
Blockchain Superoptimizer?

Julian Nagele1[0000−0002−4727−4637] and Maria A Schett2[0000−0003−2919−5983]

1 Queen Mary University of London, UK mail@jnagele.net
2 University College London, UK mail@maria-a-schett.net

Abstract. In the blockchain-based, distributed computing platform
Ethereum, programs called smart contracts are compiled to bytecode and
executed on the Ethereum Virtual Machine (EVM). Executing EVM byte-
code is subject to monetary fees—a clear optimization target. Our aim is
to superoptimize EVM bytecode by encoding the operational semantics
of EVM instructions as SMT formulas and leveraging a constraint solver
to automatically find cheaper bytecode. We implement this approach in
our EVM Bytecode SuperOptimizer ebso and perform two large scale
evaluations on real-world data sets.

Keywords: Superoptimization, Ethereum, Smart Contracts, SMT

1 Introduction

Ethereum is a blockchain-based, distributed computing platform featuring a quasi-
Turing complete programming language. In Ethereum, programs are called smart
contracts, compiled to bytecode and executed on the Ethereum Virtual Machine
(EVM). In order to avoid network spam and to ensure termination, execution
is subject to monetary fees. These fees are specified in units of gas, i.e., any
instruction executed on the EVM has a cost in terms of gas, possibly depending
on its input and the execution state.

Example 1. Consider the expression 3+(0−x), which corresponds to the program
PUSH 0 SUB PUSH 3 ADD. The EVM is a stack-based machine, so this program takes
an argument x from the stack to compute the expression above. However, clearly
one can save the ADD instruction and instead compute 3− x, i.e., optimize the
program to PUSH 3 SUB. The first program costs 12 g to execute on the EVM,
while the second costs only 6 g.

We build a tool that automatically finds this optimization and similar others
that are missed by state-of-the-art smart contract compilers: the EVM bytecode
superoptimizer ebso. The use of ebso for Example 1 is sketched in Figure 1. To
find these optimizations, ebso implements superoptimization. Superoptimization
is often considered too slow to use during software development except for special
circumstances. We argue that compiling smart contracts is such a circumstance.

? This research is supported by the UK Research Institute in Verified Trustworthy
Software Systems and partially supported by funding from Google.

ar
X

iv
:2

00
5.

05
91

2v
1

 [
cs

.L
O

]
 1

2
M

ay
 2

02
0

2 J. Nagele and M.A. Schett

x

x

3 + (0− x)

3− x

≡

EVM executes for 12 g

PUSH 0 SUB PUSH 3 ADD

EVM executes for 6 g

PUSH 3 SUB

Fig. 1: Overview over ebso.

Since bytecode, once it has been deployed to the blockchain, cannot change again,
spending extra time optimizing a program that may be called many times, might
well be worth it. Especially, since it is very clear what “worth it” means: the
clear cost model of gas makes it easy to define optimality.3

Our main contributions are: (i) an SMT encoding of a subset of EVM bytecode
semantics (Section 4), (ii) an implementation of two flavors of superoptimization:
basic, where the constraint solver is used to check equivalence of enumerated
candidate instruction sequences, and unbounded, where also the enumeration
itself is shifted to the constraint solver (Section 5), and (iii) two large scale
evaluations (Section 6). First, we run ebso on a collection of smart contracts from
a programming competition aimed at producing the cheapest EVM bytecode
for given programming challenges. Even in this already highly optimized data
set ebso still finds 19 optimizations. In the second evaluation we compare the
performance of basic and unbounded superoptimization on the 2500 most called
smart contracts from the Ethereum blockchain and find that, in our setting,
unbounded superoptimization outperforms basic superoptimization.

2 Ethereum and the EVM

Smart contracts in Ethereum are usually written in a specialized high-level
language such as Solidity or Vyper and then compiled into bytecode, which is
executed on the EVM. The EVM is a virtual machine formally defined in the
Ethereum yellow paper [14]. It is based on a stack, which holds words, i.e., bit
vectors, of size 256.4 The maximal stack size is set to 210. Pushing words onto a
full stack leads to a stack overflow, while removing words from the empty stack
leads to a stack underflow. Both lead the EVM to enter an exceptional halting
state. The EVM also features a volatile memory, a word-addressed byte array,
and a persistent key-value storage, a word-addressed word array, whose contents
are stored on the Ethereum blockchain. The bytecode directly corresponds to

3 Of course setting the gas price of individual instructions, such that it accurately
reflects the computational cost is hard, and has been a problem in the past see e.g.
news.ycombinator.com/item?id=12557372.

4 This word size was chosen to facilitate the cryptographic computations such as
hashing that are often performed in the EVM.

https://news.ycombinator.com/item?id=12557372

Blockchain Superoptimizer 3

more human-friendly instructions. For example, the EVM bytecode 6029600101

encodes the following sequence of instructions: PUSH 41 PUSH 1 ADD. Instructions
can be classified into different categories, such as arithmetic operations,e.g. ADD
and SUB for addition and subtraction, comparisons, e.g. SLT for signed less-than,
and bitwise operations, like AND and NOT. The instruction PUSH pushes a word onto
the stack, while POP removes the top word.5 Words on the stack can be duplicated
using DUPi and swapped using SWAPi for 1 6 i 6 16, where i refers to the ith
word below the top. Some instructions are specific to the blockchain domain, like
BLOCKHASH, which returns the hash of a recently mined block, or ADDRESS, which
returns the address of the currently executing account. Instructions for control
flow include e.g. JUMP, JUMPDEST, and STOP.

