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Structuring the Synthesis of Heap-Manipulating Programs
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This paper describes a deductive approach to synthesizing imperative programs with pointers from declarative

specifications expressed in Separation Logic. Our synthesis algorithm takes as input a pair of assertionsÐ

a pre- and a postconditionÐwhich describe two states of the symbolic heap, and derives a program that

transforms one state into the other, guided by the shape of the heap. Our approach to program synthesis

is grounded in proof theory: we introduce the novel framework of Synthetic Separation Logic (SSL), which

generalises the classical notion of heap entailment P ⊢ Q to incorporate a possibility of transforming a heap

satisfying an assertion P into a heap satisfying an assertion Q. A synthesized program represents a proof

term for a transforming entailment statement P { Q, and the synthesis procedure corresponds to a proof

search. The derived programs are, thus, correct by construction, in the sense that they satisfy the ascribed

pre/postconditions, and are accompanied by complete proof derivations, which can be checked independently.

We have implemented a proof search engine for SSL in a form of the program synthesizer called SuSLik.

For efficiency, the engine exploits properties of SSL rules, such as invertibility and commutativity of rule

applications on separate heaps, to prune the space of derivations it has to consider. We explain and showcase

the use of SSL on characteristic examples, describe the design of SuSLik, and report on our experience of

using it to synthesize a series of benchmark programs manipulating heap-based linked data structures.

CCS Concepts: • Theory of computation→ Logic and verification; • Software and its engineering→

Automatic programming;

Additional Key Words and Phrases: Program Synthesis, Separation Logic, Proof Systems, Type Theory

ACM Reference Format:

Nadia Polikarpova and Ilya Sergey. 2019. Structuring the Synthesis of Heap-Manipulating Programs. Proc.

ACM Program. Lang. 3, POPL, Article 72 (January 2019), 30 pages. https://doi.org/10.1145/3290385

1 INTRODUCTION

Consider the task of implementing a procedure swap(x, y), which swaps the values stored at
two distinct heap locations, x and y. The desired effect of swap can be concisely captured via
pre/postconditions expressed in Separation Logic (SL)Ða Hoare-style program logic for specifying
and verifying stateful programs with pointers (O’Hearn et al. 2001; Reynolds 2002):

{x 7→ a ∗ y 7→ b} void swap(loc x, loc y) {x 7→ b ∗ y 7→ a} (1)

This specification is declarative: it describes what the heap should look like before and after
executing swap without saying how to get from one to the other. Specifically, it states that the
program takes as input two pointers, x and y, and runs in a heap where x points to an unspecified
value a, and y points to b. Both a and b here are logical (ghost) variables, whose scope captures both
pre- and postcondition (Kleymann 1999). Because these variables are ghosts, we cannot use them
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directly to update the values in x and y as prescribed by the postcondition; the program must first
łmaterializež them by reading them into local variables, a2 and b2 (cf. lines 2ś3 of the code below).

1 void swap(loc x, loc y) {

2 let a2 = *x;

3 let b2 = *y;

4 *y = a2;

5 *x = b2; }

In our minimalistic C-like language, loc denotes untyped
pointers, and let introduces a local variable. Unlike in C,
both formals and locals are immutable (the only mutation
is allowed on the heap).
As a result of the two reads, the ghost variables in the

post-condition can now be substituted with equal program-level variables: x 7→ b2 ∗ y 7→ a2. This
updated postcondition can be realized by the two writes on lines 4ś5, which conclude our imple-
mentation, so the whole program can now be verified against the specification (1).

Having done this exercise in program derivation, let us now observe that the SL specification has
been giving us guidance on what effectful commands (e.g., reads and writes) should be emitted next.
In other words, the synthesis of swap has been governed by the given specification in the same way
proof search is guided by a goal in ordinary logics. In this work, we make this connection explicit
and employ it for efficiently synthesizing imperative programs from SL pre- and postconditions.

Motivation. The goal of this work is to advance the state of the art in synthesizing provably
correct heap-manipulating programs from declarative functional specifications. Fully-automated
program synthesis has been an active area of research in the past years, but recent techniques
mostly targeted simple DSLs (Gulwani et al. 2011; Le and Gulwani 2014; Polozov and Gulwani 2015)
or purely functional languages (Feser et al. 2015; Kneuss et al. 2013; Osera and Zdancewic 2015;
Polikarpova et al. 2016). The primary reason is that those computational models impose strong
structural constraints on the space of programs, either by means of restricted syntax or through a
strong type system. These structural constraints enable the synthesizer to discard many candidate
terms a-priori, before constructing the whole program, leading to efficient synthesis.

Low-level heap-manipulating programs in general-purpose languages like C lack inherent struc-
tural constraints wrt. control- and data-flow, and as a result the research in synthesizing such
programs has been limited to cases when such constraints can be imposed by the programmer.
From the few existing approaches we are aware of, Simpl (So and Oh 2017) and ImpSynt (Qiu and
Solar-Lezama 2017) require the programmer to provide rather substantial sketches of the control-
flow structure, which help restrict the search space; Jennisys by Leino and Milicevic (2012) does
not require sketches, but also does not scale to functions with destructive heap updates.

Key Ideas. Our theoretical insight is that the structural constraints missing from an imperative
language itself, can be recovered from the program logic used to reason about programs in that
language. We observe that synthesis of heap-manipulating programs can be formulated as a proof
search in a generalized proof system that combines entailment with Hoare-style reasoning for
unknown programs. In this generalized proof system, a statement P { Q means that there exists a
program c , such that the Hoare triple {P} c {Q} holds; the witness program c serves as a proof term
for the statement. In order to be useful, the system must satisfy a number of practical restrictions.
First, it should be expressive enough to (automatically) verify the programs with non-trivial heap
manipulation. Second, it should be restrictive enough to make the synthesis problem tractable.
Finally, it must ensure the termination of the (possibly recursive) synthesized programs, to avoid
vacuous proofs of partial correctness.

In this paper we design such a generalized proof system based on the symbolic heap fragment
of malloc/free Separation Logic1 with inductive predicates, to which we will further refer as just
Separation Logic or SL (O’Hearn et al. 2009; Reynolds 2002). Separation Logic has been immensely

1This nomenclature is due to Cao et al. (2017), who provide it as a rigorous alternative to the folklore notion of classical SL.
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successful at specifying and verifyingmany kinds of heap-manipulating programs, both interactively
and automatically (Appel et al. 2014; Berdine et al. 2011; Charguéraud 2010; Chen et al. 2015; Chin
et al. 2012; Chlipala 2011; Distefano and Parkinson 2008; Nanevski et al. 2010; Piskac et al. 2014a), and
is employed in modern symbolic execution tools (Berdine et al. 2005; Rowe and Brotherston 2017).
We demonstrate how to harness all this power for program synthesis, devise the corresponding
search procedure and apply it to synthesize a number of non-trivial programs that manipulate
linked data structures. Finally, we show how to exploit laws of SL and properties of our proof
system to prune the search space and make the synthesis machinery efficient for realistic examples.

Contributions. The central theoretical contribution of the paper is Synthetic Separation Logic
(SSL): a system of deductive synthesis rules, which prescribe how to decompose specifications for
complex programs into specifications for simpler programs, while synthesizing the corresponding
computations compositionally. In essence, SSL is a proof system for a new transforming entailment
judgment P{Q| c (reads as łthe assertion P transforms into Q via a program cž), which unifies
SL entailment P ⊢ Q and verification {P} c {Q}, with the former expressible as P{Q| skip.
The central practical contribution is the design and implementation of SuSLikÐa deductive

synthesizer for heap-manipulating programs, based on SSL. SuSLik takes as its input a library
of inductive predicates, a (typically empty) list of auxiliary function specifications, and an SL
specification of the function to be synthesized. It returns aÐpossibly recursive, but loop-freeÐ
program (in a minimalistic C-like language), which provably satisfies the given specification.
Our evaluation shows that SuSLik can synthesize all structurally-recursive benchmarks from

previous work on heap-based synthesis (Qiu and Solar-Lezama 2017), without any sketches and in
most cases much faster. To the best of our knowledge, it is also the first synthesizer to automatically
discover the implementations of copying linked lists and trees, and flattening a tree to a list.

The essence of SuSLik’s synthesis algorithm is a backtracking search in the space of SSL deriva-
tions. Even though the structural constraints (i.e., the shape of the heap) embodied in the synthesis
rules already prune the search space significantly (as shown by our swap example), a naïve back-
tracking search is still impractical, especially in the presence of inductive heap predicates. To
eliminate redundant backtracking, we develop several principled optimizations. In particular, we
draw inspiration from focusing proof search (Pfenning 2010) to identify invertible synthesis rules
that do not require backtracking, and exploit the frame rule of SL, observing that the order of rule
applications is irrelevant whenever their subderivations have disjoint footprints.

Paper outline. In the remainder of the paper we give an overview of SSL reasoning principles
(Sec. 2), describe its rules and the meta-theory (Sec. 3), outline the design of our synthesis tool
(Sec. 4), present the optimizations and extensions of the basic search algorithm (Sec. 5), and report
on the evaluation of the approach on a set of case studies involving various linked structures (Sec. 6),
concluding with a discussion of limitations (Sec. 7) and a comparison with the related work (Sec. 8).

2 DEDUCTIVE SYNTHESIS FROM SEPARATION LOGIC SPECIFICATIONS

In Separation Logic, assertions capture the program state, represented by a symbolic heap. An
SL assertion (ranged over by symbols P and Q in the remainder of the paper) is customarily
represented as a pair {ϕ; P} of a pure part ϕ and a spatial part P . The pure part (ranged over by
ϕ,ψ , and χ ) is a quantifier-free boolean formula, which describes the constraints over symbolic
values (represented by variables x , y, etc). The spatial part (denoted P ,Q , and R) is represented by a
collection of primitive heap assertions describing disjoint symbolic heaps (heaplets), conjoined by
the separating conjunction operation ∗, which is commutative and associative (Reynolds 2002). For
example, in the assertion {a , b;x 7→ a ∗ y 7→ b} the spatial part describes two disjoint memory
cells that store symbolic values a and b, while the pure part states that these values are distinct.
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Our development is agnostic to the exact logic of pure formulae, as long as it supports standard
boolean connectives and equality, and comes equipped with a validity oracle and a synthesis oracle
(we elaborate on both later in this section). The soundness of our development depends only on
the soundness of the validity oracle. Our implementation uses the quantifier-free logic of arrays,
uninterpreted functions, and linear integer arithmetic, which is sufficient to express all examples
in this paper, and is efficiently decidable by SMT solvers, thus providing a sound and complete
validity oracle.

To begin with our demonstration, the only kinds of heaplets we are going to consider are the
empty heap assertion emp and points-to assertions of the form ⟨x , ι⟩ 7→ e , where x is a variable or a
pointer constant (e.g., 0), ι is a non-negative integer offset (necessary to represent records), and e is
a symbolic value stored in the memory cell addressed via the value of (x + ι).2 In most cases, the
offset is 0, so we will abbreviate heap assertions ⟨x , 0⟩ 7→ e as x 7→ e .

Our programming component (to be presented formally in Sec. 3) is a simple imperative language
that supports reading from pointers to (immutable) local variables (let x = *y), storing values into
pointers (*y = e), conditionals, recursive calls, and pure expressions. The language has no return

statement; instead, a function stores its result into an explicitly passed pointer.

2.1 Specifications for Synthesis

A synthesis goal is a triple Γ ;P { Q, where Γ is an environment, i.e., a set of immutable program
variables, P is a precondition, and Q is a postcondition. Solving a synthesis goal amounts to finding
a program c and a derivation of the SSL assertion Γ ; P{Q| c . To avoid clutter, we employ the
following naming conventions:

(a) the symbols P, ϕ, and P refer to the goal’s precondition, its pure, and spatial part;
(b) similarly, the symbols Q,ψ , and Q refer to the goal’s postcondition, its pure and spatial part;
(c) whenever the pure part of a SL assertion is true (⊤), it is omitted from the presentation.

In addition, we will use the following macros to express the scope and the quantification over
variables of a goal Γ ; {P} { {Q}. First, by Vars (A) we will denote all variables occurring in
A, which might be an assertion, a logical formula, or a program. Ghosts (universally-quantified
logical variables), whose scope is both the pre- and the postcondition, are defined as GV (Γ ,P,Q) =
Vars (P) \ Γ . Existentials are defined as EV (Γ ,P,Q) = Vars (Q) \ (Γ ∪ Vars (P)). For instance,
taking Γ = {x}, P = {x , y;x 7→ y}, Q = {x 7→ z}, we have the ghosts GV (Γ ,P,Q) = {y}, the
existentials EV (Γ ,P,Q) = {z}, and the pure part of the postcondition Q is implicitly true.

2.2 Basic Inference Rules

To get an intuition on how to represent program synthesis as a proof derivation in SSL, consider
Fig. 1, which shows four basic rules of the logic, targeted to synthesize programs with constant
memory footprint (remember that we use P and Q for the entire pre/post in a rule’s conclusion).
The Emp rule is applicable when spatial pre- and postcondition are both empty. It requires that

no existentials remains in the goal, and the pure precondition implies the pure postcondition: the
premise ⊢ ϕ ⇒ ψ represents an invocation of the pure validity oracle. Emp has no subgoals in its
premises (i.e., it is a terminal rule), and no computational effect: its witness program is simply skip.

