPI, ‘No Drain’ for the presence of store buffers which are not drained when
receiving the IPI. Entries with a lightning symbol (E) indicate that the execution
is not possible using this combination of IPI semantics, entries with a checkmark
(�) that the execution is possible

Execution FA/No SB FA/Drain FA/No Drain TR/No SB TR/Drain TR/No Drain

s → ipi → l � � � � � �
ipi → l � � � � � �
ipi → s → l E E � � � �
ipi → l → s E E � � � �

IC.target = Thread2; s: fence; {x} = 1;

fence; IC.pending = 1; f: fence;

do fence; while (IC.pending);

l: fence; t = {x}; fence;

Listing 11: A fully fenced and annotated program.

which executions are allowed. We list all possible executions with all combina-
tions of interrupt semantics in Table 1. We observe that the only semantics which
matches the fire-alarm semantics in the idealized machine is an implementation
that provides fire-alarm semantics and drains the store buffers of threads that
receive an IPI. We try to adjust the discipline to solve this problem by requiring
that after and before each memory access, the programmer must introduce a
memory barrier (note that this is an extremely strict discipline, which is even
stronger than DRF of [Owe10]). We use the keyword fence to indicate a mem-
ory barrier and obtain the program in Listing 11. We observe that Thread 2 can
be interrupted after putting store s into the store buffer, but before executing
fence f . Therefore the fully fenced program has exactly the same possible exe-
cutions and final states as the program without fences. We conclude that no
simple programming discipline can maintain a fire alarm semantics for IPIs if
the implementation does not drain the store buffers of threads that receive an
interrupt. To the best of our understanding of the Intel and AMD manuals, x86-
64 processors do not do this. They only drain the store buffer when the thread
reaches the interrupt service routine (which is a subtle difference, but enough to
make the executions above valid).

This leaves us with two alternatives: (1) never use fire alarm semantics for
IPIs in simple interleaving models, even if the underlying processor implements
them or (2) use a more complicated programming discipline which entails an IPI
protocol, stating that the interrupting thread must ignore the status flag of its
interrupt controller and instead wait for an acknowledgment from the interrupt
service routine of the interrupted thread. But that is exactly the programming

340 J. Oberhauser

x = 1; y = 1;

t := x; y := 2;

Listing 12: Two threads without races that use bypassing accesses (indicated
by :=) to create inconsistent executions. Thread 1 may read 0 and the final value
of y may be 1.

model one obtains if one does not use fire alarm semantics, so for the purpose
of programming the system, the two options are likely indistinguishable. Since
option (1) is simpler, that is the option we recommend.

10 Bypassing the Store Buffer

Modern processors have autonomous units which modify processor-local vari-
ables but may completely bypass the store buffer. One such unit is the memory
management unit (MMU), which modifies a variable called the translation look-
aside buffer (TLB) but otherwise behaves like a separate thread that bypasses
the store buffer; thus a store to a page table entry is only seen by the MMU
after it leaves the store buffer.

A reduction theorem can deal with such units in at least two ways: either
by treating them as separate threads, but hiding in some way the races on the
local variables, or by treating them as the same thread but allowing accesses of
the thread to bypass the store buffers.

For example, if the MMU is treated as a separate thread, each of its accesses
to the TLB will race with accesses to the TLB by the processor. Without special
treatment of TLBs, almost every processor step now involves a shared read to
the TLB, which in both TRF and DB would be impossible to deal with. Thus one
would need a specific argument about the TLB, such as monotonicity [CCK14],
to apply a store buffer reduction theorem without introducing these shared reads.
If on the other hand we allow steps of the processor to explicitly bypass the store
buffer, we can simply model MMU steps as steps of the processor which happen
to bypass the store buffer.

The second solution is not perfect in general, since it implies that racing
steps of the MMU become shared steps of the processor thread, with which the
disciplines can not deal (since we do not know when they occur and hence can
not insert the necessary memory barriers). As long as the MMU does not race—
e.g., because it does not set accessed and dirty bits and one never modifies page
tables while an MMU could be walking them; or at least not while the processor
is executing trusted code (e.g., in kernel mode)—this is completely fine, and so
our method of dealing with MMUs works at least in some useful cases, but not
in all.