We write δ(ι) for the number of words that instruction ι takes from the stack,
and α(ι) for the number of words ι adds onto the stack. A program p is a finite
sequence of instructions. We define the size |p| of a program as the number of its
instructions. To execute a program on the Ethereum blockchain, the caller has to
pay gas. The amount to be paid depends on both the instructions of the program
and the input: every instruction comes with a gas cost. For example, PUSH and
ADD currently cost 3 g, and therefore executing the program above costs 9 g. Most
instructions have a fixed cost, but some take the current state of the execution
into account. A prominent example of this behavior is storage. Writing to a
zero-valued key conceptually allocates new storage and thus is more expensive
than writing to a key that is already in use, i.e., holds a non-zero value. The gas
prices of all instructions are specified in the yellow paper [14].

3 Superoptimization

Given a source program p superoptimization tries to generate a target program p′

such that (i) p′ is equivalent to p, and (ii) the cost of p′ is minimal with respect
to a given cost function C. This problem arises in several contexts with different
source and target languages. In our case, i.e., for a binary recompiler, both source
and target are EVM bytecode.

A standard approach to superoptimization and synthesis [4, 9, 12, 13] is to
search through the space of candidate instruction sequences of increasing cost
and use a constraint solver to check whether a candidate correctly implements
the source program. The solver of choice is usually a Satisfiability Modulo
Theories (SMT) solver, which operates on first-order formulas in combination
with background theories, such as the theory of bit vectors or arrays. Modern
SMT solvers are highly optimized and implement techniques to handle arbitrary
first-order formulas, such as E-matching. With increasing cost of the candidate
sequence, the search space dramatically increases. To deal with this explosion
one idea is to hand some of the search to the solver, by using templates [4, 13].
Templates leave holes in the target program, e.g. for immediate arguments of
instructions, that the solver must then fill. A candidate program is correct if the

5 We gloss over the 32 different PUSH instructions depending on the size of the word to
be pushed.

4 J. Nagele and M.A. Schett

1: function BasicSo(ps, C)
2: n← 0
3: while true do
4: for all pt ∈ {p | C(p) = n} do
5: χ← EncodeBso(ps, pt)
6: if Satisfiable(χ) then
7: m← GetModel(χ)
8: pt ← DecodeBso(m)
9: return pt

10: n← n+ 1

(a) Basic Superoptimization.

1: function UnboundedSo(ps, C)
2: pt ← ps
3: χ← EncodeUso(pt) ∧Bound(pt, C)
4: while Satisfiable(χ) do
5: m← GetModel(χ)
6: pt ← DecodeUso(m)
7: χ← χ ∧Bound(pt, C)

8: return pt

(b) Unbounded Superoptimization.

Alg. 2: Superoptimization.

encoding is satisfiable, i.e., if the solver finds a model. Constructing the target
program then amounts to obtaining the values for the templates from the model.
This approach is shown in Algorithm 2(a).

Unbounded superoptimization [5,6] pushes this idea further. Instead of search-
ing through candidate programs and calling the SMT solver on them, it shifts
the search into the solver, i.e., the encoding expresses all candidate instruction
sequences of any length that correctly implement the source program. This ap-
proach is shown in Algorithm 2(b): if the solver returns satisfiable then there is
an instruction sequence that correctly implements the source program. Again,
this target program is reconstructed from the model. If successful, a constraint
asking for a cheaper program is added and the solver is called again. Note that
this also means that unbounded superoptimization can stop with a correct, but
possibly non-optimal solution. In contrast, basic superoptimization cannot return
a correct solution until it has finished.

The main ingredients of superoptimization in Algorithm 2 are Encode-
Bso/Uso producing the SMT encoding, and DecodeBso/Uso reconstructing
the target program from a model. We present our encodings for the semantics of
EVM bytecode in the following section.

4 Encoding

We start by encoding three parts of the EVM execution state: (i) the stack,
(ii) gas consumption, and (iii) whether the execution is in an exceptional halting
state. We model the stack as an uninterpreted function together with a counter,
which points to the next free position on the stack.

Definition 1. A state σ = 〈st, c, hlt, g〉 consists of

(i) a function st(V, j, n) that, after the program has executed j instructions on
input variables from V returns the word from position n in the stack,

(ii) a function c(j) that returns the number of words on the stack after executing
j instructions. Hence st(V, j, c(j)− 1) returns the top of the stack.

Blockchain Superoptimizer 5

(iii) a function hlt(j) that returns true (>) if exceptional halting has occurred
after executing j instructions, and false (⊥) otherwise.

(iv) a function g(V, j) that returns the amount of gas consumed after executing j
instructions.

Here the functions in σ represent all execution states of a program, indexed by
variable j.

