
The Taint Rabbit: Optimizing Generic Taint Analysis
with Dynamic Fast Path Generation

John Galea
Department of Computer Science

University of Oxford
john.galea@cs.ox.ac.uk

Daniel Kroening
Department of Computer Science

University of Oxford
daniel.kroening@gmail.com

ABSTRACT
Generic taint analysis is a pivotal technique in software security.
However, it suffers from staggeringly high overhead. In this paper,
we explore the hypothesis whether just-in-time (JIT) generation
of fast paths for tracking taint can enhance the performance. To
this end, we present the Taint Rabbit, which supports highly cus-
tomizable user-defined taint policies and combines a JIT with fast
context switching. Our experimental results suggest that this com-
bination outperforms notable existing implementations of generic
taint analysis and bridges the performance gap to specialized track-
ers. For instance, Dytan incurs an average overhead of 237x, while
the Taint Rabbit achieves 1.7x on the same set of benchmarks. This
compares favorably to the 1.5x overhead delivered by the bitwise,
non-generic, taint engine LibDFT.

CCS CONCEPTS
• Security and privacy→ Systems security; Software and ap-
plication security;

ACM Reference Format:
John Galea and Daniel Kroening. 2020. The Taint Rabbit: Optimizing Generic
Taint Analysis with Dynamic Fast Path Generation. In Proceedings of the 15th
ACM Asia Conference on Computer and Communications Security (ASIA CCS
’20), October 5–9, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3320269.3384764

1 INTRODUCTION
Dynamic taint analysis [44] is an enabling technique in software se-
curity for tracking information flows. Typical applications include
malware analysis [2, 31, 54], vulnerability discovery [8, 11, 40] and
runtime attack detection [26, 37, 50]. The key feature is the track-
ing of memory locations and CPU registers that store “interesting”
or “suspicious” data. Data of this kind is called tainted. Taint is
checked at particular points during program execution to deter-
mine whether certain runtime properties hold, e.g., to detect if the
instruction pointer could be controlled by an attacker [37], or to
identify which parts of the user input influence path conditions to
optimize fuzzing [11, 40].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’20, October 5–9, 2020, Taipei, Taiwan
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6750-9/20/10. . . $15.00
https://doi.org/10.1145/3320269.3384764

Most taint analyzers, e.g., LibDFT [28], implement single, byte-
sized tags and often just track whether data is tainted or not. This
setup supports efficient propagation of taint (using a bitwise or) and
efficient querying of a location’s taint status. However, many inter-
esting applications that build upon taint analysis require richer
propagation logic and more complex taint labels. For instance,
VUzzer [40] propagates sets that contain offsets of input bytes,
and Undangle [8] tracks heap pointers, storing taint information
in a composite data structure. To support these use cases, previous
work proposed to extend the single tags and deliver what is called
generic taint analysis. Generic taint engines track richer labels (say
via a 32-bit pointer) and support user-defined taint propagation
policies. The first notable generic taint engine is Dytan [14].

The key problem is that the versatility of Dytan comes at a
price: the authors of Dytan report a staggering runtime overhead
of ∼30x on gzip, which has led to the perception that generic taint
analysis is, in essence, impractical. We challenge this perception,
and explore the hypothesis whether generic taint analysis can be
delivered with a runtime overhead that is low enough for practical
security applications.

We argue that a combination of two optimizations is able to
deliver taint tracking that is both versatile and sufficiently fast. We
present an implementation of our ideas in a tool called the Taint
Rabbit. The Taint Rabbit achieves an overhead that is significantly
lower than that of the generic taint analyzer Dytan. On the CPU-
bounded benchmarks that Dytan manages to run, we observe an
overhead of 237x compared to native execution. By contrast, the
Taint Rabbit incurs only 1.7x. This is close to what can be expected:
LibDFT, the leading bitwise taint engine, achieves an overhead of
1.5x on the same benchmarks. Therefore, our approach reduces the
conflict between performance and versatility significantly.

The Taint Rabbit is Generic. Our taint propagation is not
specific to a fixed taint policy. We map a 32-bit word (or pointer) to
every tainted byte, enabling the storage of a reference to a custom
taint label data structure. The Taint Rabbit propagates the pointers
efficiently, and supports custom handlers, provided by the user, to
update the taint labels according to a desired taint policy. Section 4
details our algorithms for generic taint analysis.