Obviously, bypassing the store buffer can already break single-threaded (or
non-racing) code, as the examples in Listing 12 show. We require five new rules9

9 In the presence of transport-triggered registers, all rules below concerning shared
writes also apply to writes to such registers.

Store Buffer Reduction in the Presence of Mixed-Size Accesses 341

to restrict the usage of these bypassing accesses in a sound way, but none of them
are particularly exciting or surprising. The first two simply deal with the prob-
lems shown in Listing 12. Rule AtomicWrite prevents torn writes. Rule Atom-
icRMW prevents the RMW from becoming non-atomic due to other writes of
other threads being executed between the read and the write of the RMW. Rule
MessagePassing prevents us from, e.g., releasing a lock (with a bypassing shared
write) before modifications of the lock-protected data (which are still in the
buffer) become visible to other threads.

WriteWriteOrder. Do not execute a bypassing write to a variable that is
modified by a write that could be in the store buffer.

WriteReadOrder. Do not execute a bypassing read to a variable that is mod-
ified by a write that could be in the store buffer.

AtomicWrite. If a write is shared, it must be either bypassing or buffered, but
not a mix.

AtomicRMW. If an RMW is shared, its write must be bypassing.
MessagePassing. A shared write must be buffered if a write could be in the

write buffer.

Note that when bypassing accesses are used for autonomous units, such as
the MMU, these rules have subtle implications. For example, if a thread modifies
a page table entry, it must use a memory barrier before it allows the MMU to
access that page table entry. If this is not possible, for example because the MMU
is always running, one needs an additional theorem to deal with this, e.g., by
showing that it suffices to have a memory barrier and then a TLB invalidation
before the page table entry is used for the first time (we have not shown this).

As a final remark, observe that the existence of bypassing memory accesses
in the theorem is actually a weakening of the store buffer programming model.
It shows that the proof does not hinge on some of the order between local
operations that is provided by store buffers, and reminds us of the multi-copy
atomic release-acquire model (used, e.g., by ARMv8 [FGP+16] and planned for
RISCV), where only the order with so-called release stores and acquire loads is
maintained. It is plausible that a programming discipline similar to DB can be
found for such memory models, which only requires that all shared writes be
marked release, and all shared reads be marked acquire. We leave this as future
work.

11 Modifying Code

When teaching about programming, many experts strongly advise against writ-
ing self-modifying code. Sadly in the real world, modification of code can not be
avoided in at least four places: (1) the bootloader loading code of the operating
system before executing it, (2) the operating system loading code pages of a
user process, e.g., after a page fault on fetch, (3) a just-in-time compiler, which
generates instructions on-the-fly and later executes them, and (4) programmable
controllers in the processor, such as the APIC.

342 J. Oberhauser

To verify software such as operating systems that touches these places, one
needs a realistic formal model that includes the effects of code modification.
Multiple options exist. From the programmer’s viewpoint, the simplest model
is for instructions to be fetched and executed atomically. We allow this in our
formalization by splitting each transition into up to three phases: (1) a fetch
phase, which depends only on local registers, (2) a read phase, which in addition
depends on the values fetched from memory in phase 1, and (3) a write back
phase, which in addition depends on the values read from memory in phase 2.
This means we can fetch and execute an RMW in a single transition. Note that
even if the processor does not itself provide mixed-size accesses for reads and
writes, such transitions are in effect mixed-size accesses, since each transition
can read from up to two distinct addresses. This gives rise to exactly the same
challenges already discussed in Sect. 8.

In hardware, single cycle fetch-and-execute turns out to be difficult to imple-
ment due to pipelining: an instruction can enter the pipeline right before the
pipeline discovers a store to the instruction address, or before such a store is
committed to memory, possibly by another processor. To provide the simple for-
mal model above in hardware, the processor needs to discover such stores and roll
back the fetched, stale instruction. In particular, x86 processors do implement
such mechanisms and provide single cycle fetch-and-execute, if the same virtual
address is used for the instruction and the stores modifying the instructions.