Example 2. Symbolically executing the program PUSH 41 PUSH 1 ADD using our
representation above we have

g(0) = 0 g(1) = 3 g(2) = 6 g(3) = 9

c(0) = 0 c(1) = 1 c(2) = 2 c(3) = 1

st(1, 0) = 41 st(2, 0) = 41 st(2, 1) = 1 st(3, 0) = 42

and hlt(0) = hlt(1) = hlt(2) = hlt(3) = ⊥.

Note that this program does not consume any words that were already on
the stack. This is not the case in general. For instance we might be dealing with
the body of a function, which takes its arguments from the stack. Hence we need
to ensure that at the beginning of the execution sufficiently many words are on
the stack. To this end we first compute the depth δ̂(p) of the program p, i.e., the
number of words a program p consumes. Then we take variables x0, . . . , xδ̂(p)−1
that represent the input to the program and initialize our functions accordingly.

Definition 2. For a program with δ̂(p) = d we initialize the state σ using

gσ(0) = 0 ∧ hltσ(0) = ⊥ ∧ cσ(0) = d ∧
∧

06`<d

stσ(V, 0, `) = x`

For instance, for the program consisting of the single instruction ADD we set
c(0) = 2, and st({x0, x1}, 0, 0) = x0 and st({x0, x1}, 0, 1) = x1. We then have
st({x0, x1}, 1, 0) = x1 + x2.

To encode the effect of EVM instructions we build SMT formulas to capture
their operational semantics. That is, for an instruction ι and a state σ we give a
formula τ(ι, σ, j) that defines the effect on state σ if ι is the j-th instruction that
is executed. Since large parts of these formulas are similar for every instruction
and only depend on δ and α we build them from smaller building blocks.

Definition 3. For an instruction ι and state σ we define:

τg(ι, σ, j) ≡ gσ(V, j + 1) = gσ(V, j) + C(σ, j, ι)

τc(ι, σ, j) ≡ cσ(j + 1) = cσ(j) + α(ι)− δ(ι)
τpres(ι, σ, j) ≡ ∀n.n < cσ(j)− δ(ι)→ stσ(V, j + 1, n) = stσ(V, j, n)

τhlt(ι, σ, j) ≡ hltσ(j + 1) = hltσ(j) ∨ cσ(j)− δ(ι) < 0 ∨ cσ(j)− δ(ι) + α(ι) > 210

Here C(σ, j, ι) is the gas cost of executing instruction ι on state σ after j steps.

6 J. Nagele and M.A. Schett

The formula τg adds the cost of ι to the gas cost incurred so far. The formula τc
updates the counter for the number of words on the stack according to δ and
α. The formula τpres expresses that all words on the stack below cσ(j)− δ(ι) are
preserved. Finally, τhlt captures that exceptions relevant to the stack can occur
through either an underflow or an overflow, and that once it has occurred an
exceptional halt state persists. For now the only other component we need is how
the instructions affect the stack st, i.e., a formula τst(ι, σ, j). Here we only give
an example and refer to our implementation or the yellow paper [14] for details.
We have

τst(ADD, σ, j) ≡ stσ(V, j + 1, cσ(j + 1)− 1)

= stσ(V, j, cσ(j)− 1) + stσ(V, j, cσ(j)− 2)

Finally these formulas yield an encoding for the semantics of an instruction.

Definition 4. For an instruction ι and state σ we define

τ(ι, σ, j) ≡ τst(ι, σ, j) ∧ τc(ι, σ, j) ∧ τg(ι, σ, j) ∧ τhlt(ι, σ, j) ∧ τpres(ι, σ, j)

Then to encode the semantics of a program p all we need to do is to apply τ
to the instructions of p.

Definition 5. For a program p = ι0 · · · ιn we set τ(p, σ) ≡
∧

06j6n τ(ιj , σ, j).

Before building an encoding for superoptimization we consider another aspect
of the EVM for our state representation: storage and memory. The gas cost for
storing words depends on the words that are currently stored. Similarly, the cost
for using memory depends on the number of bytes currently used. This is why
the cost of an instruction C(σ, j, ι) depends on the state and the function gσ
accumulating gas cost depends on V.

To add support for storage and memory to our encoding there are two natural
choices: the theory of arrays or an Ackermann encoding. However, since we have
not used arrays so far, they would require the solver to deal with an additional
theory. For an Ackermann encoding we only need uninterpreted functions, which
we have used already. Hence, to represent storage in our encoding we extend
states with an uninterpreted function str(V, j, k), which returns the word at
key k after the program has executed j instructions. Similarly to how we set
up the initial stack we need to deal with the values held by the storage before
the program is executed. Thus, to initialize str we introduce fresh variables to
represent the initial contents of the storage. More precisely, for all SLOAD and
SSTORE instructions occurring at positions j1, . . . , j` in the source program, we
introduce fresh variables s1, . . . , s` and add them to V. Then for a state σ we
initialize strσ by adding the following conjunct to the initialization constraint
from Definition 2:

∀w. strσ(V, 0, w) = ite(w = aj1 , s1, ite(w = aj2 , s2, . . . , ite(w = aj` , s`, w⊥)))

where aj = stσ(V, j, c(j)− 1) and w⊥ is the default value for words in the storage.