The Taint Rabbit is Optimized. The key idea behind the Taint
Rabbit’s high performance is to optimize taint analysis for dynamic
binary instrumentation (DBI) [5]. This approach is standard in lead-
ing bitwise taint analyzers, such as LibDFT [28], but has not yet
been thoroughly investigated for generic taint analysis, which is
much harder to optimize. In particular, it is not possible to build in-
strumented instruction handlers for taint propagation using simple
bitwise or operations; the taint propagation has to be optimized for
a given, custom taint policy. We investigate two techniques to speed

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

622

mailto:john.galea@cs.ox.ac.uk
mailto:daniel.kroening@gmail.com
https://doi.org/10.1145/3320269.3384764
https://doi.org/10.1145/3320269.3384764
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3320269.3384764&domain=pdf&date_stamp=2020-10-05

up generic taint analysis. First, we reduce analysis overhead just-
in-time by dynamically generating fast paths according to in and
out taint states of basic blocks. Second, our generic analysis avoids
expensive context-switching by limiting function calls. Section 5
details these optimizations.

The Taint Rabbit’s generic capabilities are assessed using three
security applications, which employ different taint policies. The
applications have been proposed previously but have not yet lever-
aged our efficient taint engine. Specifically, we evaluate an exploit
detector [37], a Use-After-Free debugger [8] and a fuzzer [40].

To measure performance, we use SPEC CPU 2017 [7], command-
line utilities, PHP and Apache as benchmarks. As baselines for
comparison, we conduct the same experiments on a wide range
of alternative trackers, including LibDFT [28], DataTracker [48],
DataTracker-EWAH [40], Traintgrind [29], BAP-PinTraces [6], Tri-
ton [41], Dr. Memory [4], DECAF [24] and Dytan [14]. Our results
show that the Taint Rabbit is the fastest generic taint tracker among
those evaluated.

In summary, we make the following contributions:

(1) Optimized and generic taint analysis. While optimized
taint analyses have been proposed, none support extensi-
ble propagation logic, and thus lack versatility. Meanwhile,
existing generic taint engines incur prohibitively high over-
heads. Our contribution bridges this gap via dynamic fast
path generation and instrumentation that avoids calls.

(2) The Taint Rabbit. We introduce a framework for building
security applications based on dynamic taint analysis. The
Taint Rabbit and the tools built upon it are all available at
https://github.com/Dynamic-Rabbits/Dynamic-Rabbits.

(3) An extensive evaluation. The Taint Rabbit is evaluated
on several relevant benchmarks, including SPEC CPU 2017,
and is compared with nine other taint-based systems. Three
security applications are also assessed to demonstrate the
versatility of the Taint Rabbit.

2 OVERVIEW
Figure 1 illustrates the high-level design of our approach. The DBI
platform passes every new basic block observed during runtime
to the Taint Rabbit for instrumentation. The Taint Rabbit weaves
efficient instruction handlers, responsible for propagating taint
generically, into the application’s code. Instruction handlers are
implemented in assembly to limit context-switching done by trans-
parent function calls.

The Taint Rabbit employs a JIT approach to adaptively enhance
the performance of generic taint analysis. It generates copies of
original basic blocks but leaves them uninstrumented to establish
fast paths. In particular, the uninstrumented basic block is executed
when all of its input and output registers/memory are not tainted.
Otherwise, the slow path is taken, implementing full-blown taint
analysis. The basic variant of this scheme has been proposed pre-
viously and implemented in Lift [39], but the Taint Rabbit can do
more: it also dynamically generates fast paths for the case when
taint is present. If the Taint Rabbit encounters a set of in and out
taint states that are frequently executed at runtime, the basic block
is duplicated again and instrumented specifically to handle the par-
ticular case. Irrelevant instructions that do not deal with taint in

Execution

Propagation

Instruction Handler...app.
instrTaint

Check
Dispatch
Control

app.
instr ...

Same basic block code,
different instrumentation

1 2

...

3

Taint
Case 1No taint Case Taint

Case 2

Dynamic Binary
Instrumentation

Platform

Taint Rabbit

Application

Binary
Code

CPU

Tool based on
Taint Analysis

Taint Policy

New basic block
to instrument

Basic block instrumented
with taint analysis code

Code Cache

Figure 1: High-level design of the Taint Rabbit

the given case are safely elided from instrumentation. Therefore,
fully-instrumented code is executed less often than in conventional
approaches as, owing to the additional fast paths, control is not al-
ways blindly directed to it when taint is encountered. Our technique
is based on the hypothesis that basic blocks are usually executed
with the same taint states. Therefore, the cost of generating fast
paths for these states pays off.