The Read rule turns a ghost variable a into a program variable y (fresh in the original goal). That
is, the newly assigned immutable program variable y is added to the environment of the sub-goal,
and all occurrences of a are substituted by y in both the pre- and postcondition. As a side-effect, the
rule prepends the read statement let y = ∗(x + ι) to the remainder of the program to be synthesized.

2Further in the paper, we will extend the language of heap assertions to support dynamically allocated memory blocks and

user-defined inductive predicates.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 72. Publication date: January 2019.



Structuring the Synthesis of Heap-Manipulating Programs 72:5

Emp
EV (Γ , P, Q) = ∅ ⊢ ϕ ⇒ ψ

Γ ; {ϕ ; emp}{ {ψ ; emp} | skip

Read
a ∈ GV (Γ , P, Q) y < Vars (Γ , P, Q)

Γ ∪ {y } ; [y/a]{ϕ ; ⟨x, ι ⟩ 7→ a ∗ P }{ [y/a]{Q} | c

Γ ; {ϕ ; ⟨x, ι ⟩ 7→ a ∗ P }{ {Q} | let y = ∗(x + ι); c

Write
Vars (e) ⊆ Γ e , e ′

Γ ; {ϕ ; ⟨x, ι ⟩ 7→ e ∗ P }{ {ψ ; ⟨x, ι ⟩ 7→ e ∗Q } | c

Γ ; {ϕ ; ⟨x, ι ⟩ 7→ e ′ ∗ P }{

{ψ ; ⟨x, ι ⟩ 7→ e ∗Q }

�

�

�

�

∗(x + ι) = e ; c

Frame
EV (Γ , P, Q) ∩ Vars (R) = ∅
Γ ; {ϕ ; P }{ {ψ ;Q } | c

Γ ; {ϕ ; P ∗ R }{ {ψ ;Q ∗ R } | c

Fig. 1. Simplified basic rules of SSL.

Emp with c7 = skip
{x, y, a2, b2} ; {emp} { {emp}

c6 = c7
Frame

{x, y, a2, b2} ;
{

y 7→ a2

}

{

{

y 7→ a2

}�

�

� c6

c5 = ∗y = a2; c6
Write

{x, y, a2, b2} ;
{

y 7→ b2

}

{

{

y 7→ a2

}�

�

� c5

c4 = c5
Frame

{x, y, a2, b2} ;
{

x 7→ b2 ∗ y 7→ b2

}

{

{

x 7→ b2 ∗ y 7→ a2

}�

�

� c4

c3 = ∗x = b2; c4
Write

{x, y, a2, b2} ;
{

x 7→ a2 ∗ y 7→ b2

}

{

{

x 7→ b2 ∗ y 7→ a2

}�

�

� c3

c2 = let b2 = ∗y ; c3
Read

{x, y, a2} ;
{

x 7→ a2 ∗ y 7→ b
}

{ {x 7→ b ∗ y 7→ a2}

�

�

� c2

c1 = let a2 = ∗x ; c2
Read

{x, y } ;
{

x 7→ a ∗ y 7→ b
}

{ {x 7→ b ∗ y 7→ a }
�

�

� c1

Fig. 2. Derivation of swap(x,y) as c1.

The ruleWrite allows for writing a symbolic expression e into a memory cell ⟨x , ι⟩, provided all
e’s variables are program-level. Notice that our Write rule, unlike the one in classical SL (O’Hearn
et al. 2001), requires that a matching points-to heaplet be present in the postcondition, in order
to decide which expression e to write. In the interest of modularity, the rule does not remove
the resulting identical heaplets ⟨x , ι⟩ 7→ e from the sub-goal, leaving this to a more general rule
FrameÐSSL’s version of Separation Logic’s frame rule. This rule enables łframing outž a shared
sub-heap R from the pre- and postcondition, as long as this does not create new existential variables.
Notice, that unlike the classical SL’s Frame rule, our version does not require a side condition
saying that R must not contain program variables that are modified by the program c , because all
variables in our language are immutable.

Synthesizing swap. Armed with the basic SSL inference rules from Fig. 1, let us revisit our initial
example: the swap function (1). Fig. 2 shows the derivation of the program using the rules, and
should be read bottom-up. For convenience, we name each subgoal’s witness program, starting
from c1 (which corresponds to swap’s body). Furthermore, each intermediate sub-goal highlights

via gray boxes a part of the specification, which łtriggersž the corresponding SSL rule. Intuitively,

the goal of the synthesis process is to łemptyž the spatial parts of the pre- and the postcondition, so
that the derivation can eventually be closed via Emp; to this end, Read andWrite work together
to create matching heaplets between the two assertions, which are then eliminated by Frame.

2.3 Spatial Unification and Backtracking

Now, consider the synthesis goal induced by the following SL specification:

{x 7→ 239 ∗ y 7→ 30} void pick(loc x, loc y) {x 7→ z ∗ y 7→ z} (2)

UnifyHeaps
[σ ]R′ = R

∅ , dom (σ ) ⊆ EV (Γ , P, Q)

Γ ; {P ∗ R }{ [σ ]
{

ψ ;Q ∗ R′
}�

� c

Γ ; {ϕ ; P ∗ R }{
{

ψ ;Q ∗ R′
}�

� c

Fig. 3. SSL rule for heap unification.

Since z does not appear among the formals or in the
precondition, it is treated as an existential. The postcon-
dition thus allows x and y to point to any value, as long
as it is the same value.
To deal with existentials in the heap, we introduce

the rule UnifyHeaps, which attempts to find a unifying
substitution σ for some sub-heaps of the pre- and the
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postcondition. The domain of σ must only contain existentials. For example, applying UnifyHeaps

to the spec (2) with R ≜ x 7→ 239 and R′ ≜ x 7→ z results in the substitution σ = [z 7→ 239],
and the residual synthesis goal {x ,y} {x 7→ 239 ∗ y 7→ 30} { {x 7→ 239 ∗ y 7→ 239}, which can be
now synthesized by using the Frame,Write, and Emp rules.
Due to its freedom to choose a sub-heap and a unifying substitution, UnifyHeaps introduces

non-determinism into the synthesis procedure and might require backtrackingÐa fact also widely
observed in interactive verification community (Gonthier et al. 2011; McCreight 2009) wrt. SL
assertions. For instance, consider the spec below:

{x 7→ a ∗ y 7→ b} void notSure(loc x, loc y) {x 7→ c ∗ c 7→ 0} (3)

void notSure(loc x, loc y) {

*x = y;

*y = 0;

}

One way to approach the spec (3) is to first read from
x , making a a program-level variable a2 (via Read), then
use UnifyHeaps and Frame on the x 7→ • heaplets in the
pre-/postcondition, substituting the existential c by a2.
That, however, leaves us with an unsolvable goal {x ,y, a2} {y 7→ b} { {a2 7→ 0}. Hence we have
to backtrack, and instead unify c with y, eventually deriving the correct program notSure.

2.4 Reasoning with Pure Constraints

So far we have only looked at SL specifications whose pure parts were trivially true. Let us now
turn our attention to the goals that make use of non-trivial pure boolean assertions.

2.4.1 Preconditions. To leverage pure preconditions, we adopt a number of the traditional Small-
foot-style rules (Berdine et al. 2006), whose SSL counterparts are shown in the top part of Fig. 4. In
the nomenclature of Berdine et al., all those rules are non-operational, i.e., correspond to constructing
the proofs of symbolic heap entailment and involve no programming component. Note that the
original rules in Berdine et al. (2005) assume a restricted pure logic with only equalities; we adapt
these rules to our logic-agnostic style, relying on the oracle for pure validity instead of original
syntactic premises. For instance, the rule SubstLeft makes use of a precondition that implies
equality between two universal variables, x = y, substituting all occurrences of x in the subgoal by
y. The rule StarPartialmakes explicit the fundamental assumption of SL: disjointness of symbolic
heaps connected by the ∗ operator. Most commonly, this rule’s effect is observable in combination
with another rule, Inconsistency, which identifies an inconsistent precondition,3 and emits an
always-failing program error.
These three SSL rules can be observed in action via the following example:

{a = x ∧ y = a;x 7→ y ∗ y 7→ z} void urk(loc x, loc y) {true;y 7→ a ∗ x 7→ y} (4)

After applying SubstLeft, the goal transforms to {x ,y} {x 7→ x ∗ x 7→ z} { {x 7→ x ∗ x 7→ x},
which is a trivial, as the precondition requires two disjoint points-to heaplets with the same sourceÐ
a fact, which converted into a pure sub-formula x , x by StarPartial (i.e., false), resulting in the
never-occurring error body (via Inconsistency), as no pre-state would satisfy its precondition.

2.4.2 Postconditions. In the presence of non-trivial pure postconditions, we face the problem of
finding suitable terms to substitute for their existentials. This is essentially a program synthesis
problem where both the specifications and the solution are terms from the pure logic. This is a
challenging, yet well-studied problem (Alur et al. 2013), which we consider orthogonal to our agenda
of deriving pointer-manipulating programs. Hence, SSL relies on a pure synthesis oracle to pick
appropriate instantiations for existentials; formally, the oracle is represented by a non-deterministic

3Inconsistent preconditions are unlikely to appear in top-level goals, but frequently arise as a result of a case split, where

they signify łdeadž (i.e., unreachable) branches.
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SubstLeft
⊢ ϕ ⇒ x = y

x ∈ Γ ⇒ y ∈ Γ

Γ ; [y/x ]{ϕ ; P }{ [y/x ]{Q} | c

Γ ; {ϕ ; P }{ {Q} | c

StarPartial
x + ι , y + ι′ < ϕ ϕ′ = ϕ ∧ (x + ι , y + ι′)

Γ ;
{

ϕ′; ⟨x, ι ⟩ 7→ e ∗
〈

y, ι′
〉

7→ e′ ∗ P
}

{ {Q}
�

� c

Γ ;
{

ϕ ; ⟨x, ι ⟩ 7→ e ∗
〈

y, ι′
〉

7→ e′ ∗ P
}

{ {Q}
�

� c

Inconsistency
ϕ ⇒ ⊥

Γ ; {ϕ ; P }{ {Q} | error

Pick
x ∈ EV (Γ , P, Q)

Γ ; {P }{ [ψ /x ]{Q} | c

Γ ; {P }{ {Q} | c

SubstRight
x ∈ EV (Γ , P, Q)

Σ ; Γ ; {P }{ [ψ ′/x ]
{

ψ ∧ x = ψ ′, Q
}�

� c

Σ ; Γ ; {P }{
{

ψ ∧ x = ψ ′;Q
}�

� c

UnifyPure
[σ ]ψ ′ = ϕ′

∅ , dom (σ ) ⊆ EV (Γ , P, Q)

Γ ; {P }{ [σ ]{Q} | c

Γ ;
{

ϕ ∧ ϕ′; P
}

{
{

ψ ∧ψ ′;Q
}�

� c

Fig. 4. Selected SSL rules for reasoning with pure constraints in the synthesis goal.

rule Pick (Fig. 4). In practice, the oracle can be realized, for example, by delegating to an existing
pure synthesizer (Kuncak et al. 2010; Reynolds et al. 2015). In our implementation, however, we
found a combination of three rulesÐthe łone-point rulež (SubstRight), first-order unification
(UnifyPure), and restricted enumerative search (Pick withψ restricted to program variables)Ðto
be quite effective, if theoretically incomplete, at discharging such synthesis goals.
As an example, consider the following goal (where S and S1 are finite sets):

{S = {v} ∪ S1; x 7→ a} void elem(loc x, int v) {S = {v1} ∪ S1; x 7→ v1 + 1} (5)

Following the rule UnifyPure, one can unify the two facts about sets in the pre- and the postcondi-
tion, obtaining the substitution [v1 7→ v]. The rest is accomplished by the rule Write, which emits
the only necessary statement for elem’s body: *x = v + 1.

2.5 Synthesis with Inductive Predicates

The real power of Separation Logic stems from its ability to compositionally reason about linked
heap-based data structures, such as lists and trees, whose shape is defined recursively via inductive
heap predicates. The most traditional example of a data structure defined this way is a linked list
segment (Reynolds 2002), whose definition is given by the two-clause predicate below:

lseg(x ,y, S) ≜ x = y ∧ {S = ∅; emp}

| x , y ∧ {S = {v} ∪ S1; [x , 2] ∗ x 7→ v ∗ ⟨x , 1⟩ 7→ nxt ∗ lseg(nxt,y, S1)}
(6)

The predicate lseg(x ,y, S) describes a linked list that starts at location x , ends at location y, and
contains a set of elements S .4 The first clause states that, if x and y are equal, the list contains
no elements and occupies an empty heap emp. The complementary second clause postulates the
existence of an allocated memory block (or just block) of two consecutive locations rooted at x
([x , 2] ∗ x 7→ v ∗ ⟨x , 1⟩ 7→ nxt), such that the first location stores the payload v , while the second
one stores a pointer nxt to the tail of the list, whose shape is defined recursively as lseg(nxt,y, S1).