Custom processors which do not implement such fancy mechanisms must
either rely on a stronger software discipline—such as not executing code recently
written by stores, and avoiding concurrent code modification where possible
[LOP16]—or implement a weaker ISA, where the possibility for stale instructions
is accounted for in some way—such as allowing pre-fetch of instructions into an
instruction buffer, which may become stale and is flushed by instructions that
drain the pipeline [Obe17]. Details are beyond the scope of this document.

12 Conclusion

We have focused here on a high-level view of how several features of modern
processors affect triangular-race freedom [Owe10] and the dirty-bit discipline of
Cohen and Schirmer [CS10], and have provided solutions for the cases where
the disciplines are insufficient. This work is based directly on the roughly 500
page PhD thesis of the author [Obe17], which presents a formal treatment of
the problems, a monolithic solution, and its soundness proof. The extensions
presented here differ from those proven correct in that work in two ways: we
present a slightly more efficient way to deal with transport-triggered registers
and we discard the assumption that partial hits drain the store buffer. To date,
the proofs only exist as fully-detailed pencil and paper proofs. Erring is human,
and especially a proof of this size would benefit from a machine-checkable version.

There are still features of modern processors that we have not dealt with,
or dealt with insufficiently. The first feature we are aware of are non-temporal
memory accesses, which have weaker ordering constraints. The second feature

Store Buffer Reduction in the Presence of Mixed-Size Accesses 343

are MMUs which set accessed and dirty bits, and which thus race with other
MMUs walking the same page tables. Also, modern processors use other, more
aggressive optimizations, for which efficient programming disciplines have not
yet been verified. All of these are left as future work.

There has been more work on dealing with store buffers, mostly on automated
tools that insert fences into insufficiently annotated programs, e.g., [BDM13,
AKNP14]. Since this is a computationally hard problem we do not expect this to
be a general efficient solution. To the best of our knowledge these tools currently
only apply to idealized processors, but we suspect that they can be extended
easily to mixed-size accesses.

The only other results that go beyond simple idealized processors are exten-
sions of the dirty-bit discipline by (1) Kovalev, Cohen, and Chen [CCK14], who
deal with MMUs as separate threads by a monotonicity argument, and (2) by
Chen [Che16] who introduces a mixed-size environment, but falsely assumes that
the processor will detect and prevent delayed RMW races.

References

[AKNP14] Alglave, J., Kroening, D., Nimal, V., Poetzl, D.: Don’t sit on the fence.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 508–524.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 33

[BA08] Boehm, H.-J., Adve, S.V.: Foundations of the C++ concurrency memory
model. In: ACM SIGPLAN Notices, vol. 43, pp. 68–78. ACM (2008)

[BDM13] Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robust-
ness against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS,
vol. 7792, pp. 533–553. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 29

[BOS+11] Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing
C++ concurrency. SIGPLAN Not. 46(1), 55–66 (2011)

[c11a] C11 draft n1570. https://port70.net/∼nsz/c/c11/n1570.html. Accessed 14
Apr 2018

[c11b] Comments on the C++ memory model following a partial formal-
ization attempt. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2009/n2955.html. Accessed 14 Apr 2018

[CCK14] Chen, G., Cohen, E., Kovalev, M.: Store buffer reduction with MMUs. In:
Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471,
pp. 117–132. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12154-3 8

[Che16] Chen, G.: Store buffer reduction theorem and application. Ph.D. thesis,
Saarland University (2016)

[Cor97] Corporaal, H.: Microprocessor architectures: from VLIW to TTA (1997)
[CS10] Cohen, E., Schirmer, B.: From total store order to sequential consistency:

a practical reduction theorem. In: Kaufmann, M., Paulson, L.C. (eds.) ITP
2010. LNCS, vol. 6172, pp. 403–418. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14052-5 28