Our approach allows the user to focus on defining the desired
taint propagation policy, while the Taint Rabbit facilitates fast and
generic taint analysis. Inspired by previous work [10, 53], the user
provides code describing how labels are merged and derived, with-
out delving into intricacies of the internals of the engine.

3 BACKGROUND
3.1 Applications of Taint Analysis
There are numerous use-cases for taint analysis. We give three
example applications and emphasize that their taint policies and
taint propagation logic differ.

Example 3.1. Control-FlowHijacking. Previous work [37] has
shown that taint analysis can detect control-flow hijacking attacks.
Since the analysis only has to taint check control data, bitwise or
operations suffice for propagating taint status flags.

Example 3.2. UAF Detection. Use-after-free (UAF) bugs are ex-
ploitable [45]. Undangle [8] debugs such vulnerabilities by tracking
heap pointers via taint analysis. Undangle monitors allocations and
deallocations and assigns the pointer status stored in the taint labels
to LIVE and DANGLING, respectively. Taint is propagated when
pointers are copied either directly or arithmetically, and a location
is untainted if it is no longer a pointer. For instance, the subtraction
of two pointers yields a taint-free distance even though both the
sources are tainted.

A bitwise or operation is not suitable for pointer tracking; a loca-
tion may be associated with one of three states, namely NO-TAINT,
LIVE, and DANGLING, and their merging cannot be appropriately
done with the operation. Moreover, apart from the status of the
pointer, Undangle’s labels also contain debugging data, e.g., PCs of
pointer creations, and thus are of composite type. Instead of using
a bitwise or, Algorithm 3 (in the appendix) gives an implementation
for propagating such labels via conditional statements.

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

623

https://github.com/Dynamic-Rabbits/Dynamic-Rabbits

Example 3.3. Fuzzing. VUzzer [40] uses taint analysis to dis-
cover interesting input bytes to mutate. The label is a bit set, where
each bit corresponds to a byte of the input file. Since registers or
memorymay be influenced bymultiple bytes, propagation performs
a union operation. A bitwise or is sufficient if bit sets fit within the
operand size; however, this is unlikely as the input files of interest
may be several kilobytes large. VUzzer therefore uses a bit array,
which implies that the union operations require branching.

While bitwise tainting is appropriate for some applications, oth-
ers require richer capabilities. Yet, many taint engines are tuned
solely for the former [3, 12, 39]. Our approach is more versatile and
suitable for all use cases.

3.2 Taint Analysis via DBI
Similar to previous research [12, 14, 28, 39], we focus on an online
analysis that is implemented using dynamic binary instrumenta-
tion (DBI) [5]. In DBI, basic blocks of the application under analysis
are instrumented and stored in a code cache at runtime. The in-
serted code needs to be transparent so that it does not affect the
execution of the application. To simplify tool development, DBI
frameworks [36], such as Pin [33] and DynamoRIO [5], allow the in-
sertion of transparent calls, known as clean calls [20], which invoke
a given function at runtime. Essentially, these functions implement
the taint analysis. However, before the call, a context switch is
performed, which creates a dedicated stack and comprehensively
spills/restores the CPU registers [49]. Since taint analysis requires
instrumenting many instructions to track data movements, these
context switches incur high overheads of at least ∼15x1.

Consequently, DBI frameworks attempt to avoid clean calls and
automatically inline analysis code with the application’s instruc-
tions. Ideally, the context switches only spill/restore live registers
used by the routines and therefore are cheaper than full clean calls.
Figure 7 (in the appendix) shows that this optimization reduces the
overhead to ∼3.3x. Routines are inlined by DBI frameworks only if
they are simple, i.e., they are small, avoid control-flow and perform
no function calls themselves [20, 38].

LibDFT exploits the inline optimization. Listing 1 in the appendix
shows one of its taint propagation routines. Essentially, propagation
is done by bitwise tainting, which avoids long complicated code
with conditional branches. Notably, the use of bit flags as taint
labels, combined with bitwise operations for propagation, yields
simple routines, thus activating the inline optimization.

However, the propagation supported by LibDFT is limited. Previ-
ous work [48] has extended LibDFT to track input file offsets. The
work increased LibDFT’s versatility, resulting in a new taint engine
called DataTracker. With some modifications, DataTracker is used
by VUzzer. However, the changes made in DataTracker break the
original inline optimization. Listing 2 (in the appendix) gives the
instruction handler that corresponds to the one in listing 1. Because
of the function calls and the branching in the instruction handler,
Pin fails to inline and the performance drops. We ran DataTracker
and confirmed the failure to inline by inspecting the logs produced

1To quantify this overhead, we ran the DynamoRIO tool inscount that uses
clean calls to count the number of instructions executed by an application.
We see a slowdown of ∼15x on SPEC CPU 2017 (Figure 7 in the appendix).
https://github.com/DynamoRIO/dynamorio/blob/master/api/samples/inscount.cpp

by Pin. Our results on bzip2 also show that LibDFT is faster than
DataTracker: LibDFT has an overhead of 2.6x, while DataTracker
incurs 36x over native execution.