In general, a predicate definition D ≜ p(xi )
〈

ej ,
{

χj ,R j
}〉

j ∈1...N
, starts with the name p and a

vector or formal parameters xi , followed by a sequence of N inductive clauses. The jth clause consist
of a guard ejÐa boolean expression over the predicate’s formals,5 followed by the clause bodyÐa
SL assertion with a spatial part R j and pure part χj , describing the shape of the heap and pure

4The predicate can be parametrized by different abstractions: the length of the list, its set/multiset of elements, or even an

algebraic list datatype. The choice of abstraction is orthogonal to the story of this paper. In our examples, we chose the set

abstraction, which supports an efficient SMT encoding and results in sufficiently strong specifications for synthesis.
5Program-level expressions are a subset of pure logic terms, free from non-executable constructs, such as set operations. In

the case of logical overlap, the conditions for different clauses are checked in the order the clauses are defined.
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constraints, correspondingly. Free variables of the clauses (e.g., v , nxt above) are treated as ghosts
or existentials, depending on whether the predicate instance is in a pre- or postcondition of a goal.
We require that all predicates be well-foundedÐi.e., have their recursive applications only on strictly
smaller sub-heaps (Brotherston et al. 2008); we ensure well-foundedness via a syntactic check that
each recursive clause contains at least one points-to heaplet. From now on, we extend the definition
of the goal, with a context Σ, which stores the definitions of inductive predicates and specified
functions, which are accessible in the derivation.

2.5.1 Dynamic Memory. In order to support dynamically allocated linked structures, as demon-
strated by definition (6), we extend the language of symbolic heaps with two new kinds of assertions:
blocks and predicate instances. Symbolic blocks are a well-established way to add to SL support for
consecutive memory locations (Brotherston et al. 2017; Jacobs et al. 2011), which are allocated and
disposed all together.6 Two SSL rules, Alloc and Free (presented in Sec. 3), make use of blocks, as
those appear in the post- and the preconditions of their corresponding goals. Conceptually, Alloc
looks for a block in the postcondition rooted at an existential and allocates a block of the same
size (by emitting the command let x = malloc(n)), adding it to the subgoal’s precondition. Free
is triggered by an un-matched block in the goal’s precondition, rooted at some program variable x,
which it then disposes by emitting the call to free(x), removing it from the subgoal’s precondition.

2.5.2 Induction. Let us now synthesize our first recursive heap-manipulating function, a linked
list’s destructor listfree(x), which expects a linked list starting from its argument x and ending
with the null-pointer, and leaves an empty heap as its result (we explain the meaning of the tag 0
in lseg0(x , 0, S) below):

{

lseg0(x , 0, S)
}

void listfree(loc x) {emp} (7)

The first synthesis step is carried out by the SSL rule Induction. We postpone its formal
description until the next section, conveying the basic intuition here. Induction only applies to
the initial synthesis goal whose precondition contains an inductive predicate instance, and its
effect is to add a new function symbol to the goal’s context, such that an invocation of this function
would correspond to a recursive call. In our example (7) Induction extends the context Σ with a
łrecursive hypothesisž as follows:7

Σ1 ≜ Σ, listfree(x ′) :
{

lseg1(x ′, 0, S ′)
}

{emp} (8)

2.5.3 Unfolding Predicates. The top-level rule Induction is complemented by the rule Open

(defined in Sec. 3), which unfolds a predicate instance in the goal’s precondition according to its
definition, and creates a subgoal for each inductive clause. For instance, invoked immediately on
our goal (7), it has the following effect on the derivation:

(a) Two sub-goals, one for each of the clauses of lseg, are generated to solve:
(i) Σ1; {x} ; {x = 0 ∧ S = ∅; emp} { {emp}
(ii) Σ1; {x} ;

{

x , 0 ∧ S = {v} ∪ S1; [x , 2] ∗ x 7→ v ∗ ⟨x , 1⟩ 7→ nxt ∗ lseg1(nxt,y, S1)
}

{ {emp}
(b) Assuming c1 and c2 are the programs solving the sub-goals (i) and (ii), the final program is

obtained by combining them as if (x = 0) {c1} else {c2}.

Thus,Open performs case-analysis according to the predicate definition. Note how the precondition
of each generated sub-goal is refined by the corresponding clause’s guard and body. The resulting
sub-programs, once synthesized, are combined with a conditional statement that branches on the

6An alternative would be to adopt an object model with fields, which is more verbose (Berdine et al. 2005).
7In SSL, a context Σ can also store user-provided specifications of auxiliary functions synthesized earlier. We will elaborate

on case studies relying on user-provided auxiliary functions in Sec. 6.2.
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Call
F ≜ f (xi ) :

{

ϕf , Pf
}{

ψf , Qf

}

∈ Σ

R =ℓ [σ ]Pf ⊢ ϕ ⇒ [σ ]ϕf
ϕ′ ≜ [σ ]ψf R′ ≜ [σ ]Qf ei = [σ ]xi

Vars (ei ) ⊆ Γ Σ ; Γ ;
{

ϕ ∧ ϕ′; P ∗ R′
}

{ {Q}
�

� c

Σ ; Γ ; {ϕ ; P ∗ R }{ {Q} | f (ei ); c

Close

D ≜ p(xi )
〈

ej ,
{

χj , Rj
}〉

j∈1. . .N
∈ Σ ℓ < MaxUnfold

1 ≤ k ≤ N σ ≜ [xi 7→ yi ] R′ ≜ ⌈[σ ]Rk ⌉
ℓ+1

Σ ; Γ ; {P }{
{

ψ ∧ [σ ]ek ∧ [σ ]χk ;Q ∗ R
′
}�

� c

Σ ; Γ ; {P }{
{

ψ ;Q ∗ pℓ (yi )
}�

�

� c

Fig. 5. Selected SSL rules for synthesis with recursive functions and inductive predicates.

predicate’s guard (this is why we require the guards to be program expressions). It is easy to see
that the first sub-goal (i) can be immediately solved via Emp rule, producing the program skip.
The second subgoal (ii), contains another instance of the inductive predicateÐlseg1(nxt,y, S1).

In principle, this instance can be unfolded again, yielding in turn a third instance, and so on. To
avoid infinite unfolding of predicate instances we introduce level tags (natural numbers, ranged
over by ℓ), which now annotate some predicate instances in the pre- and postcondition of the goal
and the context functions. All predicates in the initial goal have their level tag set as ℓ = 0. The
rule Open only applies to instances with 0 ≤ ℓ < MaxUnfold, incrementing their tags (hence, the
number of łtelescopicž unfoldings is bounded by the global parameter MaxUnfold).

2.5.4 Recursive calls. Synthesizing recursive programs requires extra care in order to avoid vacu-
ously correct (in the sense of partial program correctness) non-terminating programs that simply
call themselves. To ensure termination of synthesized programs, we require that the pre-heap
Pf of any recursive call be strictly smaller than the pre-heap P of the top-level synthesis goal.
Following ideas from Cyclic Termination Proofs (Brotherston et al. 2012), we enforce this restriction
syntactically: since all inductive predicates are well-founded, it is sufficient to check that one of
the predicate instances in Pf has been derived from the corresponding instance in P by unfolding.
To perform this check, we piggy-back on level tags: intuitively, if every level tag in P starts out
as 0 and is only incremented as a result of Open, a recursive call on an instance with ℓ > 0 is
guaranteed to terminate.
To see how tags control function calls, consider the rule Call in Fig. 5. It fires when the goal

contains in its precondition a symbolic sub-heap R, which can be unified with the precondition
Pf of a function symbol f from the goal’s context Σ. This unification is similar to the effect of
UnifyHeaps, with the difference that Call takes level tags into the account (reflected in the tag-
aware equality predicate =ℓ), while UnifyHeaps (Fig. 3) and Frame (Fig. 1) ignore them when
comparing sub-heaps for equality.
Returning to the listfree example, the remaining subgoal (ii)

{x} ;
{

x , 0 ∧ S = {v} ∪ S1; [x , 2] ∗ x 7→ v ∗ ⟨x , 1⟩ 7→ nxt ∗ lseg1(nxt,y, S1)
}

{ {emp} (9)

can be now transformed, via Read (focused on ⟨x , 1⟩ 7→ nxt), into

{x , nxt2} ;
{

x , 0 ∧ S = {v} ∪ S1; [x , 2] ∗ x 7→ v ∗ ⟨x , 1⟩ 7→ nxt2 ∗ lseg1(nxt2,y, S1)
}

{ {emp}

(10)

void listfree(loc x) {

if (x = 0) {} else {

let nxt2 = *(x + 1);

listfree(nxt2);

free(x);

} }

Fig. 6. Synthesized listfree (7).

The grayed fragment in (10) can now be unified with
the precondition of listfree (8) following Call’s premise.
As the tags match (both indicate the first unfolding of the
predicate), unification succeeds with the substitution σ =
[x ′ 7→ nxt2, S ′ 7→ S1] from f ’s parameters and ghosts to
the goal variables. The same rule produces, from the f ’s
postcondition, a new symbolic heap R′, which replaces the
targeted fragment in the precondition, recording the effect
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of the call. In this example, the function’s postcondition is {emp}, so the goal becomes:

{x , nxt2} ; {x , 0 ∧ S = {v} ∪ S1; [x , 2] ∗ x 7→ v ∗ ⟨x , 1⟩ 7→ nxt2 ∗ emp} { {emp} (11)

The remaining steps are carried out by the rule Free, followed by Emp, with the former disposing
the remaining block, thus, completing the derivation with program listfree shown in Fig. 6.

void listmorph(loc x, loc r) {

if (x = 0) { } else {

let v2 = *x;

let nxt2 = *(x + 1);

listmorph(nxt2, r);

let y12 = *r;

let y2 = malloc(3);

free(x);

*(y2 + 2) = y12;

*(y2 + 1) = v2 + 1;

*y2 = v2;

*r = y2; } }

Fig. 7. Synthesized listmorph (13).

2.5.5 Unfolding in the postcondition. Whereas Open un-
folds predicate instances in a goal’s precondition, a com-
plementary rule Close (Fig. 5) performs a similar oper-
ation on the goal’s postcondition. The main difference
is that instead of performing a case-split and emitting
several subgoals, Close non-deterministically picks a sin-
gle clause k from the predicate’s definition (the intuition
being that the required case split has already been per-
formed by Open). Upon unfolding, the clause’s adapted
guard ([σ ]ek ) and pure part ([σ ]χk ) are added to the sub-
goal’s postcondition, while its spatial part also gets its
level tags increased by one (⌈[σ ]Rk ⌉

ℓ+1), in order to ac-
count for the depth of unfoldings.

To showcase the use of Close, let us define a new predicate for a linked null-terminating structure
lseg2, which stores in each node the payload v and v + 1:

lseg2(x , S) ≜ x = 0 ∧ {S = ∅; emp}

| x , 0 ∧

{

S = {v} ∪ S1;

[x , 3] ∗ x 7→ v ∗ ⟨x , 1⟩ 7→ v + 1 ∗ ⟨x , 2⟩ 7→ nxt ∗ lseg2(nxt, S1)

}

(12)

We now synthesize an implementation for the following specification, requiring to morph a
regular list lseg(x , 0, S) to lseg2(y, S), both parameterized by the same set S :

{

r 7→ 0 ∗ lseg0(x , 0, S)
}

void listmorph(loc x, loc r)
{

r 7→ y ∗ lseg20(y, S)
}

(13)

The derivation starts with Induction, which produces the following function symbol (note that
the postcondition always has all level tags erased in order to prevent chaining of recursive calls):

listmorph(x ′, r ′) :
{

r ′ 7→ 0 ∗ lseg1(x ′, 0, S ′)
}

{r ′ 7→ y ′ ∗ lseg2(y ′, S ′)} (14)

Next, we Open lseg(x , 0, S), producing two sub-goals. The first one:

{x , r } ; {S = ∅ ∧ x = 0; r 7→ 0} {
{

r 7→ y ∗ lseg20(y, S)
}

(15)

is easy to solve via Close, which should pick the first clause from lseg2’s definition (12) (corre-
sponding to emp), followed by Frame to r 7→ y in the postcondition. The second subgoal, after
having read the value of (x + 1) into a program variable nxt2, looks as follows:

{x , r , nxt2} ;
{

S = {v} ∪ S1 ∧ x , 0; r 7→ 0 ∗ [x , 2] ∗ x 7→ v ∗ ⟨x , 1⟩ 7→ nxt2 ∗ lseg1(nxt2, 0, S1)
}

{
{

r 7→ y ∗ lseg20(y, S)
}

(16)

Now, Close comes to the rescue, unfolding the grayed instance in (16)’s postcondition:

{x , r , nxt2} ;
{

S = {v} ∪ S1 ∧ x , 0; r 7→ 0 ∗ [x , 2] ∗ x 7→ v ∗ ⟨x , 1⟩ 7→ nxt2 ∗ lseg1(nxt2, 0, S1)
}

{
{

S = {v1} ∪ S2; r 7→ y ∗ [y, 3] ∗ y 7→ v1 ∗ ⟨y, 1⟩ 7→ v1 + 1 ∗ ⟨y, 2⟩ 7→ nxt1 ∗ lseg2
1(nxt1, S2)

}

(17)
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We can now use the Call rule, unifying the precondition of the induction hypothesis (14) with the
grayed parts in the goal (17), obtaining the following subgoal:

{x , r , nxt2} ;
{

S = {v} ∪ S1 ∧ x , 0; [x , 2] ∗ x 7→ v ∗ ⟨x , 1⟩ 7→ nxt2 ∗ r 7→ y1 ∗ lseg2(y1, S1)
}

{
{

S = {v1} ∪ S2; r 7→ y ∗ [y, 3] ∗ y 7→ v1 ∗ ⟨y, 1⟩ 7→ v1 + 1 ∗ ⟨y, 2⟩ 7→ nxt1 ∗ lseg2
1(nxt1, S2)

}

The instances of lseg2 in the pre- and the postcondition can now be unified via UnifyHeaps,
instantiating [nxt1 7→ y1, S2 7→ S1], and then framed via Frame. The remaining derivation is done
by Reading from r and x , subsequent disposing of a two-cell block (grayed in the precondition)
and allocation of a three-cell block in order to match the grayed block in the postcondition. Finally,
the exact payload for cells of the newly-allocated 3-pointer block is determined by unifying the
set assertions in the pure pre- and postcondition (via UnifyPure), and then Write records the
right values to satisfy the constraints imposed for the head of lseg2-like list by Definition (12). The
resulted synthesized implementation of listmorph is shown in Fig. 7.