[Deg12] Degenbaev, U.: Formal specification of the x86 instruction set architecture.
Ph.D. thesis, Saarland University (2012)

https://doi.org/10.1007/978-3-319-08867-9_33
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://port70.net/~nsz/c/c11/n1570.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2955.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2955.html
https://doi.org/10.1007/978-3-319-12154-3_8
https://doi.org/10.1007/978-3-319-12154-3_8
https://doi.org/10.1007/978-3-642-14052-5_28
https://doi.org/10.1007/978-3-642-14052-5_28

344 J. Oberhauser

[FGP+16] Flur, S., et al.: Modelling the ARMv8 architecture, operationally: concur-
rency and ISA. SIGPLAN Not. 51(1), 608–621 (2016)

[Int10] Intel, Santa Clara, CA, USA. Intel®64 and IA-32 Architectures Software
Developer’s Manual: Volumes 1–3b, June 2010

[Knu98] Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and
Searching, 2nd edn. Addison Wesley Longman Publishing Co. Inc., Red-
wood City (1998)

[loc] Introducing lockrefs. https://lwn.net/Articles/565734/. Accessed 14 Apr
2018

[LOP16] Lutsyk, P., Oberhauser, J., Paul, W.: Multicore system architecture. Lec-
ture notes (2016)

[Obe15] Oberhauser, J.: A simpler reduction theorem for x86-TSO. In: Gurfinkel, A.,
Seshia, S.A. (eds.) VSTTE 2015. LNCS, vol. 9593, pp. 142–164. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29613-5 9

[Obe17] Oberhauser, J.: Justifying the strong memory semantics of concurrent high-
level programming languages for system programming. Ph.D. thesis, Saar-
land University (2017). https://dx.doi.org/10.22028/D291-27208

[OSS09] Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO.
In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-03359-9 27

[Owe10] Owens, S.: Reasoning about the implementation of concurrency abstrac-
tions on x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 478–503. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14107-2 23

[Sch13] Schmaltz, S.: MIPS-86-a multi-core MIPS ISA specification. Technical
report, Saarland University, Saarbrücken (2013)

[Zah16] Zahran, S.: Implementing and debugging a pipelined MIPS machine with
interrupts and multi-level address translation. Master’s thesis, Saarland
University (2016)

https://lwn.net/Articles/565734/
https://doi.org/10.1007/978-3-319-29613-5_9
https://dx.doi.org/10.22028/D291-27208
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-14107-2_23
https://doi.org/10.1007/978-3-642-14107-2_23

Author Index

Adams, Robin 196
Åman Pohjola, Johannes 88
Asadi, Sepideh 50
Athanasiou, Konstantinos 215

Beckert, Bernhard 248
Bingmann, Timo 248
Bohrer, Rose 112

Cheng, Chih-Hong 279
Cherif, Mohamed Sami 155
Chockler, Hana 50
Chrząszcz, Jacek 135
Coglio, Alessandro 177
Cok, David R. 267
Cook, Byron 215
Crary, Karl 112
Czarnik, Patryk 135

Dietsch, Daniel 291

Emmi, Michael 215
Even-Mendoza, Karine 50

Férée, Hugo 88

Gennari, Jeffrey 17
Ghale, Milad K. 69
Gurfinkel, Arie 17

Heizmann, Matthias 291
Ho, Son 88
Hoenicke, Jochen 1, 291
Huang, Chung-Hao 279
Hyvärinen, Antti E. J. 50

Jomaa, Narjes 155

Kahsai, Temesghen 17
Kiefer, Moritz 248
Kumar, Ramana 69, 88

Lin, Fangzhen 38

MacCarthaigh, Colm 215
Myreen, Magnus O. 88

Navas, Jorge A. 17
Nishida, Naoki 309
Norrish, Michael 69
Nowak, David 155
Nührenberg, Georg 279
Nutz, Alexander 1, 291

Oberhauser, Jonas 322
Owens, Scott 88

Pattinson, Dirk 69
Podelski, Andreas 1, 291

Rajkhowa, Pritom 38
Ruess, Harald 279

Sanders, Peter 248
Schubert, Aleksy 135
Schupp, Sibylle 196
Schwartz, Edward J. 17
Schwartz-Narbonne, Daniel 215
Sharygina, Natasha 50