Blockchain Superoptimizer 7

The effect of the two storage instructions SLOAD and SSTORE can then be
encoded as follows:

τst(SLOAD, σ, j) ≡ stσ(V, j + 1, cσ(j + 1)− 1) = str(V, j, stσ(V, j, cσ(j)− 1))

τstr(SSTORE, σ, j) ≡ ∀w. strσ(V, j + 1, w) =

ite(w = stσ(V, j, cσ(j)− 1), stσ(V, j, cσ(j)− 2), strσ(V, j, w))

Moreover all instructions except SSTORE preserve the storage, that is, for ι 6=
SSTORE we add the following conjunct to τpres(ι, σ, j):

∀w. strσ(V, j + 1, w) = strσ(V, j, w)

To encode memory a similar strategy is an obvious way to go. However, we
first want to evaluate the solver’s performance on the encodings obtained when
using stack and storage. Since the solver already struggled, due to the size of the
programs and the number of universally quantified variables, see Section 6, we
have not yet added an encoding of memory.

Finally, to use our encoding for superoptimization we need an encoding of
equality for two states after a certain number of instructions. Either to ensure
that two programs are equivalent (they start and end in equal states) or different
(they start in equal states, but end in different ones). The following formula
captures this constraint.

Definition 6. For states σ1 and σ2 and program locations j1 and j2 we define

ε(σ1, σ2, j1, j2) ≡ cσ1
(j1) = cσ2

(j2) ∧ hltσ1
(j1) = hltσ2

(j2)

∧ ∀n.n < cσ1
(j1)→ stσ1

(V, j1, n) = stσ2
(V, j2, n)

∧ ∀w.strσ1
(V, j1, w) = strσ2

(V, j2, w)

Since we aim to improve gas consumption, we do not demand equality for g.
We now have all ingredients needed to implement basic superoptimization:

simply enumerate all possible programs ordered by gas cost and use the encodings
to check equivalence. However, since already for one PUSH there are 2256 possible
arguments, this will not produce results in a reasonable amount of time. Hence we
use templates as described in Section 3. We introduce an uninterpreted function
a(j) that maps a program location j to a word, which will be the argument
of PUSH. The solver then fills these templates and we can get the values from
the model. This is a step forward, but since we have 80 encoded instructions,
enumerating all permutations still yields too large a search space. Hence we use an
encoding similar to the CEGIS algorithm [4]. Given a collection of instructions, we
formulate a constraint representing all possible permutations of these instructions.
It is satisfiable if there is a way to connect the instructions into a target program
that is equivalent to the source program. The order of the instructions can again
be reconstructed from the model provided by the solver. More precisely given
a source program p and a list of candidate instructions ι1, . . . , ιn, EncodeBso
from Algorithm 2(a) takes variables j1, . . . , jn and two states σ and σ′ and builds

8 J. Nagele and M.A. Schett

the following formula

∀V. ε(σ, σ′, 0, 0) ∧ ε(σ, σ′, |p|, n) ∧ τ(p, σ)

∧
∧

16`6n

τ(ι`, σ
′, j`) ∧

∧
16`<k6n

j` 6= jk ∧
∧

16`6n

j` > 0 ∧ j` < n

Here the first line encodes the source program, and says that the start and final
states of the two programs are equivalent. The second line encodes the effect of
the candidate instructions and enforces that they are all used in some order. If
this formula is satisfiable we can simply get the ji from the model and reorder
the candidate instructions accordingly to obtain the target program.

Unbounded superoptimization shifts even more of the search into the solver,
encoding the search space of all possible programs. To this end we take a
variable n, which represents the number of instructions in the target program
and an uninterpreted function instr(j), which acts as a template, returning the
instruction to be used at location j. Then, given a set of candidate instructions
the formula to encode the search can be built as follows:

Definition 7. Given a set of instructions CI we define the formula ρ(σ, n) as

∀j. j > 0 ∧ j < n→
∧
ι∈CI

instr(j) = ι→ τ(ι, σ, j) ∧
∨
ι∈CI

instr(j) = ι

Finally, the constraint produced by EncodeUso from Algorithm 2(b) is

∀V. τ(p, σ) ∧ ρ(σ′, n) ∧ ε(σ, σ′, 0, 0) ∧ ε(σ, σ′, |p|, n) ∧ gσ(V, |p|) > gσ′(V, n)

During our experiments we observed that the solver struggles to show that
the formula is unsatisfiable when p is already optimal. To help in these cases
we additionally add a bound on n: since the cheapest EVM instruction has gas
cost 1, the target program cannot use more instructions than the gas cost of p,
i.e., we add n 6 gσ(V, |p|).

In our application domain there are many instructions that fetch information
from the outside world. For instance, ADDRESS gets the Ethereum address of
the account currently executing the bytecode of this smart contract. Since it
is not possible to know these values at compile time we cannot encode their
full semantics. However, we would still like to take advantage of structural
optimizations where these instructions are involved, e.g., via DUP and SWAP.

Example 3. Consider the program ADDRESS DUP1. The same effect can be achieved
by simply calling ADDRESS ADDRESS. Duplicating words on the stack, if they are
used multiple times, is an intuitive approach. However, because executing ADDRESS

costs 2 g and DUP1 costs 3 g, perhaps unexpectedly, the second program is cheaper.