Although existing optimizations for propagating taint are ef-
fective, many are dependent on specific policies and taint label
structures. LibDFT’s inlining approach is mainly suitable for bit-
wise tainting. We believe that optimizations not tied to particular
policies are desirable as they are more useful to the community
who use taint analysis for a broad range of applications.

4 THE TAINT RABBIT
Generic taint analysis enables user-defined taint policies. The sup-
port for custom merging of labels during propagation removes the
need to change the internals of the taint engine for a particular ap-
plication. We now describe the Taint Rabbit’s high-level algorithms.
Our optimizations are then detailed in the next section.

Binary Analysis. We scope our analysis to x86 binaries. The
code that performs propagation considers the semantics of the
instructions. This avoids tainting output locations unnecessarily,
e.g., tainting stack pointers.

Generic Label Structure. The unit of meta-data that the Taint
Rabbit uses as a label is a 32-bit word. The word may itself store
tags or act as a pointer to a larger taint label data structure2. A NULL
value represents “no taint”.

Byte Granularity. Meta-data is mapped to every byte in mem-
ory and registers; e.g, a mov eax, ebx propagates four labels, one
for each byte in ebx. Labels are stored in shadow memory [55]. We
do not label the x86 flag register to avoid taint explosion [56].

Generic Taint Propagation. As illustrated in Figure 2, taint
labels are propagated via user-defined code called taint primitives.
A taint primitive is a building block for taint propagation, and is
responsible for deriving a taint label from a set of source taint labels.
During propagation, the Taint Rabbit fetches the labels of the source
operands, applies the appropriate primitives with respect to the
semantics of the x86 instructions, and assigns the resulting labels
to the destination operands.

Three user-defined taint primitives are currently required for
our supported instructions, and are informally defined as (1) src →
dst, (2) src, src → dst, and (3) src, src →M meet. The first two
primitives produce a label to associate with a destination byte from
one and two sources respectively. For example, Algorithm 3 (in
the appendix) is a src, src → dst primitive. Meanwhile, inspired
by previous work [10], the third primitive computes the highest
lower-bounded label for two given labels in a lattice.

The taint primitives are the interface between the user-defined
taint policy and the Taint Rabbit. We found that these three taint
primitives are sufficient for our instruction handlers to track taint
effectively and with reasonable precision, even for complex x86
instructions such as punpckldq and pmaddwd.

The primitives (2) and (3) serve very different purposes despite
the fact that they have the same signature.

• The primitive src, src → dst is used to combine the labels of
two bytes stemming from different sources.

2In contrast to the Taint Rabbit, Dytan [14] uses a bit vector as its label structure
instead of a generic pointer. The number of bits is configurable at compile time.

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

624

https://github.com/DynamoRIO/dynamorio/blob/master/api/samples/inscount.cpp

. .
Taint Label Derived

Taint Label

Defines

Source Destination

(a) Primitive src → dst

. .
Derived

Taint Label

Defines

.
Taint Labels

DestinationSource Source

(b) Primitive src, src → dst

. .
Derived

Taint Label

Defines

Taint Labels

Highest lower-
bounded labelSource

(c) Primitive src, src →M meet

Figure 2: User-defined primitives invoked by the Taint Rabbit to propagate taint

Algorithm 1: Computing the taint label for a two-operand
instruction
Data: ID dst, ID src1, ID src2, Integer opnd_size

1 meet_label1← NULL;
2 for i ← 0 to opnd_size − 1 do
3 label← lookup_label(src1 + i);
4 meet_label1← meetprimitive(meet_label1, label)
5 end
6 meet_label2← NULL;
7 for i ← 0 to opnd_size − 1 do
8 label← lookup_label(src2 + i);
9 meet_label2← meetprimitive(meet_label2, label)

10 end
11 for i ← 0 to opnd_size − 1 do
12 dst_label← src_src_dstprimitive(meet_label1,

meet_label2);
13 set_label(dst + i , dst_label);
14 end

• The primitive src, src →M meet is used to combine the labels
of two bytes found within one source.