2.6 Enabling Procedure Calls by Means of Call Abduction

We conclude this overview with one last exampleÐa recursive procedure for copying a linked list:
{

r 7→ x ∗ lseg0(x , 0, S)
}

void listcopy(loc r)
{

r 7→ y ∗ lseg0(x , 0, S) ∗ lseg0(y, 0, S)
}

(18)

To make things more fun, we pass the pointer to the head of the list via another pointer r, which
is also used to record the result of the functionÐan address y of a freshly allocated list copy. The
synthesis begins by using Induction, producing the function symbol

void listcopy(loc r') :
{

r ′ 7→ x ′ ∗ lseg1(x ′, 0, S ′)
}

{r ′ 7→ y ′ ∗ lseg(x ′, 0, S ′) ∗ lseg(y ′, 0, S ′)} (19)

It follows by Read (from r into x2) and Open, resulting in two subgoals, the first of which (an empty
list) is trivial. The synthesis proceeds, reading from x2 into v2 and from x2 + 1 into nxt2, so after
using Close (on either of lseg0(x , 0, S) heaplets) in the postcondition, UnifyHeaps and Frame, we
reach the following subgoal:

{x , r , x2, v2, nxt2} ;
{

S = {v2} ∪ S1 ∧ x2 , 0; r 7→ x2 ∗ lseg1(nxt2, 0, S1)
}

{
{

S = {v2} ∪ S2; r 7→ y ∗ lseg1(nxt2, 0, S2) ∗ lseg
0(y, 0, S)

}
(20)

AbduceCall
F ≜ f (xi ) :

{

ϕf ; Pf ∗ Ff
}{

ψf ;Qf
}

∈ Σ

Ff has no predicate instances

[σ ]Pf = P Ff , emp F ′ ≜ [σ ]Ff
Σ; Γ ; {ϕ; F }{

{

ϕ; F ′
}�

� c1
Σ; Γ ;

{

ϕ; P ∗ F ′ ∗ R
}

{ {Q}
�

� c2

Σ; Γ ; {ϕ; P ∗ F ∗ R}{ {Q}| c1; c2

Fig. 8. AbduceCall rule.

At this point of our derivation, we run into an issue.
Ideally, we would like to use the grayed fragment of the
goal (20)’s precondition, to fire the rule Call with the
spec (19), i.e. to make a recursive call on the tail list. How-
ever, the (19)’s precondition requires r to point to the
start of that list (nxt2), whereas in our case it still points
to the start of the original list (x2).

Any programmer would know a solution to this conun-
drum: we have to to write nxt2 into r , in order to provide
a suitable symbolic heap to make a recursive call. The Write rule, however, cannot make this
change on its own, since its application is guided by the desired post-heap (in order to decide what
to write), which in this case is determined by the callee’s precondition and not by the current goal.
To overcome this limitation, we introduce a novel rule AbduceCall (shown in Fig. 8), which emits
a separate synthesis sub-goal to prepare the symbolic pre-heap for the recursive call.
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1 void listcopy (loc r) {

2 let x2 = *r;

3 if (x2 = 0) { } else {

4 let v2 = *x2;

5 let nxt2 = *(x2 + 1);

6 *r = nxt2;

7 listcopy(r);

8 let y12 = *r;

9 let y2 = malloc(2);

10 *y2 = v2;

11 *(y2 + 1) = y12;

12 *r = y2;

13 } }

Fig. 9. Synthesized listcopy (18).

First, the rule splits the precondition of the candidate
callee F from Σ into two symbolic sub-heaps, Pf and
Ff , such that all predicate instances are in Pf , while the
rest of the heaplets (i.e., blocks and points-to assertions)
are in Ff . Next, it tries to unify Pf with some sub-heap P
from the goal’s precondition, finding a suitable substitu-
tion σ , such that P = [σ ]Pf . While doing so, it does not
account for the łremainderž [σ ]Ff , which might not be
immediately matched by anything in the goal’s precon-
dition. In order to make it match, the rule emits a sub-
goal Σ; Γ ; {ϕ; F }{ {ϕ, F ′}| c1, whose purpose is to syn-
thesize a program c1, which will serve as an impedance
matcher between some symbolic subheap F from the orig-
inal goal’s precondition and F ′ = [σ ]Ff .

8

For instance, in the specification (19), Pf = lseg1(x ′, 0, S ′) and Ff = r ′ 7→ x ′, so an attempt
to unify the former with the predicate instance in the grayed fragment of the goal (20) results
in the substitution σ = [x ′ 7→ nxt2, S ′ 7→ S1]. Applying it to the remainder of the function’s
precondition, we obtain F ′ = [σ ]Ff = r ′ 7→ nxt2. One of the candidates for the role of F from
the goal’s precondition is the heaplet r 7→ x2, so the corresponding subgoal will be of the form
{r, . . .} ; {. . . ; r 7→ x2} { {r ′ 7→ nxt2}, which will produce the write *r = nxt2. Fig. 9 shows the
eventually synthesized implementation, with the abduced call-enabling write on line 6.

3 SYNTHETIC SEPARATION LOGIC IN A NUTSHELL

Having shown SSL in action, we now proceed with giving a complete set of its inference rules,
along with statements of the formal guarantees SSL provides wrt. synthesized imperative programs.
The syntax for the imperative language supported by SSL is given in Fig. 10. The set of values

includes at least true and false, integers, and locations (isomorphic to non-negative integers).
Expressions include variables, values, boolean equality checks and additional theory-specific
expressions (e.g., integer arithmetic). The language of commands does not include loops, which
are modelled via recursive procedure calls (f (ei )). For simplicity we do not provide a mechanism
to return a variable from a procedure (so the language is missing the return command); result-
returning discipline for a procedure can be encoded via passing a result-storing additional pointer,
as, e.g., in Example (18). A function dictionary ∆ is simply a list of function definitions of the form
f (xi ) { c }. For brevity, we omit the type annotations (e.g., in function signatures) in the formalism.
The complete syntax of SSL assertions is shown in Fig. 11, and their meaning was explained in

detail throughout Sec. 2. We only notice here that, syntactically, pure logic terms are a superset of
program-level expressions e , and can contain theory-specific non-executable constructs, such as
set operations. In a SL assertion {ϕ, P}, the term ϕ must be boolean; our implementation enforces
this through a simple type system, which we omit from the formalization for simplicity.

3.1 The Zoo of SSL Rules

Fig. 12 presents all rules of core SSL.9 Since most of them have already made an appearance in
Sec. 2, here, we only elaborate on the new ones, and highlight some important aspects of their
interaction. It is convenient to split the set of rules into the following six categories:

8Our implementation is smarter than that: it ensures that F and F ′ have the same shape and differ only in pointers’ values.
9Sec. 5 extends core SSL with several optimizations.
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Variable x ,y Alpha-numeric identifiers

Value d Theory-specific atoms

Offset ι Non-negative integers

Expression e ::= d | x | e = e | e ∧ e | ¬e | . . .

Command c ::= let x = ∗(x + ι) | ∗(x + ι) = e |

skip | error | f (ei ) |

if (e) {c} else {c} | c; c

Fun. dict. ∆ ::= ϵ | ∆, f (xi ) { c }

Fig. 10. Programming language grammar.

Pure logic term ϕ,ψ , χ ::= e | . . .

Symbolic heap P ,Q,R ::= emp | ⟨e, ι⟩ 7→ e |

[x ,n] | p(xi ) | P ∗Q

Assertion P,Q ::= {ϕ, P}

Heap predicate D ::= p (xi )
〈

ej ,
{

χj ,Rj
}〉

Function spec F ::= f (xi ) : {P}{Q}

Environment Γ := ϵ | Γ ,x

Context Σ := ϵ | Σ,D | Σ,F

Fig. 11. SSL assertion syntax.

C1 Top-level rules are represented by just one rule: Induction. This rule is only applicable at the
very first stage of the derivation, and it produces a function symbol f , with the specification
identical to the top-level goal, modulo the level tag of a predicate instance p0(ei ) in the pre-
condition. In the case of several predicate instances p0(ei ) in the goal’s precondition, the rule
non-deterministically picks one recursion scheme, whereas other predicate instances in f ’s
precondition are łsealedž via tag erasure ⌈P⌉ .

C2 Terminals include Emp and Inconsistency. These rules conclude a successful derivation by
emitting skip or error, respectively.

C3 Normalization rules include NullNotLVal, SubstLeft, StarPartial, and Read. The role of
these rules is to normalize the precondition: eliminate ghosts and equal variables, and make
explicit the assumptions encoded in the spatial part. As we discuss in Sec. 5.1, a characteristic
feature of those rules is that they cannot cause their subderivation to fail.

C4 Unfolding rules are the rules targeted specifically to predicate instances. The four basic unfolding
rules areOpen,Close,AbduceCall, andCall. As hinted before, the ruleOpen picks an instance
pℓ(ei ) in the goal’s precondition, and produces a number of subgoals, emitting a conditional
that accounts for all of p’s clauses. Close acts symmetrically on the postcondition. Both rules
increment tags for the instances in the clause bodies, and are not applicable for ℓ ≥ MaxUnfold.
Having the search depth bounded by the global parameterMaxUnfold affects the completeness
but not soundness of SSL; MaxUnfold ≤ 2 suffices for all examples in the paper. The rule
AbduceCall prepares the heap for a call application (via Call), as described in Sec. 2.6. Note
that the rules UnifyHeaps and Frame have been slightly generalized wrt. to what was shown

in Fig. 1 and Fig. 3, and now include a parametric premise frameable . If we define frameable
to return true only for predicate instances, we obtain unfolding versions of these rules, which
deal specifically with predicate instances.

C5 Flat rules deal with with the flat part of the heap (blocks and points-to heaplets). They include

Alloc, Free,10 Write, as well as the flat versions of UnifyHeaps and Frame, with frameable
defined to return true for flat heaplets.

C6 Pure synthesis rules are responsible for instantiating existentials. In Fig. 12 this category is
represented by a single non-deterministic rule Pick, which replaces an existential with an
arbitrary pure term ψ . Note that the choice of ψ does not affect the soundness of SSL, but
enumerating all possible terms would make the proof search intractable. In practice, we assume
that ψ is suggested by a pure synthesis oracle. We describe a concrete oracle used in our
implementation in Sec. 5.6.

10The iterated ∗ operator in the premises of Alloc and Free is a syntactic sugar for records of fixed size.
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Induction
f ≜ goal’s name

xi ≜ goal’s formals

Pf ≜ p
1(yi ) ∗ ⌈P ⌉ Qf ≜ ⌈Q ⌉

F ≜ f (xi ) :
{

ϕf ; Pf
}{

ψf ;Qf

}

Σ, F; Γ ;
{

ϕ ;p0(yi ) ∗ P
}

{ {Q}
�

� c

Σ ; Γ ;
{

ϕ ;p0(yi ) ∗ P
}

{ {Q}
�

� c

Emp
EV (Γ , P, Q) = ∅ ⊢ ϕ ⇒ ψ

Γ ; {ϕ ; emp}{ {ψ ; emp} | skip

Inconsistency
⊢ ϕ ⇒ ⊥

Γ ; {ϕ ; P }{ {Q} | error

NullNotLVal
x , 0 < ϕ ϕ′ ≜ ϕ ∧ x , 0

Σ ; Γ ;
{

ϕ′; ⟨x, ι ⟩ 7→ e ∗ P
}

{ {Q}
�

� c

Σ ; Γ ; {ϕ ; ⟨x, ι ⟩ 7→ e ∗ P }{ {Q} | c

SubstLeft
⊢ ϕ ⇒ x = y x ∈ Γ ⇒ y ∈ Γ

Γ ; [y/x ]{ϕ ; P }{ [y/x ]{Q} | c

Γ ; {ϕ ; P }{ {Q} | c

StarPartial
x + ι , y + ι′ < ϕ ϕ′ ≜ ϕ ∧ (x + ι , y + ι′)

Σ ; Γ ;
{

ϕ′; ⟨x, ι ⟩ 7→ e ∗
〈

y, ι′
〉

7→ e′ ∗ P
}

{ {Q}
�

� c

Σ ; Γ ;
{

ϕ ; ⟨x, ι ⟩ 7→ e ∗
〈

y, ι′
〉

7→ e′ ∗ P
}

{ {Q}
�

� c

Read
a ∈ GV (Γ , P, Q) y < Vars (Γ , P, Q)