To find such optimizations we need a way to encode ADDRESS and similar
instructions. For our purposes, these instructions have in common that they put
arbitrary but fixed words onto the stack. Analogous to uninterpreted functions, we
call them uninterpreted instructions and collect them in the set UI. To represent

Blockchain Superoptimizer 9

their output we use universally quantified variables—similar to input variables.
To encode the effect uninterpreted instructions have on the stack, i.e., τst, we
distinguish between constant and non-constant uninterpreted instructions.

Let uic(p) be the set of constant uninterpreted instructions in p, i.e. uic(p) =
{ι ∈ p | ι ∈ UI ∧ δ(ι) = 0}. Then for uic(p) = {ι1, . . . , ιk} we take variables
uι1 , . . . , uιk and add them to V, and thus to the arguments of the state func-
tion st. The formula τst can then use these variables to represent the unknown
word produced by the uninterpreted instruction, i.e., for ι ∈ uic(p) with the
corresponding variable uι in V, we set τst(ι, σ, j) ≡ stσ(V, j + 1, cσ(j)) = uι.

For a non-constant instruction ι, such as BLOCKHASH or BALANCE, the word
put onto the stack by ι depends on the top δ(ι) words of the stack. We again
model this dependency using an uninterpreted function. That is, for every non-
constant uninterpreted instruction ι in the source program p, uin(p) = {ι ∈ p |
ι ∈ UI ∧ δ(ι) > 0}, we use an uninterpreted function fι. Conceptually, we can
think of fι as a read-only memory initialized with the values that the calls to ι
produce.

Example 4. The instruction BLOCKHASH gets the hash of a given block b. Thus
optimizing the program PUSH b1 BLOCKHASH PUSH b2 BLOCKHASH depends on the
values b1 and b2. If b1 = b2 then the cheaper program PUSH b1 BLOCKHASH DUP1

yields the same state as the original program.

To capture this behaviour, we need to associate the arguments b1 and b2 of
BLOCKHASH with the two different results they may produce. As with constant
uninterpreted instructions, to model arbitrary but fixed results, we add fresh
variables to V . However, to account for different results produced by ` invocations
of ι in p we have to add ` variables. Let p be a program and ι ∈ uin(p) a
unary instruction which appears ` times at positions j1, . . . , j` in p. For variables
u1, . . . , u`, we initialize fι as follows:

∀w. fι(V, w) = ite(w = aj1 , u1, ite(w = aj2 , u2, . . . , ite(w = aj` , u`, w⊥)))

where aj is the word on the stack after j instructions in p, that is aj =
stσ(V, j, c(j)− 1), and w⊥ is a default word.

This approach straightforwardly extends to instructions with more than one
argument. Here we assume that uninterpreted instructions put exactly one word
onto the stack, i.e., α(ι) = 1 for all ι ∈ UI. This assumption is easily verified for
the EVM: the only instructions with α(ι) > 1 are DUP and SWAP. Finally we set
the effect a non-constant uninterpreted instruction ι with associated function fι
has on the stack:

τst(ι, σ, j) ≡ stσ(V, j + 1, cσ(j + 1)− 1) = fι(V, stσ(V, j, cσ(j)− 1))

For some uninterpreted instructions there might a be way to partially encode
their semantics. The instruction BLOCKHASH returns 0 if it is called for a block
number greater than the current block number. While the current block number
is not known at compile time, the instruction NUMBER does return it. Encoding
this interplay between BLOCKHASH and NUMBER could potentially be exploited for
finding optimizations.

10 J. Nagele and M.A. Schett

5 Implementation

We implemented basic and unbounded superoptimization in our tool ebso, which
is available under the Apache-2.0 license: github.com/juliannagele/ebso. The
encoding employed by ebso uses several background theories: (i) uninterpreted
functions (UF) for encoding the state of the EVM, for templates, and for encoding
uninterpreted instructions, (ii) bit vector arithmetic (BV) for operations on
words, (iii) quantifiers for initial words on the stack and in the storage, and the
results of uninterpreted instructions, and (iv) linear integer arithmetic (LIA)
for the instruction counter. Hence following the SMT-LIB classification6 ebso’s
constraints fall under the logic UFBVLIA. As SMT solver we chose Z3 [3],
version 4.7.1 which we call with default configurations. In particular, Z3 performed
well for the theory of quantified bit vectors and uninterpreted functions in the
last SMT competition (albeit non-competing).7

The aim of our implementation is to provide a prototype without relying
on heavy engineering and optimizations such as exploiting parallelism or tweak-
ing Z3 strategies. But without any optimization, for the full word size of the
EVM—256 bit—ebso did not handle the simple program PUSH 0 ADD POP within a
reasonable amount of time. Thus we need techniques to make ebso viable. By
investigating the models generated by Z3 run with the default configuration, we
believe that the problem lies with the leading universally quantified variables.
And we have plenty of them: for the input on the stack, for the storage, and
for uninterpreted instructions. By reducing the word size to a small k, we can
reduce the search space for universally quantified variables from 2256 to some
significantly smaller 2k. But then we need to check any target program found
with a smaller word size.