Tasiran, Serdar 215, 267
Torrini, Paolo 155

Ulbrich, Mattias 248

Weigl, Alexander 248
Winkler, Sarah 309

Zakrzewski, Jakub 229

	Preface
	Organization
	Abstracts of Invited Talks
	Contract-based Compositional Verification of Infinite-State Reactive Systems
	Verified Software: Theories, Tools, … and Engineering
	Synthesis of Surveillance Strategies for Mobile Sensors
	Contents
	A Tree-Based Approach to Data Flow Proofs
	1 Introduction
	2 Example
	3 Preliminaries
	3.1 Path-Closed Tree Languages
	3.2 Programs, Specifications, Floyd Proofs

	4 Data Flow in Data Flow Graph vs. Data Flow in Program Traces
	4.1 Data Flow Trees from the Data Flow Graph
	4.2 Data Flow Trees from the Control Flow Graph
	4.3 DFT(P#) = path-closure(DFT(Traces(P))

	5 Data Flow Proofs and Cartesian Floyd Proofs
	6 Related Work
	7 Future Work
	References

	Executable Counterexamples in Software Model Checking
	1 Introduction
	2 Concrete Semantics for Executable Counterexamples
	2.1 A Simple Imperative Language
	2.2 Extending with External Functions and Memory
	2.3 Counterexamples and Mock Environments

	3 A Framework for Constructing Executable Counterexamples
	4 Executable Counterexample Generation in SeaHorn
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

	Extending VIAP to Handle Array Programs
	1 Introduction
	2 Translation
	3 VIAP
	3.1 Instantiation
	3.2 Proof Strategies
	3.3 Multi-dimensional Arrays

	4 Related Work
	5 Concluding Remarks and Future Work
	References

	Lattice-Based Refinement in Bounded Model Checking
	1 Introduction
	2 Preliminaries
	3 Construction of the Lattice of Facts
	3.1 Definitions
	3.2 Algorithm

	4 Lattice-Based Bounded Model Checking
	4.1 Definitions
	4.2 Algorithm

	5 Implementation and Evaluation
	References

	Verified Certificate Checking for Counting Votes
	1 Introduction
	2 The Protocol and Its HOL Formalisation
	2.1 An Example Certificate
	2.2 The HOL Formalisation
	2.3 The Certificate Verifier

	3 Translation into CakeML and Code Extraction
	4 Experimental Results
	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Program Verification in the Presence of I/O
	1 Introduction
	2 Overview
	3 File System Interaction
	3.1 File System Model
	3.2 File System FFI

	4 A Verified TextIO Library
	4.1 File System Properties
	4.2 Library Implementation and Specifications

	5 Case Study: A Verified Diff
	6 Related Work
	7 Conclusion
	A Appendix: Further Example Programs
	A.1 Cat
	A.2 Sort
	A.3 grep

	References

	TWAM: A Certifying Abstract Machine for Logic Programs
	1 Introduction
	2 Certifying Compilation in Proof-Passing Style
	3 The Typed WAM (TWAM)
	3.1 Syntax
	3.2 Example: Code Section for Plus
	3.3 Operational Semantics
	3.4 Statics
	3.5 Metatheory

	4 Implementation
	5 Related Work
	6 Future Work
	References

	A Java Bytecode Formalisation
	1 Introduction
	2 The Need for Hierarchy of Instructions
	3 Hierarchical Definition of Semantics
	4 Static Semantics
	5 Program Verification
	6 Discussion on Bytecode Design
	7 Related Work
	8 Conclusions
	References

	Formalising Executable Specifications of Low-Level Systems
	1 Introduction
	2 Motivation
	3 Preliminaries
	4 The Deep Embedding
	5 The SOS Interpreter
	6 Hoare Logic
	7 Case Study: Verifying Properties of Pip
	8 Related Work
	9 Conclusions and Further Work
	A Appendix: Denotational Semantics
	References