Γ ∪ {y } ; [y/a]{ϕ ; ⟨x, ι ⟩ 7→ a ∗ P }{ [y/a]{Q} | c

Σ ; Γ ; {ϕ ; ⟨x, ι ⟩ 7→ a ∗ P }{ {Q} | let y = ∗(x + ι); c

Open

D ≜ p(xi )
〈

ej ,
{

χj , Rj
}〉

j∈1. . .N
∈ Σ

ℓ < MaxUnfold σ ≜ [xi 7→ yi ] Vars (yi ) ⊆ Γ

ϕ j ≜ ϕ ∧ [σ ]ej ∧ [σ ]χj Pj ≜ ⌈[σ ]Rj ⌉
ℓ+1 ∗ ⌈P ⌉

∀j ∈ 1. . .N , Σ ; Γ ;
{

ϕ j ; Pj
}

{ {Q}
�

� c j
c ≜ if ([σ ]e1) {c1 } else {if ([σ ]e2) . . . else {cN }}

Σ ; Γ ;
{

ϕ ; P ∗ pℓ (yi )
}

{ {Q}

�

�

� c

Close

D ≜ p(xi )
〈

ej ,
{

χj , Rj
}〉

j∈1. . .N
∈ Σ

ℓ < MaxUnfold σ ≜ [xi 7→ yi ]

for some k, 1 ≤ k ≤ N R′ ≜ ⌈[σ ]Rk ⌉
ℓ+1

Σ ; Γ ; {P }{
{

ψ ∧ [σ ]ek ∧ [σ ]χk ;Q ∗ R
′
}�

� c

Σ ; Γ ; {P }{
{

ψ ;Q ∗ pℓ (yi )
}�

�

� c

AbduceCall
F ≜ f (xi ) :

{

ϕf ; Pf ∗ Ff
}{

ψf ;Qf

}

∈ Σ

Ff has no predicate instances [σ ]Pf = P

Ff , emp F ′ ≜ [σ ]Ff Σ ; Γ ; {ϕ ; F }{
{

ϕ ; F ′
}�

� c1
Σ ; Γ ;

{

ϕ ; P ∗ F ′ ∗ R
}

{ {Q}
�

� c2

Σ ; Γ ; {ϕ ; P ∗ F ∗ R }{ {Q} | c1; c2

Call
F ≜ f (xi ) :

{

ϕf , Pf
}{

ψf , Qf

}

∈ Σ

R =ℓ [σ ]Pf ⊢ ϕ ⇒ [σ ]ϕf
ϕ′ ≜ [σ ]ψf R′ ≜ [σ ]Qf ei = [σ ]xi

Vars (ei ) ⊆ Γ Σ ; Γ ;
{

ϕ ∧ ϕ′; P ∗ R′
}

{ {Q}
�

� c

Σ ; Γ ; {ϕ ; P ∗ R }{ {Q} | f (ei ); c

Alloc
R = [z, n] ∗∗0≤i≤n (⟨z, i ⟩ 7→ ei ) z ∈ EV (Γ , P, Q)

(

{y } ∪
{

ti
})

∩ Vars (Γ , P, Q) = ∅

R′ ≜ [y, n] ∗∗0≤i≤n (⟨y, i ⟩ 7→ ti )

Σ ; Γ ;
{

ϕ ; P ∗ R′
}

{ {ψ ;Q ∗ R }
�

� c

Σ ; Γ ; {ϕ ; P }{ {ψ ;Q ∗ R } | let y = malloc(n); c

Free
R = [x, n] ∗∗0≤i≤n (⟨x, i ⟩ 7→ ei )

Vars ({x } ∪ {ei }) ⊆ Γ Σ ; Γ ; {ϕ ; P }{ {Q} | c

Σ ; Γ ; {ϕ ; P ∗ R }{ {Q} | free(n); c

Write
Vars (e) ⊆ Γ e , e′

Γ ; {ϕ ; ⟨x, ι ⟩ 7→ e ∗ P }{ {ψ ; ⟨x, ι ⟩ 7→ e ∗Q } | c

Γ ;
{

ϕ ; ⟨x, ι ⟩ 7→ e′ ∗ P
}

{

{ψ ; ⟨x, ι ⟩ 7→ e ∗Q }

�

�

�

�

�

∗(x + ι) = e ; c

Frame
EV (Γ , P, Q) ∩ Vars (R) = ∅

frameable
(

R′
)

Γ ; {ϕ ; P }{ {ψ ;Q } | c

Γ ; {ϕ ; P ∗ R }{ {ψ ;Q ∗ R } | c

UnifyHeaps
[σ ]R′ = R

frameable
(

R′
)

∅ , dom (σ ) ⊆ EV (Γ , P, Q)

Γ ; {P ∗ R }{ [σ ]
{

ψ ;Q ∗ R′
}�

� c

Γ ; {ϕ ; P ∗ R }{
{

ψ ;Q ∗ R′
}�

� c

Pick
x ∈ EV (Γ , P, Q) Γ ; {P }{ [ψ /x ]{Q} | c

Γ ; {P }{ {Q} | c

Fig. 12. All core SSL rules. Grayed parts are parameters; instantiating them differently yields different rules.
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Let us refer to rules that emit a sub-program as operational and to the rest (i.e., to the rules that
only change the assertions) as non-operational. The rules from Fig. 12 form the basis of SSL as
a proof system, allowing for possible extensions for the sake of optimization or handling pure
constraints. We make them intentionally declarative rather than algorithmic, which is essential for
establishing the logic’s soundness, leaving a lot of freedom for possible implementations. Such
decisions have to be made, for instance, when engineering an implementation of AbduceCall
or Pick. The algorithmic aspects of SSL, e.g., non-deterministic choice of a frame or a unifying
substitution, are handled by the procedures from Sec. 4.

3.2 Formal Guarantees for the Synthesized Programs

The programs resulting from the SSL derivations enjoy both (a) validity (i.e., they obey their ascribed
Hoare-style specifications in a sence of partial correctness) and (b) termination. Therefore, the
soundness result for SSL entails the Hoare-style total correctness. This result is formally stated
by Theorem 3.6, which builds on the two components, establishing the validity and termination
separately, as we describe in Sec. 3.2.1 and 3.2.2.

Preliminaries. The definition of the operational semantics of the SSL language (Fig. 10) follows
the standard RAM model. Heaps (ranged over by h) are represented as partial finite maps from
pointers to values, with support for pointer arithmetic (via offsets). A function call is executed
within its own stack frame (c, s), where c is the next command to reduce and s is a store recording
the values of the function’s local variables and parameters. A stack S is a sequence of stack frames,
and a configuration is a pair of a heap and a stack. The small-step operational semantics relates
a function dictionary ∆, and a pair of configurations: ∆; ⟨h, S⟩ ⇝ ⟨h′, S ′⟩, with⇝∗ meaning its
reflexive-transitive closure. We elide the transition rules for brevity; similar rules can by found, e.g.,
in the work by Rowe and Brotherston (2017).

3.2.1 Validity. Let us denote the valuation of an expression e under a store s as JeKs . I ranges over
interpretationsÐmappings from user-provided predicatesD to the relations on heaps and vectors of
values. To formally define the validity of Hoare-style specs in SSL, we use the standard definition
of the satisfaction relation ⊨Σ

I
on pairs of heaps and stores, contexts, interpretations, and SSL

assertions without ghosts. For instance, the following SSL definitions are traditional for Separation
Logics with interpreted predicates (Berdine et al. 2005; Nguyen et al. 2007):

• ⟨h, s⟩ ⊨Σ
I
{ϕ; emp} iff JϕKs = true and dom (h) = ∅.

• ⟨h, s⟩ ⊨Σ
I
{ϕ; [x ,n]} iff JϕKs = true and dom (h) = ∅.

• ⟨h, s⟩ ⊨Σ
I
{ϕ; ⟨e1, ι⟩ 7→ e2} iff JϕKs = true and dom (h) = Je1Ks + ι and h(Je1Ks + ι) = Je2Ks .

• ⟨h, s⟩ ⊨Σ
I
{ϕ; P1 ∗ P2} iff ∃h1,h2,h = h1 ·∪ h2 and ⟨h1, s⟩ ⊨

Σ
I
{ϕ; P1} and ⟨h2, s⟩ ⊨

Σ
I
{ϕ; P2}.

• ⟨h, s⟩ ⊨Σ
I
{ϕ;p(xi )} iff JϕKs = true and D ≜ p(xi )

〈

ej ,
{

χj ,R j
}〉

∈ Σ and
〈

h, JxiKs

〉

∈ I(D).

Therefore, blocks have no spatial meaning, except for serving as an indicator on the memory
fragments that we allocated and can be disposed.
The notion of Hoare-style validity is standard and is given by Definition 3.1.

Definition 3.1 (Validity). We say that a Hoare-style specification Σ; Γ ; {P} c {Q} is valid wrt. the

function dictionary ∆ iff whenever dom (s) = Γ , ∃σgv = [xi 7→ di ]xi ∈GV(Γ ,P,Q) such that ⟨h, s⟩ ⊨Σ
I

[σgv]P, and ∆; ⟨h, (c, s) · ϵ⟩ ⇝
∗ ⟨h′, (skip, s ′) · ϵ⟩, it is also the case that ⟨h′, s ′⟩ ⊨Σ

I
[σev ·∪ σgv]Q for

some σev = [yj 7→ dj ]yj ∈EV(Γ ,P,Q).

That is, the definition assumes an initial stack frame (c, s) and a concrete heap h, both consistent
with an environment Γ and the precondition P (with σgv providing concrete values for P’s ghost
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variables). In the case if the program terminates with the store s ′ and a heap h′, they satisfy the
postcondition Q, with σev instantiating Q’s existentials.

Proving validity in the absence of auxiliary and recursive function calls would be almost trivial,
thanks to similarities between SSL and traditional Separation Logic. Unfortunately, dealing with
(self-)recursion requires a well-founded inductive argument when reasoning about validity of
nested function calls in a verified procedure.11 Therefore, we conduct our proof by well-founded
induction, establishing validity of a synthesized top-level recursive procedure in an assumption that
all of its recursive sub-calls are valid and are łsmallerž in some sense. To equip ourselves for such
an argument, we provide a series of auxiliary definitions, the key one being of sized specification

validity, which relies on the notion of a heap size |h | ≜ |dom (h)|:

Definition 3.2 (Sized validity). We say a specification Σ; Γ ; {P} c {Q} is n-valid wrt. the func-
tion dictionary ∆ whenever for any h,h′, s, s ′, whenever (a) |h | ≤ n, (b) ∆; ⟨h, (c, s) · ϵ⟩ ⇝∗

⟨h′, (skip, s ′) · ϵ⟩, and (c) dom (s) = Γ and ∃σgv = [xi 7→ di ]xi ∈GV(Γ ,P,Q) such that ⟨h, s⟩ ⊨Σ
I
[σgv]P,

it is the case that ∃σev = [yj 7→ dj ]yj ∈EV(Γ ,P,Q), such that ⟨h′, s ′⟩ ⊨Σ
I
[σev ·∪ σgv]Q

Definition 3.2 is rather peculiar in that it defines a standard Hoare-style soundness wrt. pre-
/postcondition, while doing that only for heaps of size smaller than n. This is an important require-
ment to stage a well-founded inductive argument for our soundness proof of SSL-based synthesis
in the presence of recursive calls. By introducing the explicit sizes to the definition of validity, we
can make sure that we only deal with calls on strictly decreasing subheaps wrt. the heap size when
invoking functions (auxiliary ones or recursive self). To make full use of this idea, and also account
for the possibility of having auxiliary functions, we lift Definition 3.2 to contexts, stratifying the
shape of function dictionaries wrt. their specifications.

Definition 3.3 (Coherence). A dictionary ∆ is n-coherent wrt. a context Σ (coh (∆,Σ,n)) iff

• ∆ = ϵ and functions(Σ) = ϵ , or
• ∆ = ∆′, f (ti xi ) { c }, and Σ = Σ

′, f (xi ) : {P}{Q}, and coh (∆′,Σ ′,n), and Σ ′; {xi } ; {P} c {Q}
is n-valid wrt. ∆′, or
• ∆ = ∆′, f (ti xi ) { c }, and Σ = Σ

′, f (xi ) :
{

ϕ; ⌈P⌉ ∗ p1(ei )
}

{⌈Q⌉ }, and coh (∆′,Σ ′,n), and

Σ; {xi } ;
{

⌈P⌉ ∗ p1(ei )
}

c {⌈Q⌉ } is n′-valid wrt. ∆ for all n′ < n.

That is, coherence is defined inductively on the dictionary/context shape (regarding specified
functions and ignoring predicate definitions). A possibility of a (single) recursive definition f is
taken into the account in its last option. In that last clause, recursive calls to the function f from ∆

may only take place on heaps of size strictly smaller than n, whereas there is no such restriction for
the calls to user-provided auxiliary functions, that can be invoked on heaps of sizes up to n.

Validity of synthesized programs is stated by Lemma 3.4, which defines validity of the synthesized
program for any size of the input heap n, assuming that the validity of all recursive calls of the
synthesized programs is only established for n′ < n, where the case n = 0means no calls take place,
so it forms the base of the inductive reasoning.