Example 5. The program PUSH 0 SUB PUSH 3 ADD from Example 1 optimizes to
NOT for word size 2 bit, because then the binary representation of 3 is all ones.
When using word size 256 bit this optimization is not correct.

To ensure that the target program has the same semantics for word size 256 bit,
we use translation validation: we ask the solver to find inputs, which distinguish
the source and target programs, i.e., where both programs start in equivalent
states, but their final state is different. Using our existing machinery this formula
is easy to build:8

Definition 8. Two programs p and p′ are equivalent if

ν(p, p′, σ, σ′) ≡ ∃V, τ(p, σ) ∧ τ(p′, σ′) ∧ ε(σ, σ′, 0, 0) ∧ ¬ε(σ, σ′, |p|, |p′|)

is unsatisfiable. Otherwise, p and p′ are different, and the values for the variables
in V from the model are a corresponding witness.

6 smtlib.cs.uiowa.edu/logics.shtml
7 smt-comp.github.io/2019/results/ufbv-single-query
8 This approach also allows for other over-approximations. For instance, we tried using

integers instead of bit vectors, which performed worse.

https://github.com/juliannagele/ebso
http://smtlib.cs.uiowa.edu/logics.shtml
https://smt-comp.github.io/2019/results/ufbv-single-query

Blockchain Superoptimizer 11

A subtle problem remains: how can we represent the program PUSH 224981
with only k bit? Our solution is to replace arguments a1, . . . , am of PUSH where
ai > 2k with fresh, universally quantified variables c1, . . . , cm. If a target program
is found, we replace ci by the original value ai, and check with translation
validation whether this target program is correct. A drawback of this approach
is that we might lose potential optimizations.

Example 6. The program PUSH 0b111...111 AND optimizes to the empty program.
But, abstracting the argument of PUSH translates the program to PUSH ci AND,
which does not allow the same optimization.

Like many compiler optimizations, ebso optimizes basic blocks. Therefore we
split EVM bytecode along instructions that change the control flow, e.g. JUMPI,
or SELFDESTRUCT. Similarly we further split basic blocks into (ebso) blocks so
that they contain only encoded instructions. Instructions, which are not encoded,
or encodable, include instructions that write to memory, e.g. MSTORE, or the log
instructions LOG.

Lemma 1. If program p superoptimizes to program t then in any program we
can replace p by t.

Proof. We show the statement by induction on the program context (c1, c2) of
the program c1pc2. By assumption, the statement holds for the base case ([], []).
For the step case (ιc1, c2), we observe that every instruction ι is deterministic, i.e.
executing ι starting from a state σ leads to a deterministic state σ′. By induction
hypothesis, executing c1pc2 and c1tc2 from a state σ′ leads to the same state
σ′′, and therefore we can replace ιc1pc2 by ιc1tc2. We can reason analogously for
(c1, c2ι).

6 Evaluation

We evaluated ebso on two real-word data sets: (i) optimizing an already highly
optimized data set in Section 6.1, and (ii) a large-scale data set from the Ethereum
blockchain to compare basic and unboundend superoptimization in Section 6.2.
We use ebso to extract ebso blocks from our data sets. From the extracted
blocks (i) we remove duplicate blocks, and (ii) we remove blocks which are only
different in the arguments of PUSH by abstracting to word size 4 bit. We run
both evaluations on a cluster [7] consisting of nodes running Intel Xeon E5645
processors at 2.40 GHz, with one core and 1 GiB of memory per instance.

We successfully validated all optimizations found by ebso by running a
reference implementation of the EVM on pseudo-random input. Therefore, we run
the bytecode of the original input block and the optimized bytecode to observe
that both produce the same final state. The EVM implementation we use is
go-ethereum9 version 1.8.23.

9 github.com/ethereum/go-ethereum

https://github.com/ethereum/go-ethereum

12 J. Nagele and M.A. Schett

%

optimized (optimal) 19 (10) 0.69 % (0.36 %)
proved optimal 481 17.54 %

time-out (trans. val. failed) 2243 (196) 81.77 % (7.15 %)

Table 1: Aggregated results of running ebso on GG.

6.1 Optimize the Optimized

This evaluation tests ebso against human intelligence. Underlying our data set are
200 Solidity contracts (GGraw) we collected from the 1st Gas Golfing Contest.10 In
that contest competitors had to write the most gas-efficient Solidity code for five
given challenges: (i) integer sorting, (ii) implementing an interpreter, (iii) hex
decoding, (iv) string searching, and (v) removing duplicate elements. Every
challenge had two categories: standard and wild. For wild, any Solidity feature is
allowed—even inlining EVM bytecode. The winner of each track received 1 Ether.
The Gas Golfing Contest provides a very high-quality data set: the EVM bytecode
was not only optimized by the solc compiler, but also by humans leveraging these
compiler optimizations and writing inline code themselves. To collect our data
set GG, we first compiled the Solidity contracts in GGraw with the same set-up
as in the contest.11 One contract in the wild category failed to compile and was
thus excluded from GGraw. From the generated .bin-runtime files, we extracted
our final data set GG of 2743 distinct blocks.

For this evaluation, we run ebso in its default mode: unbounded superop-
timization. We run unbounded superoptimization because, as can be seen in
Section 6.2, in our context unbounded superoptimization outperformed basic
superoptimization. As time-out for this challenging data set, we estimated 1 h as
reasonable.