Essentially, the meet primitive provides means to compute a single
label that summarizes the taint of a multi-byte operand. The two are
incomparable. We recall the pointer tracking use-case (Example 3.2)
to illustrate this point. Given two labels that represent a LIVE and
DANGLING status, respectively, their meet is DANGLING, while
the combination of two pointers is NO-TAINT.

Algorithm 1 specifies how the Taint Rabbit uses primitives (2)
and (3) to compute the taint label for an instruction with two
operands. The algorithm first iterates over the bytes of each operand
separately and applies themeet primitive on these bytes. This yields
one taint label for each of the two operands, denoted bymeet_label1
and meet_label2, respectively.

In Line 11, the algorithm then iterates over the bytes of the des-
tination operand, and uses the src, src → dst primitive to combine
the labels of the two source operands. The combined label is then
assigned to the destination3.

Optimization. For many x86 instructions, resulting bytes are in-
dependent. Instances of this are most transfer instructions (e.g. mov)

3We remark that the primitive may be stateful, and hence, its invocation is not hoisted
out of the loop.

Algorithm 2: Optimized tainting for instructions with in-
dependent bytes
Data: ID dst, ID src1, ID src2, Integer opnd_size

1 for i ← 0 to opnd_size − 1 do
2 src_label1← lookup_label(src1 + i);
3 src_label2← lookup_label(src2 + i);
4 dst_label← src_src_dstprimitive(src_label1, src_label2);
5 set_label(dst + i , dst_label);
6 end

and many bit-manipulating instructions (e.g. or, xor). The seman-
tics of these instructions guarantee that byte i of the result only
depends on byte i of the first and byte i of the second operand. For
this case, the two loops that merge the taint labels can be dropped.
Algorithm 2 gives the resulting specialized instruction handler. Al-
gorithm 2 is both faster than Algorithm 1 and produces a result
that is more precise.

LibDFT uses the approach taken in Algorithm 2 even in cases
when bytes may affect each other (e.g. add); it therefore under-
approximates and may lose taint in return for a performance gain.

Algorithms 4 and 5, which illustrate the usage of the src → dst
primitive, are in the appendix. They are similar to Algorithms 1
and 2, but only accept one source operand. We implement them to
propagate taint for instructions such as mov, inc and bswap.

5 OPTIMIZED DESIGN
The previous section describes the Taint Rabbit’s high-level algo-
rithms for generic taint analysis.We now focus on the Taint Rabbit’s
design optimized for DBI.

5.1 Challenges
We address the following non-trivial challenges:

High Tracking Rate. Dynamic tainting incurs overhead due
to the high execution rate of instruction handlers. On a test run,
we measured that at least 73% (over 8 billion) of the instructions
executed by bzip2 conventionally require instrumentation (exclud-
ing instructions such as jmp and cmp). We address this challenge in
Section 5.2.

ExpensiveContext Switching.Unlike bitwise tainting, generic
taint propagation is more complex, e.g., because of complex control
flow. This leads to expensive context-switching incurred by clean
calls. We address this challenge in Section 5.3.

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

625

5.2 Dynamic Fast Path Generation
The Taint Rabbit generates fast paths to reduce the execution of
instruction handlers. We now detail the actual process of the Taint
Rabbit. A code example is given in Figure 10 in the appendix.

Truncation. When a new basic block is provided by the DBI
platform, the Taint Rabbit begins by identifying any memory ad-
dresses that cannot be determined at the start of the basic block
due to non-static dependencies. Such addresses are problematic as
their taint status cannot be checked prior to entering a fast path at
runtime. The issue is mitigated by truncating basic blocks at points
where memory dereferences are calculated based on register values
that are inconsistent with their starting values4. The cut-off code is
no longer considered at this point, but is treated as a new separate
basic block that undergoes its own analysis. The input and output
operands are then retrieved and stored in a set by simply inspecting
the remaining instructions found before the cut-off point.

Code Duplication. Next, the basic block is copied to produce
multiple adjacent instances of it. A global mapM associates a basic
block ID with meta-data specifying the different cases of instru-
mentation; ergo, the number of cases determines the total number
of basic block instances. By default, this meta-data is initialized
with two defined cases where all or none of the basic block’s inputs
and outputs are tainted. An entry label is inserted prior to each
instance, and direct jumps are inserted at the ends to span over the
code of other instances and exit. To maintain the one-exit-point
property of basic blocks, control-flow instructions in the analyzed
code of the application are not duplicated.