Lemma 3.4 (Sized validity of SSL-derived programs). For any n, ∆′, if

(i) Σ ′; Γ ; {P}{ {Q}| c for a goal named f with formal parameters Γ ≜ xi , and
(ii) Σ ′ is such that coh (∆′,Σ ′,n), and
(iii) for all p0(ei ),ϕ; P , such that {P} =

{

ϕ;p0(ei ) ∗ P
}

, taking F ≜ f (xi ) :
{

ϕ;p1(ei ) ∗ ⌈P⌉
}

{⌈Q⌉ },

Σ ′,F ; Γ ; {P} c {Q} is n′-valid for all n′ < n wrt. ∆ ≜ ∆′, f (ti xi ) { c },

then Σ ′; Γ ; {P} c {Q} is n-valid wrt. ∆.
11This challenge is well-known when reasoning about correctness of recursive programs (Le and Hobor 2018).
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Proof. By the top-level induction on n and by inner induction on the structure of derivation
Σ ′; Γ ; {P}{ {Q}| c . We refer the reader to Appendix A of the extended version of the paper (Po-
likarpova and Sergey 2018) for the details of the proof. □

The assumptions (ii) and (iii) postulate the validity of calls to a function (auxiliary and the one
being synthesized) on strictly smaller heaps, akin to the generalized principle of mathematical
induction. Overall, Lemma 3.4 states that a program derived via SSL constitutes a valid spec with
its goal (i.e., all writes, reads and deallocations in it are safe wrt. accessing heap pointers), assuming
that recursive calls, if present, are made on reduced sub-heaps.

3.2.2 Termination. The technique we used for stating and proving Lemma 3.4Ðallowing for safe
calls done only on smaller sub-heapsÐis reminiscent to the one employed in size-change termination-
based analyses (Lee et al. 2001), which ensure that every infinite sequence of calls would cause
infinite descent of some values, leading to the following result.

Lemma 3.5 (Termination of SSL-synthesized programs). A program, which is derived via SSL
rules from a spec that uses only well-founded predicates, terminates, assuming any of its auxiliary
functions terminates.

Proof. The only source of non-termination is self-recursive calls. Due to the tagging discipline,
every recursive self-call is applicable after opening a well-founded instance predicate, and hence is
done on a smaller sub-heap. Both self-recursive and auxiliary function calls erase the tags in the
post-heap, preventing the łexpansionž of the symbolic heaps that can be used for further calls. □

The argument for termination, supplied by the tagging discipline and used in the proof of
Lemma 3.5, is somewhat similar to the syntactic termination criterion, used in proof assistants such
as Coq (Coq Development Team 2018). In fact, by parameterizing inductive predicates with pure
algebraic data types for describing the heap contents (e.g., using algebraic lists instead of sets in
the definition (6) of lseg), we could have employed them as a termination measure instead. We will
explore this opportunity in the future work.12

3.2.3 Soundness. We conclude this section with the main SSL soundness result. We say that
a function dictionary ∆ is consistent with a context Σ iff any function f ∈ ∆ is valid wrt. a
corresponding specification in Σ with Γ taken to be f ’s formals.

Theorem 3.6. If Σ; Γ ; {P}{ {Q}| c for a goal named f with formal parameters Γ ≜ xi , then:

(a) Σ; Γ ; {P} c {Q} is valid wrt. any function dictionary ∆, consistent with Σ, and
(b) c terminates for any input store-heap pair, satisfying its precondition.

Proof. Follows immediately from Lemma 3.4 taken for a heap of any size, and Lemma 3.5. □

4 BASIC SSL-POWERED SYNTHESIS ALGORITHM

In this section we show how to turn SSL from a declaratively defined inference system (Fig. 12)
into an algorithm for deriving provably correct imperative programs. The core algorithm is a fairly
standard goal-directed backtracking proof search (Kneuss et al. 2013; Mellish and Hardy 1984).

G ∈ Goal ::= ⟨f ,Σ, Γ , {P}, {Q}⟩

K ∈ Cont ≜ (Command)n → Command

S ∈ Deriv ::=
〈

Gi ,K
〉

R ∈ Rule ≜ Goal⇀ ℘(Deriv)

Encoding Rules and Derivations. The display on the
right shows an algorithmic representation of SSL
derivations and rules. To account for the top-level goal
(which mandates the program synthesizer to generate
a runnable function), we include the function name f

12We thank François Pottier for this suggestion.
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Algorithm 4.1: synthesize (G : Goal, rules : Rule∗)

Input: Goal G = ⟨f , Σ, Γ , {P }, {Q}⟩

Input: List rules of available rules to try

Result: Terminating program c , such that

Σ ; Γ ; {P }c {Q} is valid

1 function synthesize (G, rules) =

2 withRules(rules, G)

3 function withRules (rs, G) =

4 match rs

5 case [ ] ⇒ Fail

6 case R :: rs′ ⇒

7 match filterComm
(

R(G)
)

8 case ⊥ ⇒ withRules(rs′)

9 case subderivs ⇒

10 tryAlts(subderivs, R, rs′, G)

12 function tryAlts (derivs, R, rs, G) =

13 match derivs

14 case [ ] ⇒ if isInvert(R) then Fail else withRules(rs, G)

15 case ⟨goals, K⟩ :: derivs′ ⇒

16 match solveSubgoals(goals, K)

17 case Fail ⇒ tryAlts(derivs′, R, rs, G)

18 case c ⇒ c

19 function solveSubgoals (goals, K) =

20 cs := [ ]

21 pickRules = λG . phasesEnabled ? nextRules(G) : AllRules

22 for G ← goals; c = synthesize(G, pickRules(G)); c , Fail do

23 cs := cs ++ [c]

24 if |cs | < |goals | then Fail else K(cs)

into the goal G, whose other components are the context Σ, environment Γ (initialized with f ’s
formals), precondition {P} and postcondition {Q}. A successful application or a rule R results
in one or more alternative sub-derivations Sk . Several alternatives arise when the rule exhibits
non-determinism (e.g., due to choosing a sub-heap or a unifying substitution), and are explored by
a search engine one by one, until it finds one that succeeds.
In its turn, each sub-derivation is a pair. Its first component contains zero (if R is a terminal)

or more sub-goals, which all need to be solved (think of a conjunction of a rule’s premises). The
second component of the sub-derivation is a continuation K , which combines the list of commands,
produced as a result of solving subgoals, into a final program. The arity of a continuation (length
of a list it accepts) is the same as a number of sub-goals the corresponding rule emits Zero-arity
means that the continuation has been produced by a terminal, and simply emits a constant program.

For non-operational rules (e.g., Frame), K ≜ λ[c].c . For operational rules K typically prepends a
command to the result (e.g.,Write), or generates a conditional statement (Open). Therefore, the
synthesizer procedure constructs the program by applying the continuations of rules that have
succeeded earlier, to the resulting programs of their subgoals, on the łbackwardsž walk of the
recursive search, in the style of logic programming (Mellish and Hardy 1984).

The algorithm. The pseudocode of our synthesis procedure is depicted by Algorithm 4.1. Let us
ignore the grayed fragments in the pseudocode for now and agree to interpret the code as if they
were not present. Those fragments corresponds to optimizations, which we describe in detail in
Sec. 5. The algorithm is represented by four mutually-recursive functions:

• synthesize (G, rules) is invoked initially on a top-level goal, with rules instantiated with AllRulesś
all rules from Fig. 12. It immediately passes control to the first auxiliary function, withRules.
• withRules (rs,G) iterates through the list rs of remaining rules, trying to apply each one to the
goal G. If a rule R is applicable, it emits a set of alternative sub-derivations subderivs, which are
passed to tryAlts. Otherwise R(G) returns ⊥, and the next rule form the list is attempted, until
no more rules remain (line 5), at which point the synthesis for the current goal fails.
• tryAlts (derivs,R, rs,G) recursively processes the list of alternative sub-derivations derivs, gen-
erated by the rule R. If the list is exhaused (line 14), withRules is invoked to try the rest of the
rules rs. Otherwise, solveSubgoals is invoked for an alternative to solve all its sub-goals goals
and apply the continuationK . In the case of success (line 18), the resulting program c is returned.
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• solveSubgoals (goals,K) tries to solve all subgoals given to it, by invoking synthesize recursively
with a suitable (full) list of rules, essentially, restarting the search problem łone level deeperž into
the derivation. Unless some of the goals failed, their results are combined via K .13

The algorithm explores the space of all valid SSL derivations rooted at the initial synthesis goal.
The search proceeds in a depth-first manner: it starts from the root (the initial goal) and always
extends the current incomplete derivation by applying a rule to its leftmost open leaf (i.e., a leaf
that is not a terminal application). The algorithm terminates when the derivation is complete, i.e., it
has no open leaves.

5 OPTIMIZATIONS AND EXTENSIONS

The basic synthesis algorithm presented in Sec. 4 is a naïve backtracking search in the space of all
valid SSL derivations. Note that this is already an improvement over a blind search in the space
of all programs: some incorrect programs are excluded from consideration a-priori, such as, e.g.,
programs that read from unallocated heap locations. In this section we show how to further prune
the search space by identifying unsolvable goals and avoiding their exploration.

5.1 Invertible Rules

Our first optimization relies on a well-known fact from proof theory (Liang and Miller 2009) that
certain proof rules are invertible: applying such a rule to any derivable goal produces a goal that
is still derivable. In other words, applying invertible rules eagerly without backtracking does not
affect completeness. Algorithm 4.1 leverages this fact in line 14: when all sub-derivations of an
invertible rule R fail, the algorithm need not backtrack and try other rules, since the failure cannot
be due to R and must have been caused by a choice made earlier in the search.
In SSL, the normalization rulesÐRead, StarPartial, NullNotLVal, and SubstLeftÐare in-

vertible. The effect of these rules on the goal is either to change a ghost into a program-level
variable or to strengthen the precondition; no rule that is applicable to the original goal can become
inapplicable as a result of this modification, which is confirmed by inspection of all rules in Fig. 12.

5.2 Multi-Phased Search

Among the rules of SSL described in Sec. 3, the unfolding rules are focused on transforming (and
eventually eliminating) instances of inductive predicates, while flat rules are focused on other types
of heaplets (i.e., points-to and blocks). We observe that if the unfolding rules failed to eliminate a
predicate instance from the goal, there is no point to apply flat rules to that goal. It is easy to show
that the flat rules can neither eliminate predicates from the goal, nor enable previously disabled
unfolding rules: the only unfolding rule that matches on flat heaplets is Call, but those heaplets
are taken care of separately by AbduceCall.

Following this observation, without loss of completeness, we can split the synthesis process into
two phases: the unfolding phase, where flat rules are disabled, and the flat phase, which only starts
when the goal contains no more predicate instances, and hence unfolding rules are inapplicable.
This optimization is implemented in line 21 of Algorithm 4.1. As a result, some unsolvable goals
will be identified early, in the unfolding phase. For example, the following goal:

{y,a,b} ; {y 7→ b ∗ a 7→ 0;} {
{

y 7→ u ∗ u 7→ 0 ∗ lseg1(u, 0, S)
}

will fail immediately without exploring fruitless transformations on its flat heap, since no unfolding
rules are applicable (assuming MaxUnfold = 1).

13The actual implementation is more efficient and breaks out of the loop as soon as one of the subgoals fails.
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PostInconsistent
ψ , ⊥ ⊢ ϕ ∧ψ ⇒ ⊥

Σ ; Γ ; {emp}{ {⊥, emp} | c

Σ ; Γ ; {ϕ ; P }{ {ψ , Q } | c

PostInvalid
P has no pred. instances

EV (Γ , P, Q) = ∅
ψ , ⊥ ⊢ ¬ (ϕ ⇒ ψ )

Σ ; Γ ; {emp}{ {⊥, emp} | c

Σ ; Γ ; {ϕ ; P }{ {ψ , Q } | c

UnreachHeap
P, Q have no pred. instances or blocks

unmachedHeaplets(P, Q )
Σ ; Γ ; {emp}{ {⊥, emp} | c

Σ ; Γ ; {ϕ, P }{ {ψ , Q } | c

Fig. 13. Failure rules.

5.3 Symmetry reduction

Backtracking search often explores all reorderings of a sequence of rule applications, even if they
commute, i.e., the order of applications does not change the end sub-goal. As an example, consider
the following goal:

{x ,y,a,b} ; {x 7→ a ∗ y 7→ b ∗ a 7→ 0} { {x 7→ a ∗ y 7→ b ∗ b 7→ 0}

Framing out x 7→ a and then y 7→ b, reveals the unsolvable goal {a 7→ 0} { {b 7→ 0}; upon
backtracking, the naïve search would try the two applications of Frame in the opposite order,
leading to the same result.

We implemented a symmetry reduction optimization to eliminate redundant backtracking of this
kind. To this end, we keep track of the footprint of each rule application, i.e., the sub-heaps of its
goal’s pre- and postcondition that the application modifies. This enables us to identify whether two
sequential rule applications commute. Next, we impose a total order on rule applications; line 6 of
Algorithm 4.1 rejects a new rule application R if it commutes with an earlier application R ′ in the
current derivation, but comes before R ′ in the total order.

5.4 Early Failure Rules

Sometimes we can identify an unsolvable goal by analyzing its postcondition. For example, the goal

{x ,y} ; {a = 0;x 7→ a} { {a = u ∧ u , 0;x 7→ u}

is unsolvable because its pure postcondition is logically inconsistent with the precondition. To
leverage this observation and eliminate redundant backtracking, we extend SSL with failure rules.
Each failure rule fires when it identifies a certian type of unsolvable goal, and transforms it into a
sub-goal {emp}{ {⊥, emp}| c , to which no rule applies. All failure rules are also invertible, hence
the effect is to backtrack an application of an earlier rule.
Our set of failure rules is shown in Fig. 13. The rule PostInconsistent identifies a goal where

the the pure postcondition is inconsistent with the precondition. This is safe because during the
derivation both assertions can only become stronger (as a result of unfolding rules); also, even
if the postcondition still contains existentials, no instantiation of those existentials can produce
a formula that is consistent with (let alone implied by) the precondition. The rule PostInvalid
fires on a goal where the pure postcondition (which is free of existentials) is not implied by the
precondition; this rule only applies when the precondition is free of predicate instances, and hence
its pure part cannot be strengthened any further. The rule UnreachHeap fires when the spatial
pre- and postcondition contain only points-to heaplets, but the left-hand sides of these heaplets
cannot be unified; in this case neither UnifyHeaps nor Write can make the heaplets match. Note
that it is important for completeness that failure rules are checked after Inconsistency: if the pure
precondition is inconsistent, the derivation should not fail, but should instead emit error.