Table 1 shows the aggregated results of running ebso on GG. In total, ebso
optimizes 19 blocks out of 2743, 10 of which are shown to be optimal. Moreover,
ebso can prove for more than 17 % of blocks in GG that they are already optimal. It
is encouraging that ebso even finds optimizations in this already highly optimized
data set. The quality of the data set is supported by the high percentage of blocks
being proved as optimal by ebso. Next we examine three found optimizations
more closely. Our favorite optimization POP PUSH 1 SWAP1 POP PUSH 0 to SLT

DUP1 EQ PUSH 0 witnesses that superoptimization can find unexpected results,
and that unbounded superoptimization can stop with non-optimal results: SLT
DUP1 EQ is, in fact, a round-about and optimizable way to pop two words from
the stack and push 1 on the stack. Some optimizations follow clear patterns.
The optimizations CALLVALUE DUP1 ISZERO PUSH 81 to CALLVALUE CALLVALUE

10 g.solidity.cc
11 Namely, $ solc --optimize --bin-runtime --optimize-runs 200 with solc com-

piler version 0.4.24 available at github.com/ethereum/solidity/tree/v0.4.24.

https://g.solidity.cc/
https://github.com/ethereum/solidity/tree/v0.4.24

Blockchain Superoptimizer 13

uso bso
% # %

optimized (optimal) 943 (393) 1.54 % (0.64 %) 184 0.3 %
proved optimal 3882 6.34 % 348 0.57 %

time-out (trans. val. failed) 56 392 (1467) 92.12 % (2.4 %) 60 685 99.13 %

Table 2: Aggregated results of running ebso with uso and bso on EthBC.

ISZERO PUSH 81 and CALLVALUE DUP1 ISZERO PUSH 364 to CALLVALUE CALLVALUE

ISZERO PUSH 364 are both based on the fact that CALLVALUE is cheaper than
DUP1. Finding such patterns and generalizing them into peephole optimization
rules could be interesting future work.

Unfortunately, ebso hit a time-out in nearly 82 % of all cases, where we count
a failed translation validation as part of the time-outs, since in that case ebso
continues to search for optimizations after increasing the word size.

6.2 Unbounded vs. Basic Superoptimization

In this evaluation we compare unbounded and basic superoptimization, which
we will abbreviate with uso and bso, respectively. To compare uso and bso, we
want a considerably larger data set. Fortunately, there is a rich source of EVM
bytecode accessible: contracts deployed on the Ethereum blockchain. Assuming
that contracts that are called more often are well constructed, we queried the
2500 most called contracts12 using Google BigQuery.13 From them we extract
our data set EthBC of 61 217 distinct blocks. For this considerably larger data
set, we estimated a cut-off point of 15 min as reasonable. One limitation is that,
due to the high volume, we only run the full evaluation once.

Table 2 shows the aggregated results of running ebso on EthBC. Out of 61 217
blocks in EthBC, ebso finds 943 optimizations using uso out of which it proves 393
to be optimal. Using bso 184 optimizations are found. Some blocks were shown
to be optimal by both approaches. Also, both approaches time out in a majority
of the cases: uso in more than 92 %, and bso in more than 99 %. Over all 61 217
blocks the total amount of gas saved for uso is 17 871 and 6903 for bso. For
all blocks where an optimization is found, the average gas saving per block in
uso is 29.63 %, and 46.1 % for bso. The higher average for bso can be explained
by (i) bso’s bias for smaller blocks, where relative savings are naturally higher,
and (ii) bso only providing optimal results, whereas uso may find intermediate,
non-optimal results. The optimization with the largest gain, is one which we did
not necessarily expect to find in a deployed contract: a redundant storage access.
Storage is expensive, hence optimized for in deployed contracts, but uso and

12 up to block number 7 300 000 deployed on Mar-04-2019 01:22:15 AM +UTC
13 cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-

smart-contract-analytics

https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

14 J. Nagele and M.A. Schett

bso both found PUSH 0 PUSH 4 SLOAD SUB PUSH 4 DUP2 SWAP1 SSTORE POP which
optimizes to the empty program—because the program basically loads the value
from key 4 only to store it back to that same key. This optimization saves at
least 5220 g, but up to 20 220 g.

From Table 2 we see that on EthBC, uso outperforms bso by roughly a factor
of five on found optimizations; more than ten times as many blocks are proved
optimal by uso than by bso. As we expected, most optimizations found by bso
were also found by uso, but surprisingly, bso found 21 optimizations, on which uso
failed. We found that nearly all of the 21 source programs are fairly complicated,
but have a short optimization of two or three instructions. To pick an example, the
block PUSH 0 PUSH 12 SLOAD LT ISZERO ISZERO ISZERO PUSH 12250 is optimized
to the relatively simple PUSH 1 PUSH 12250—a candidate block, which will be
tried early on in bso. Additionally, all 21 blocks are cheap: all cost less than 10 g.
We also would have expected at least some of these optimizations to have been
found by uso. We believe internal unfortunate, non-deterministic choice within
the solver to be the reason that it did not.