Taint Checks and Control Dispatch. The Taint Rabbit pro-
ceeds by inserting initial code to determine the in and out runtime
taint states of a basic block at point of entry. The result is encoded
as a mask where each bit indicates whether or not an input/output
is tainted. Compare and branch code sequences check the encoded
mask with the masks of the defined cases (retrieved viaM) and
direct control to appropriate basic block instances. Fall-through
implies that a new case is encountered, which is an opportunity for
fast path generation. An unhandled case defaults to the execution
of the fully instrumented basic block.

Placed in the common path, taint checking is performance criti-
cal. The dispatcher must direct control fast. Determining the taint
status of an input/output by inspecting all of its pointer-sized tags
one-by-one is costly because of a large number of comparison in-
structions and cache pollution. The Taint Rabbit alleviates this issue
by quickly checking registers via an over-approximation where a
taint status bit is tracked for each register (as opposed to each byte
in each register). Apart from conducting generic taint analysis, our
instrumented paths also maintain these status bits. Therefore, a
lot of the dispatcher’s checking process is shifted down to paths
that are less critical, away from the uninstrumented fast path. The
idea of using over-approximate tags is similar to [42], but the Taint
Rabbit cleverly uses the pext instruction [25] to construct the mask
quickly. Although checks are imprecise owing to the higher gran-
ularity (sub-registers may be seen as tainted when they are not),
taint propagation is still performed by our byte-precise instruction
4Our implementation reduces the impact of dynamic dependencies using constant
propagation. For example, instead of truncating upon push and pop instructions, the
Taint Rabbit patches operands with the offsets calculated by decrementing/increment-
ing the stack pointer.

Case

Missed

Default

CALL

Encode

Instrumenter
Register new case

Case

New Case

Default

CALL

Encode

New Case
Handler

Flush out
basic block

Emit, including
missed case

Emit

Clean Call

1

2

3

4

5
Basic Block Basic Block

JIT

Figure 3: Dynamic Fast Path Generation

handlers. Profiling done during development showed that the use
of shared tags alone led to a speed-up of ∼0.6x over native exe-
cution. Although shared tags are only associated to registers, the
Taint Rabbit leverages SIMD instructions to efficiently test multiple
labels simultaneously when taint checking memory.

Data-flow Analysis and Instrumentation. The basic blocks
are then instrumented with taint propagation code. The paths for
the two default cases are established by creating one fully instru-
mented basic block and maintaining another without any instru-
mentation at all. To handle other cases identified at runtime, for-
ward data-flow analysis is performed on the basic block to deter-
mine which instructions deal with tainted operands. Such instruc-
tions propagate taint at runtime and are therefore instrumented,
while others are elided. Naturally, the initial in-set for data-flow
analysis includes the in and out taint states of the particular case.

Inlining instrumentation code which is based on user-defined
taint primitives may result in large code fragments that stresses the
instruction cache and the encoding to the DBI cache. This issue is
exacerbated by the instrumentation of duplicated basic blocks. As a
mitigation, the Taint Rabbit outlines instruction handlers to shared
code caches at the user’s discretion. Note that outlining does not
use clean calls but trampolines.

Fast Path Generation. Figure 3 describes the process of dy-
namic fast path generation. A clean call is performed (infrequently)
when no fast path exists for a new set of in and out taint states.
The mask of the unhandled case is retrieved and registered by up-
datingM. The existing code fragment is then flushed out from
the DBI cache, and instrumentation is re-triggered; now with the
inclusion of the missed path. The Taint Rabbit also has a stopping
mechanism that prevents basic blocks from attempting generation
if intended fast paths do not actually elide any instructions. Finally,
rather than immediately triggering dynamic fast path generation,
we employ conventional JIT heuristics [43], based on execution
count, to reduce the latency induced by flushing.

5.3 Efficient Instruction Handlers
Building a generic taint engine with a high-level programming
language renders instruction handlers, responsible for propagat-
ing taint, too complex to be automatically inlined by a DBI tool.

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

626

Therefore, instruction handlers are built using hand-crafted x86
assembly code. Although previous work [4, 12] take a similar ap-
proach, their instruction handlers are coded for bitwise tainting,
using simple or operations, rather than for generic taint analysis.
Many instructions are supported, including SIMD. We designed the
code to follow known practices for optimization to the best of our
abilities [25]. Iteration and branching are reduced with instruction
handlers, amounting to over 970 in count, specialized not only to
different opcodes but also to operand sizes and types. The loops in
Algorithms 1 and 2 are unrolled.