5.5 Auxiliary Functions

The version of Induction rule from Fig. 12 and the way it interactis with Call are harmful for the
framework’s completeness, due to the erasure of the tags from the postcondition of the function f
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SubstRight
x ∈ EV (Γ , P, Q)

Σ ; Γ ; {P }{ [ψ ′/x ]
{

ψ ∧ x = ψ ′, Q
}�

� c

Σ ; Γ ; {P }{
{

ψ ∧ x = ψ ′;Q
}�

� c

UnifyPure
[σ ]ψ ′ = ϕ′

∅ , dom (σ ) ⊆ EV (Γ , P, Q) Γ ; {P }{ [σ ]{Q} | c

Γ ;
{

ϕ ∧ ϕ′; P
}

{
{

ψ ∧ψ ′;Q
}�

� c

PickVar
x ∈ EV (Γ , P, Q)

y ∈ Γ Γ ; {P }{ [y/x ]{Q} | c

Γ ; {P }{ {Q} | c

Branch
e ∈ L Σ; Γ ; {ϕ ∧ e; P}{ {Q}| c1

Σ; Γ ; {ϕ ∧ ¬e; P}{ {Q}| c2

Σ; Γ ; {ϕ; P}{ {Q}| if (e) c1 else c2

Fig. 14. Pure synthesis rules.

to be applied recursively (Qf = ⌈Q⌉ ), so the subsequent applications of f on the symbolic heap,
overlapping with the łsealedž part ⌈Q⌉ are prohibited.While it is not unsafe to employ the predicates
from the procedure call’s postcondition in further procedure calls, one cannot ensure that they
denote łsmaller heapletsž and thus that the program terminates.14

To circumvent this limitation for common scenarios, we had to introduce one divergence between
SuSLik and SSL as shown in Fig. 12. Specifically, in the tool, we implemented support for stratified
chained auxiliary function calls, i.e., calls on a heap resulted from another call (see flatten w/append
and insertion sort benchmarks in Sec. 6). To allow for them, we had to implement a slightly
different version of Induction rule, which instead of erasing tags of the corresponding part of the

postcondition (Qf ≜ ⌈Q⌉ ) would increment them: Qf ≜ ⌈Qf ⌉
•+1. This would prevent a call of the

same function on the resulting heap fragment, but would enable calls of auxiliary functions, whose
specs’ preconditions feature predicates with matching higher-level tags. Specifically, each auxiliary
function is assumed to have all predicate instances tagged with some ℓ > 0 in its precondition, and
with ℓ + 1 in its postcondition. The discipline for assigning specific tag levels to auxiliary functions’
specifications is fixed to follow the order in which their signatures are introduced in the goal.
Eventually, due to incrementation of level tags with each call (to a recursive self or to an auxiliary
function), no applicable functions would be left in the context Σ. While this extension is unlikely to
break the SSL soundness and termination results (due to the limit of chained applications, enabled
by growing tags), it would require us to generalize the well-foundedness argument in Sec. 3.2, and
in the interest of time we did not carry out this exercise.

5.6 Pure Synthesis and Branch Abduction

The core SSL relies on a pure synthesis oracle to suggest suitable applications of the Pick rule. In our
implementation, the declarative Pick rule is replaced with the four rules depicted in Fig. 14, which
together play the role of an incomplete yet practically effective pure synthesis oracle. The first
three rules have been explained in Sec. 2.4.2; it is easy to see that each of them is a specialization
of Pick, and therefore is sound. The fourth rule, Branch, comes to the rescue whenever the pure
postcondition cannot be satisfied without introducing a case split, and generates a conditional
statement with some guard e . Although Branch is sound for any choice of guard, to curb the
non-determinism, we pick e from the set of learned guards L.
The set L is populated through a mechanism we call branch abduction, reminiscent of similar

mechanisms in other synthesis techniques (Alur et al. 2017; Kneuss et al. 2013; Leino and Milicevic
2012; Polikarpova et al. 2016). The mechanism piggy-backs on the failure rule PostInvalid (Sec. 5.4),
which detects a goal whose pure postconditionψ does not follow from the precondition ϕ. While
the goal is still rejected as unsolvable, branch abduction also searches a small set of expressions (all

14A similar issue is reported in the work by Rowe and Brotherston (2017) on verifying termination of procedural programs.
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atomic boolean expressions over program variables in Γ ) trying to find an expression e such that
ϕ ∧ e ⇒ ψ ; if such an e exists, it is added to L.

For a simple example, consider the following synthesis goal that corresponds to computing a
lower bound of two integers x and y:

{x ,y} ; {r 7→ 0} { {m ≤ x ∧m ≤ y; r 7→m}

We first apply PickVar with [m 7→ x], arriving at the goal {r 7→ 0} { {x ≤ x ∧ x ≤ y; r 7→ x}. At
this point PostInvalid fires, and branch abduction infers a guard x ≤ y and adds it to L. Upon
backtracking from the unsolvable goal, Branch fires since L is non-empty. Both of its subgoals
can be solved by suitable applications of PickVar.

6 IMPLEMENTATION AND EVALUATION

We implemented SSL-based synthesis as a tool, called SuSLik, in Scala, using Z3 (de Moura and
Bjùrner 2008) as the back-end SMT solver via the ScalaSMT library (Cassez and Sloane 2017).15

We evaluated our implementation with the goal of answering the following research questions:

(1) Generality: Is SuSLik general enough to synthesize a range of nontrivial programs with pointers?
(2) Utility: How does the size of the inputs required by SuSLik compare to the size of the generated

programs? Does SuSLik require any additional hints apart from pre- and postconditions? What
is the quality of the generated programs?

(3) Efficiency: Is it efficient? What is the effect of optimizations from Sec. 5 on synthesis times?
(4) Comparison with existing tools: How does SuSLik fare in comparison with existing tools for

synthesizing heap-manipulating programs, specifically, ImpSynt (Qiu and Solar-Lezama 2017)?

6.1 Benchmarks

In order to answer these questions, we assembled a suite of 22 programs listed in Tab. 1. The
benchmarks are grouped by the main data structure they manipulate: integer pointers, singly linked
lists, sorted singly linked lists, binary trees, and binary search trees.

To facilitate comparison with existing work, most of the programs are taken from the literature on
synthesis and verification of heap-manipulating programs: the ImpSynt synthesis benchmarks (Qiu
and Solar-Lezama 2017), the Jennisys synthesis benchmarks (Leino and Milicevic 2012), and the
Dryad verification benchmarks (Qiu et al. 2013). We manually translated these benchmarks into
the input language of SuSLik, taking care to preserve their semantics. Dryad and ImpSynt use
the Dryad dialect of separation logic as their specification language, hence the translation in this
case was relatively straightforward. As an example, consider an ImpSynt specification and its
SuSLik equivalent in Fig. 15. In addition to a pre-/postcondition, the former also contains a program
sketch, where the constructs ??, cond, and statement denote, respectively, an unknown expression,
conditional guard, and statement, to be filled by the synthesizer. The main difference between the
two pre-/postcondition pairs is that the Dryad logic supports recursive functions such as len, min,
and max; in SuSLik this information is encoded in more traditional SL style: by passing additional
ghost parameters to the inductive predicate srtl. The extra precondition 0 ≤ n ∧ 0 ≤ k ∧ k ≤ 7

in SuSLik corresponds to implicit axioms in ImpSynt (in particular, the condition on k is due to
its encoding of list elements as unsigned 3-bit integersÐthere is no such restriction in SuSLik). In
addition to benchmarks from the literature, we also added several new programs that show-case
interesting features of SuSLik.

15The tool sources can be found at https://github.com/TyGuS/suslik.
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Table 1. Benchmarks and SuSLik results. For each benchmark, we report the size of the synthesized Code (in
AST nodes) and the ratio Code/Spec of code to specification; as well as synthesis times (in seconds): with all
optimizations enabled (Time), without phase distinction (T-phase), without invertible rules (T-inv), without
early failure rules (T-fail), without the commutativity optimization (T-com), and without any optimizations
(T-all). T-IS reports the ratio of synthesis time in ImpSynt to Time. ł-ž denotes timeout of 120 seconds.

Group Description Code Code/Spec Time T-phase T-inv T-fail T-com T-all T-IS

Integers
swap two 12 0.9x < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

min of two2 10 0.7x 0.1 0.1 0.1 < 0.1 0.1 0.2

Linked

List

length1,2 21 1.2x 0.4 0.9 0.5 0.4 0.6 1.4 29x

max1 27 1.7x 0.6 0.8 0.5 0.4 0.4 0.8 20x

min1 27 1.7x 0.5 0.9 0.5 0.4 0.5 1.2 49x

singleton2 11 0.8x < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

dispose 11 2.8x < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

initialize 13 1.4x < 0.1 0.1 0.1 < 0.1 0.1 < 0.1

copy3 35 2.5x 0.2 0.3 0.3 0.1 0.2 -

append3 19 1.1x 0.2 0.3 0.3 0.2 0.3 0.7

delete3 44 2.6x 0.7 0.5 0.3 0.2 0.3 0.7

Sorted

list

prepend1 11 0.3x 0.2 1.4 83.5 0.1 0.1 - 48x

insert1 58 1.2x 4.8 - - - 5.0 - 6x

insertion sort1 28 1.3x 1.1 1.8 1.3 1.2 1.2 74.2 82x

Tree

size 38 2.7x 0.2 0.3 0.2 0.2 0.2 0.3

dispose 16 4.0x < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

copy 55 3.9x 0.4 49.8 - 0.8 1.4 -

flatten w/append 48 4.0x 0.4 0.6 0.5 0.4 0.4 0.6

flatten w/acc 35 1.9x 0.6 1.7 0.7 0.5 0.6 -

BST

insert1 58 1.2x 31.9 - - - - - 11x

rotate left1 15 0.1x 37.7 - - - - - 0.5x

rotate right1 15 0.1x 17.2 - - - - - 0.8x

1 From (Qiu and Solar-Lezama 2017) 2 From (Leino and Milicevic 2012) 3 From (Qiu et al. 2013)

6.2 Results

Evaluation results are summarized in Tab. 1. All experiments were conducted on a commodity
laptop (2.7 GHz Intel Core i7 Lenovo Thinkpad with 16GB RAM).

6.2.1 Generality and Utility. Our experiment confirms that SuSLik is capable of synthesizing
programs that manipulate a range of heap data structures, including nontrivial manipulations that
require reasoning about both the shape and the content of the data structure, such as insertion into
a binary search tree. We manually inspected all generated solutions, as well as their accompanying
SSL derivations, and confirmed that they are indeed correct.16 Perhaps unsurprisingly, some of
the solutions were not entirely intuitive: as one example, the synthesized version of list copy, in a
bizarre yet valid move, swaps the tails of the original list and the copy at each recursive call!

Two of the programs in Tab. 1 make use of auxiliary functions: łinsertion sortž calls łinsertž, and
łtree flatten w/appendž calls the łappendž function on linked lists. The specifications of auxiliary
functions have to be supplied by the user (while their implementations can, of course, be synthesized
independently). Alternatively, tree flattening can be synthesized without using an auxiliary function,
if the user supplies an additional list argument that plays the role of an accumulator (see łtree
flatten w/accž). As such, SuSLik shares a common limitation of existing synthesizers for recursive
functions: they require the initial synthesis goal to be inductive, and do not try to discover recursive
auxiliary functions (we discuss this in more detail in Sec. 7).

16In the future, we plan to output SSL derivations as SL proofs, checkable by a third-party system such as VST (Appel 2011).
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loc srtl_insert(loc x, int k)

requires srtl(x)

ensures srtl(ret) ∧

len(ret) = old(len(x)) + 1 ∧

min(ret) = (old(k) < old(min(x))

? old(k) : old(min(x))) ∧

max(ret) = (old(max(x)) < old(k)

? old(k) : old(max^(x))) {

if (cond(1)) {

loc ?? := new;

return ??;

} else {

statement(1);

loc ?? := srtl_insert(??, ??);

statement(1);

return ??;

}

}

{

0 ≤ n ∧ 0 ≤ k ∧ k ≤ 7 ;

ret 7→ k ∗ srtl(x, n, lo, hi)

}

void srtl_insert(loc x, loc ret)

{

n1 = n + 1 ∧

lo1 = (k ≤ lo ? k : lo) ∧

hi1 = (hi ≤ k ? k : hi) ;

ret 7→ y ∗ srtl(y, n1, lo1, hi1)

}

Fig. 15. (left) The ImpSynt input for the sorted list insertion; (right) The SuSLik input for the same benchmark.