7 Conclusion

Summary. We develop ebso, a superoptimizer for EVM bytecode, implementing
two different superoptimization approaches and compare them on a large set of
real-world smart contracts. Our experiments show that, relying on the heavily
optimized search heuristics of a modern SMT solver is a feasible approach to
superoptimizing EVM bytecode.

Related Work. Superoptimization [9] has been explored for a variety of dif-
ferent contexts [5, 6, 10, 12], including binary translation [1] and synthesizing
compiler optimizations [11]. To our knowledge ebso is the first application of
superoptimization to smart contracts.

Chen et al. [2] also aim to save gas by optimizing EVM bytecode. They
identified 24 anti patterns by manual inspection. Building on their work we
run ebso on their identified patterns. For 19 instances, ebso too found the same
optimizations. For 2 patterns, ebso lacks encoding of the instructions (STOP,
JUMP), and for 2 patterns ebso times out on a local machine.

Due to the repeated exploitation of flaws in smart contracts, various for-
mal approaches for analyzing EVM bytecode have been proposed. For instance
Oyente [8] performs control flow analysis in order to detect security defects such
as reentrancy bugs.

Outlook. There is ample opportunity for future work. We do not yet support the
EVM’s memory. While conceptually this would be a straightforward extension,
the number of universally quantified variables and size of blocks are already
posing challenges for performance, as we identified by analyzing the optimizations
found by ebso.

Blockchain Superoptimizer 15

Thus, it would be interesting to use SMT benchmarks obtained by ebso’s
superoptimization encoding to evaluate different solvers, e.g. CVC414 or Vampire15.
The basis for this is already in place: ebso can export the generated constraints
in SMT-LIB format. Accordingly, we plan to generate new SMT benchmarks and
submit them to one of the suitable categories of SMT-LIB.

In order to ease the burden on developers ebso could benefit from caching
common optimization patterns [11] to speed up optimization times. Another
fruitful approach could be to extract the optimization patterns and generalize
them into peephole optimizations and rewrite rules.

References

1. Bansal, S., Aiken, A.: Binary translation using peephole superoptimizers. In: Proc.
8th OSDI. pp. 177–192. USENIX (2008)

2. Chen, T., Li, Z., Zhou, H., Chen, J., Luo, X., Li, X., Zhang, X.: Towards saving
money in using smart contracts. In: Proc. 40th ICSE-NIER. pp. 81–84. ACM (2018).
https://doi.org/10.1145/3183399.3183420

3. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proc. 14th TACAS.
LNCS, vol. 9206, pp. 337–340. Springer (2008)

4. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs. In:
Proc. 32nd PLDI. pp. 62–73. ACM (2011). https://doi.org/10.1145/1993498.1993506

5. Jangda, A., Yorsh, G.: Unbounded superoptimization. In: Proc. Onward! 2017. pp.
78–88. ACM (2017). https://doi.org/10.1145/3133850.3133856

6. Joshi, R., Nelson, G., Randall, K.H.: Denali: A Goal-directed Superoptimizer. In:
Proc. 23rd PLDI. pp. 304–314. ACM (2002). https://doi.org/10.1145/512529.512566

7. King, T., Butcher, S., Zalewski, L.: Apocrita - High Performance Com-
puting Cluster for Queen Mary University of London (Mar 2017).
https://doi.org/10.5281/zenodo.438045

8. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart
contracts smarter. In: Proc. 23rd CCS. pp. 254–269. ACM (2016).
https://doi.org/10.1145/2976749.2978309

9. Massalin, H.: Superoptimizer: A look at the smallest program. In: Proc. 2nd
ASPLOS. pp. 122–126. IEEE (1987). https://doi.org/10.1145/36206.36194

10. Phothilimthana, P.M., Thakur, A., Bod́ık, R., Dhurjati, D.: Scaling up
superoptimization. In: Proc. 21st ASPLOS. pp. 297–310. ACM (2016).
https://doi.org/10.1145/2872362.2872387

11. Sasnauskas, R., Chen, Y., Collingbourne, P., Ketema, J., Taneja, J., Regehr, J.:
Souper: A synthesizing superoptimizer. CoRR abs/1711.04422 (2017), http://
arxiv.org/abs/1711.04422

12. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: Proc. 18th
ASPLOS. pp. 305–316. ACM (2013). https://doi.org/10.1145/2451116.2451150

13. Srinivasan, V., Reps, T.: Synthesis of machine code from semantics. In: Proc. 36th
PLDI. pp. 596–607. ACM (2015). https://doi.org/10.1145/2737924.2737960

14. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Tech.
Rep. Byzantium Version e94ebda (2018), https://ethereum.github.io/yellowpaper/
paper.pdf

14 cvc4.cs.stanford.edu/web/
15 www.vprover.org

https://doi.org/10.1145/3183399.3183420
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/3133850.3133856
https://doi.org/10.1145/512529.512566
https://doi.org/10.5281/zenodo.438045
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/36206.36194
https://doi.org/10.1145/2872362.2872387
http://arxiv.org/abs/1711.04422
http://arxiv.org/abs/1711.04422
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/2737924.2737960
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
http://cvc4.cs.stanford.edu/web
http://www.vprover.org/

	Blockchain Superoptimizer