Instruction handlers do not use a stack but rely on thread-local
storage and registers for memory. Although Algorithm 1 is slower
than Algorithm 2, owing to the meet primitives, it is only used for
certain instructions, as described in Section 4. The taint primitives
are givenmemory operands that refer to taint labels and two general
purpose (GP) scratch registers for their implementation. Spillage is
performed if the primitive requires additional registers.

5.4 Other Optimizations
We also adopt previously proposed optimizations [4, 28, 39]. First,
live register analysis is done to only spill/restore register values
that are relied upon by subsequent application instructions. Second,
we optimize taint checks by minimizing redundant shadow address
translations when memory operands share the same base address.
Third, space overhead is reduced by creating shadow memory on
demand, with the first write, detected via special faults. Lastly, mem-
ory dereferences are minimized by using addressable thread local
storage to access frequent fields, e.g., registers’ shadow memory.

5.5 Implementation
The Taint Rabbit is the core of the Dynamic Rabbits, a suite of bi-
nary analysis libraries for building taint-based tools. The Dynamic
Rabbits are built upon DynamoRIO and Dr. Memory. They consist
of over 70,000 lines of C code (including tests) and their source is
available at https://github.com/Dynamic-Rabbits/Dynamic-Rabbits.
Furthermore, Dr. Memory’s shadow memory library Umbra [55]
was enhanced to handle 32-bit tags. We also implemented a new Dy-
namoRIO library called drbbdup, which duplicates the code of basic
blocks. In turn, drbbdup is used to implement fast path generation.
The majority of drbbdup’s code has beenmerged into DynamoRIO’s
repository5. Lastly, several tools, including Perf [18], were lever-
aged to profile the Taint Rabbit. Analysis results, visualized via
flame graphs [22], are given in the appendix (Figure 8).

5.6 Limitations
Currently, the Taint Rabbit does not analyze 64-bit binaries. The
main reason is that many existing engines, particularly LibDFT,
only support 32-bit and a like-for-like experimental comparison
reduces the threat to validity. Moreover, the Taint Rabbit does not
support some of the FPU instructions. Table 4 (in the appendix)
provides a comprehensive list of the supported instructions. When
an unsupported instruction is encountered, all destinations are
untainted to avoid false positives. To penalize the Taint Rabbit, this
process is done via a clean call.

5https://github.com/DynamoRIO/dynamorio/commit/6195c00

Our approach is more versatile than bitwise tainting. However,
while the instruction handlers are call-free, user-defined taint prim-
itives could prevent optimization. These include primitives that
perform a call to allocate dynamic memory. We mitigate this issue
with an inline custom allocator that performs clean calls in a slow-
path only when requesting additional memory for management.

Truncation of basic blocks removes the need for a static whole-
program pointer analysis. However, this is not a perfect solution
as the number of basic blocks increases as a consequence. This, in
turn, increases the number of taint checks done by the dispatcher.
Moreover, rep instructions, which deal with many bytes, are not
checked, as determining their in and out taint states could be ex-
pensive. Therefore, these instructions are treated as potential taint
sources for data-flow analysis, and are always instrumented.

The Taint Rabbit uses additional memory, and the memory over-
head may cause issues when analyzing large applications. The
memory overhead is primarily caused by Taint Rabbit’s shadow
memory where a 32-bit pointer is mapped to each application byte.
To address this challenge, we implemented a simple garbage col-
lector that is triggered when memory is low. The collector iterates
over shadow memory blocks and checks whether they store any
tainted data. If an entire block is found to store only untainted data,
i.e., NULL values, it is deallocated.

6 EVALUATION
We performed an experimental evaluation to answer the following
research questions.
• RQ1: How much does call-avoiding instrumentation and dy-
namic fast path generation improve the performance of
generic taint analysis?
• RQ2: With these techniques, is the performance of generic
taint analysis comparable to the state of the art of bitwise
taint analysis?
• RQ3: Can the improved generic taint analysis scale to real-
world target applications?
• RQ4: Do taint primitives enable generic taint analysis?

We ran the experiments on 32-bit Ubuntu 14.04 machines, each
equipped with an 8 core 2.60GHz Intel Core i7-6700HQ CPU and
32GB RAM. Full results with numerical figures6, along with scripts
for running many of our experiments7, are available online. The
specific version of the Dynamic Rabbits that we used for our exper-
iments is available as well8.

6.1 The Taint Rabbit Engines
The Taint Rabbit (TR) offers two generic taint engines. As a baseline,
TR-CC has instruction handlers implemented in C and uses clean
calls. The second engine, TR-RAW, has its instruction handlers imple-
mented in assembly without clean calls. When combined with fast
paths, these variants are referred to as TR-CC-FP and TR-RAW-FP.
The engineering effort required to implement another taint engine,
namely TR-CC, as our baseline was worthwhile to answer RQ1.