	A Formalization of the ABNF Notation and a Verified Parser of ABNF Grammars
	1 Problem, Contribution, and Outlook
	2 Background
	2.1 ABNF
	2.2 ACL2

	3 ABNF Formalization
	3.1 Abstract Syntax
	3.2 Semantics
	3.3 Concrete Syntax

	4 ABNF Grammar Parser
	4.1 Implementation
	4.2 Verification

	5 Related Work
	References

	Constructing Independently Verifiable Privacy-Compliant Type Systems for Message Passing Between Black-Box Components
	1 Introduction
	2 Motivating Example
	2.1 Note on Implementation

	3 Architectures
	3.1 Metatheorems

	4 The First Algorithm
	5 The Second Algorithm
	5.1 Example Revisited
	5.2 Note

	6 Related Work
	7 Conclusion
	References

	SideTrail: Verifying Time-Balancing of Cryptosystems
	1 Introduction
	1.1 Related Work

	2 Time-Balancing
	3 Implementation
	4 Case Study of the s2n TLS Library
	4.1 Timing Stubs
	4.2 Experiments
	4.3 Discussion on the Timing Model
	4.4 Verification Inspired Refactoring

	5 Future Work
	6 Conclusion
	References

	Towards Verification of Ethereum Smart Contracts: A Formalization of Core of Solidity
	1 Introduction
	2 Overview of Solidity
	2.1 Contracts and Messages
	2.2 Type Names
	2.3 Statements
	2.4 Expressions
	2.5 Memory Objects in Solidity

	3 Formalization
	3.1 Big Step Semantics
	3.2 Current State of the Coq Development

	4 Related Work
	5 Conclusions and Future Work
	References

	Relational Equivalence Proofs Between Imperative and MapReduce Algorithms
	1 Introduction
	2 Formal Foundations and Program Equivalence
	3 Program Transformations
	3.1 Handling Context-Independent Transformations Using Rewrite Rules
	3.2 Handling Context-Dependent Transformations Using Coupling Predicates

	4 Transformation Application Strategy
	4.1 Using Congruence Rules to Simplify Proofs
	4.2 Missing Premises and Widening
	4.3 Potential for Automation of Proofs Using Rewrite Rules

	5 Evaluation and Case Study
	6 Related Work
	7 Conclusion
	References

	Practical Methods for Reasoning About Java 8's Functional Programming Features
	1 Introduction
	2 Deductive Verification, the Java Modeling Language and the OpenJML Tool
	3 Verifying Java's FP Features
	3.1 Overly General Function Types
	3.2 Implicit Iteration

	4 Our Experience with a Case Study
	4.1 Case Study Artifact
	4.2 Implementation
	4.3 Observations

	5 Conclusion
	References

	Verification of Binarized Neural Networks via Inter-neuron Factoring
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Verification of BNNs via Hardware Verification
	4.1 From BNN to Hardware Verification
	4.2 Counting Optimization

	5 Evaluation and Outlook
	References

	The Map Equality Domain
	1 Introduction
	2 Example
	3 Related Work
	4 Preliminaries
	5 The Map Equality Domain
	5.1 The Domain of Equalities and Disequalities
	5.2 The Weak Equivalence Domain
	5.3 The Map Equality Domain
	5.4 Abstract Post Operator

	6 Evaluation
	References

	Loop Detection by Logically Constrained Term Rewriting
	1 Introduction
	2 Preliminaries
	3 Loop Criteria
	4 Implementation
	5 Applications
	6 Conclusion
	References

	Store Buffer Reduction in the Presence of Mixed-Size Accesses and Misalignment
	1 Introduction
	2 Data Races and Shared Accesses
	3 Low-Level Programming Disciplines
	4 Formal Model and Relation to the Real World
	5 Theorem and Correctness Proof
	6 Untrusted Code
	7 Transport-Triggered Memory
	8 Mixed-Size/Misaligned Accesses
	9 Inter-processor Interrupts
	10 Bypassing the Store Buffer
	11 Modifying Code
	12 Conclusion
	References

	Author Index