For simple programs specification sizes are mostly comparable with the size of the synthesized
code, whereas more complex benchmarks is where declarative specifications really shine: for
example, for all Tree programs, the specification is at most half the size of the generated code. Three
notable outliers are łprependž, łrotate leftž, and łrotate rightž, whose implementations are relatively
short, while the specification we inherited from ImpSynt describes the effects of the functions on
the minimum and maximum of the list/tree. Note that the specification sizes we report exclude the
definitions of inductive predicates, which are reusable, and are shared between the benchmarks.

6.2.2 Efficiency. SuSLik has proven to be efficient in synthesizing a variety of programs: all 22
benchmarks are synthesized within 40 seconds, and all but four of them take less than a second.

In order to assess the impact on performance of various optimizations described in Sec. 5, Tab. 1
also reports synthesis times with each optimization disabled: the column T-phase corresponds
to eliminating the distinction between phases; T-inv corresponds to ignoring rule invertibility;
T-fail corresponds to dropping all failure rules; T-com corresponds to disabling the symmetry
reduction; finally, T-all corresponds to a variant of SuSLikwith all the above optimizations disabled.
The results demonstrate the importance of optimizations for nontrivial programs: 8 out of 22
benchmarks time out when all optimizations are disabled. The simpler benchmarks (e.g., swap) do
not benefit from the optimizations at all, since they do not exhibit a lot of backtracking. At the
same time, all three BST benchmarks time-out as a result of disabling even a single optimization.

The copy benchmark is peculiar in that disabling any single optimization makes little difference,
while disabling all of them together leads to a timeout. A closer examination of all possible con-
figurations reveals that the speedup is due to interplay between phase distinction and invertible
rules; this is not entirely surprising, since both optimizations prevent their fair share of particularly
disastrous (wrt. performance) rule applications, such as early incorrect unification on flat heaps.

6.2.3 Comparison with Existing Synthesis Tools. We compare SuSLik with the most closely related
prior work on ImpSynt (Qiu and Solar-Lezama 2017). Out of the 14 benchmarks from (Qiu and
Solar-Lezama 2017) successfully synthesized by ImpSynt, we excluded 5 that are not structurally
recursive;17 the remaining 9 were successfully synthesized by SuSLik. The qualitative difference in
terms of the required user input is immediately obvious from the representative example in Fig. 15:

173 out of 5 are iterative versions of their recursive benchmarks, so we synthesize an equivalent recursive program for each

of those; the other 2 use an internal loop or non-structural recursion, and are currently beyond the scope of SuSLik (Sec. 7).
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in addition to the declarative specification, ImpSynt requires the user to provide an implementation
sketch, which fixes the control structure of the program, the positions of function calls, and the
number of other statements. These additional structural constraints are vital for reducing the size
of the search space in ImpSynt. Instead, SuSLik prunes the search space by leveraging the structure
inherent in separation logic proofs, allowing for more concise, purely declarative specifications.

Despite the additional hints from the user, ImpSynt is also less efficient: as shown in the column
T-IS of Tab. 1, on 6 out of 9 common benchmarks, ImpSynt takes at least an order of magnitude
longer than SuSLik, even though it has been evaluated on a 10-core server with 96GB of RAM.

7 LIMITATIONS AND DISCUSSION

The synthesis problem tackled in this work is clearly undecidable, since it subsumes several well-
known undecidable problems: termination of recursive programs, SL entailment in the presence of
general inductive predicates (Antonopoulos et al. 2014), and pure synthesis from first-order logic
specifications (Reynolds et al. 2015). Hence, no complete and terminating synthesis algorithm exists,
and in SuSLik, we made a design decision to sacrifice completeness for the sake of termination.

Sources of Incompleteness. SSL and SuSLik currently cannot synthesize programs that are not
structurally recursive wrt. some inductive predicate, such as, for instance, merging sorted lists or
merge sort. To relax this restriction we could adopt a more flexible termination argument for the
synthesized programs, such as showing that each recursive call decreases the value of a custom
termination metric; this technique is used in several automated verifiers and synthesizers (Leino
2013; Polikarpova et al. 2016). A termination metric maps the tuple of function’s arguments into an
element of some set with a pre-defined well-founded order (usually a tuple of natural numbers),
and can be either provided by the user or inferred by the synthesizer. Custom termination metrics
would also enable support for mutually-recursive inductive predicates.

Another source of incompleteness is the limitMaxUnfold on the number of predicate unfoldings
via Open and Close rules. This addresses the undecidability of reasoning with inductive predicates,
but also precludes synthesis of some useful programs, e.g., allocating a large constant-sized list.
Finally, SuSLik’s pure synthesis oracle is obviously incomplete. This source of incompleteness

can be mitigated by delegating to an off-the-shelf pure synthesizer (Kneuss et al. 2013; Polikarpova
et al. 2016; Reynolds et al. 2015), or eliminated entirelyÐfor a restricted fragment of pure logicÐby
leveraging complete synthesis procedures (Jacobs et al. 2013; Kuncak et al. 2010).

Termination. Algorithm 4.1 terminates, as long as the pure synthesis oracle suggest finitely many
alternatives for a given goal. This can be established by considering the following tuples, ordered
lexicographically, as a termination measure for a given goal G: ⟨ # 0- or 1-tagged predicate instances;
# heaplets in pre- and postcondition, for which there is no matching one in the post-/precondition;
# existentials; # žflatž heaplets; # conjuncts in the precondition; # of points-to heaplets, whose
disjointness or non-null-ness is not captured in the precondition ⟩. Notice that each rule from
Fig. 12, except for Open and Close reduces this value for the emitted sub-goals. Applicability of
those two rules is handled via MaxUnfold parameter.

Logic and Language Limitations. Although our programming component has no support for
while-loops, this is not a fundamental limitation: any programwith a top-level loop can be rewritten
as a recursive program, and any internal loop can be rewritten as a recursive auxiliary function.
Hence, the fundamental challenge is the synthesis of auxiliary functions, which SSL currently does
not support; instead, the initial goal is considered as inductive and handled via Induction rule.
Discovering specifications of auxiliary functions (or, equivalently, invariants of internal loops)
significantly increases the search space. To our knowledge, all existing synthesis techniques that
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support this feature are quite limited, and rely on built-in or user-provided templates (Eguchi et al.
2018; Qiu and Solar-Lezama 2017; Si et al. 2018; Srivastava et al. 2010).
Some of SSL limitations are inherent for Separation Logics in general: SLs are known to work

well with disjoint tree-like linked structures, and programs whose recursion scheme matches the
data definition, but not so well with ramified data structures, e.g., graphs. To address those, one
could integrate a more powerful, ramified version of Frame rule (Hobor and Villard 2013) into SSL,
but this would likely require more hints from the user, thus reducing the utility of the approach.

8 RELATED WORK

There are twomain directions in the area of program synthesis: synthesis from informal descriptions
(such as examples, natural language, or hints) (Albarghouthi et al. 2013; Feng et al. 2017; Feser
et al. 2015; Murali et al. 2018; Osera and Zdancewic 2015; Polozov and Gulwani 2015; Smith and
Albarghouthi 2016; Yaghmazadeh et al. 2017) and synthesis from formal specifications. We will
only discuss the more relevant latter direction. The goal of this type of program synthesis is to
obtain a provably correct program.

In this area, there is a well-known trade-off between three dimensions: how complex the synthe-
sized programs are, how strong the correctness guarantees are, and how much input is required
form the user. On one end of the spectrum there are interactive synthesizers (Delaware et al. 2015;
Itzhaky et al. 2016), which can be very expressive and provide strong guarantees, but the user is
expected to guide the synthesis process (although, usually, with aid of dedicated proof tactics). On
the other end, there is fully automated synthesis for loop- and recursion-free programs over simple
domains, like arithmetic and bit-vectors (Alur et al. 2017; Gulwani et al. 2011). Our work lies in the
middle of this spectrum, where synthesis is automated but programs are more expressive.

In the presence of loops or recursion, verifying candidates becomes nontrivial. Synthesizers like
Sketch (Solar-Lezama 2013) and Rosette (Torlak and Bodík 2014) circumvent this problem by
resorting to bounded verification, which only provides restricted guarantees and has scalability
issues due to path explosion. In contrast, our work relies on unbounded deductive verification.
Among synthesis approaches that use unbounded verification, synthesizers like Leon (Kneuss

et al. 2013) and Synqid (Polikarpova et al. 2016) focus on pure functional (recursive) programs,
which are an easier target for unbounded verification. Proof-theoretic synthesis (Srivastava et al.
2010) is capable of synthesizing imperative programs with loops and arrays, but no linked structures;
they pioneered the idea of synthesizing provably-correct programs by performing symbolic (SMT-
based) search over programs and their verification conditions simultaneously.
Finally, the two pieces of prior work that are most closely related to ours in terms of scope

are Jennisys (Leino and Milicevic 2012) and Natural Synthesis (Qiu and Solar-Lezama 2017), both
of which generate provably-correct heap-manipulating programs. Both of them are essentially
instances of proof-theoretic synthesis with a program logic for reasoning about the heap. To that
end, Jennisys uses the Dafny verifier (Leino 2013), which supports expressive yet undecidable
specifications, and often requires hints from the user, so in practice the tool doesn’t scale to complex
examples (for example, none of their benchmarks performs mutation). Natural Synthesis uses
Dryad (Madhusudan et al. 2012; Qiu et al. 2013), an SL-style program logic for reasoning about
heap-manipulating programs. The downside of this approach is that whole-program symbolic
search doesn’t scale to larger programs; to mitigate this, they require the user to provide sketches
with substantial restrictions on the structure of the program. Our approach does not require sketches
(but on the other hand, we do not support loops).

The recent tool FootPatch by van Tonder and Le Goues (2018) is very close in its methods and
goals to SuSLik. FootPatch builds on Infer (Calcagno and Distefano 2011), an open-source SL-
based static analyzer by Facebook, using it for automated program repair. It takes the intermediate
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assertions, provided by Infer for programs with bugs, such as resource and memory leaks, and
null dereferences, and constructs additive patches based on the observed discrepancy. In this, it
acts similarly to our AbduceCall rule. FootPatch does not synthesize patches that would involve
recursion or complex control flow.
Instead of whole-program symbolic search, like in proof-theoretic synthesis, our work follows

the tradition of deductive synthesis, i.e., backtracking search in the space of program derivation
composed of synthesis rules, which gradually transform a specification into a program. This
tradition originates from the work by Manna and Waldinger (1980), and similar ideas have been
used in more recent synthesis work (Delaware et al. 2015; Kneuss et al. 2013; Polikarpova et al.
2016). In particular, the overall structure of our synthesis algorithm (backtracking and-or search) is
similar to Leon (Kneuss et al. 2013), but our rules focus on heap manipulation, whereas their rules
focus on synthesizing pure terms (so in fact Leon can be used as a component by our algorithm).
Recent work on Optitian (Miltner et al. 2018) is very different in scopeÐthey synthesize bijective
string lenses from regular expression specifications and examplesÐbut has interesting similarities
in the technique. Their pre- and postcondition are regexes, and their technique tries to łalignž them
by e.g., unfolding the Kleene star; this is similar to how SuSLik tries to align the spatial pre- and
postcondition by unfolding predicates.
Deductive synthesis is closely related to proof search, and there has been recent resurgence

in applying proof-theoretic techniques, like focusing, to program synthesis (Frankle et al. 2016;
Scherer 2017). But none of them do it for a complex logic that can reason about stateful programs.
Despite the vast space of available tools for symbolic verification based on Separation Logic:

Smallfoot (Berdine et al. 2006),HTT (Nanevski et al. 2010),Bedrock (Chlipala 2011), SLAyer (Berdine
et al. 2011), HIP/SLEEK (Chin et al. 2011), VeriFast (Jacobs et al. 2011), SLAD (Bouajjani et al. 2012),
GRASShopper (Piskac et al. 2014b), Viper (Müller et al. 2016), Cyclist (Rowe and Brotherston 2017),
to name just a few, to the best of our knowledge none of them have been employed for deriving
programs from specifications. It is certainly our hope that this work will bring new synergies
between the research done in verification, theorem proving, and program synthesis communities.
For instance, in our approach to establish termination of SSL-synthesized programs, we used

techniques close in spirit to the methods for proving total correctness in type/SL-based frameworks.
E.g., SSL’s tags might be seen as a variant of resource capacities used in HIP/SLEEK (Le et al. 2014).
Our use of Definition 3.2 of sized validity is similar to the induction on the finiteness of the heap
used by Le and Hobor (2018) in their work on a logic for fractional shares. The way we use tagged
predicates for establishing validity in Lemma 3.4 is reminiscent to the purpose of the ▷-modality in
type theories for state and recursion (Appel et al. 2007).

9 CONCLUSION

In their seminal paper, Manna and Waldinger (1980) set forth an agenda for deductive synthesis of
functional programs: łtheorem provers have been exhibiting a steady increase in their effectiveness,
and program synthesis is one of the most natural application of those systemsž.
In this work, we moved this endeavour to an uncharted territory of stateful computations. For

this, we employed a proof system which, instead of a pure type theory (Martin-Löf 1984), is based on
Separation LogicÐa Type Theory of State (Nanevski 2016). Taking this vision as a guiding principle,
we designed Synthetic Separation LogicÐa modest extension of Separation Logic, tailored for
program synthesis, and implemented a proof search algorithm for it. In doing so, we took full
advantage of the power of local reasoning about state (O’Hearn et al. 2001), which resulted in a
principled and fast approach for synthesyzing provably correct heap-manipulating programs.
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