6https://docs.google.com/spreadsheets/d/1gAm7GJBB3Rl4bfTwWq-
ITcNyVuRtTH2vQYYaS3n-OUk
7https://github.com/Dynamic-Rabbits/Taint-Evaluator/commit/e594963
8https://github.com/Dynamic-Rabbits/Dynamic-Rabbits/commit/56f9e2b9

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

627

https://github.com/Dynamic-Rabbits/Dynamic-Rabbits
https://github.com/DynamoRIO/dynamorio/commit/6195c00
https://docs.google.com/spreadsheets/d/1gAm7GJBB3Rl4bfTwWq-ITcNyVuRtTH2vQYYaS3n-OUk
https://docs.google.com/spreadsheets/d/1gAm7GJBB3Rl4bfTwWq-ITcNyVuRtTH2vQYYaS3n-OUk
https://github.com/Dynamic-Rabbits/Taint-Evaluator/commit/e594963
https://github.com/Dynamic-Rabbits/Dynamic-Rabbits/commit/56f9e2b9

We perform our experiments using two taint policies. The first
policy (TR-ID) assigns a new numerical ID to each destination byte
whenever taint propagation occurs. This policy could serve as a
basis for a static single assignment trace generator. ID assignment
is achieved by using src → dst and src, src → dst primitives that
increment a counter if any source is tainted. The 32-bit tags contain
the IDs and are not used as pointers.

The second policy (TR-BV) propagates bit vectors similar to the
multi-tag policy adopted by Dytan. Instead of mapping a separate
bit vector to each tag, which results in high memory usage, our
policy represents bit vectors concisely. We use a global reduced
binary decision tree, similar to previous work [11]. However, the
algorithms presented previously are recursive and would break our
call-free optimization upon union operations. Therefore, we devised
iterative variants where clean calls are done only when inserting a
new allocated node to the tree. Through this memoization, inserted
nodes only represent bit vectors that have not been encountered
previously. The src → dst primitive simply transfers a source’s
pointer referring to a node in the tree, while the other primitives
efficiently perform unions via inlined hash-lookups. Note, these two
taint policies cannot be implemented with a bitwise taint engine.

6.2 Other Taint-Based Systems
To answer RQ1 and RQ2, we ran nine other taint analyzers on our
benchmarks as baselines for comparison. Table 5 (in the appendix)
gives a summary of their main features. LibDFT 3.1415 alpha [28]
inlines bitwise taint analysis, while Dytan910 [14] performs user-
defined operations on bit vectors that contain multiple tags. Triton
0.6 [41] is a dynamic binary analysis framework which is set up to
use Pin 2.14 for tracing. DataTracker11 [48] focuses on data prove-
nance; a variant, named DataTracker-EWAH12 [40], records input
offsets to optimize fuzzing. We also ran BAP-PinTraces13 [6], which
generates execution logs of instructions that deal with taint. Its
taint propagation routines are not implemented specifically to the
semantics of the instructions, but instead leverage the IR of the DBI
to determine the source and destination operands. DECAF14 [24]
is a QEMU-based taint tracker that inlines precise bitwise propaga-
tion into Tiny Code Generator (TCG) instructions, and Taintgrind
3.15.0 [29] is a taint engine built upon Valgrind [36]. Moreover,
the Dr. Memory 2.1.1797215 [4] debugger builds on DynamoRIO to
check the addressability of memory using bitwise tainting. Unfor-
tunately, we are unable to assess its taint analysis separately as it
is tightly coupled with other components. Therefore, its reported
overhead also includes memory checks. However, we did remove
code in DataTracker-EWAH and BAP-PinTraces that concerns log-
ging to file to reduce the overhead. DBI overhead was also measured
separately without taint analysis. We give results for Pin 2.12, Dy-
namoRIO 7.1 and Valgrind 3.13.0, labeled as Pin-Null16, DR-Null
and Nullgrind, respectively. DECAF, just using its virtual machine
introspection and with no taint analysis, is labeled as DECAF-VMI.
9https://github.com/dytan-taint-tracking/dytan-taint-tracking/commit/5211823d575
10We modified Dytan by removing failing assertions for unsupported x86 instructions.
11https://github.com/m000/dtracker/commit/dc729dca8
12https://github.com/vusec/vuzzer/commit/f6f7d593a
13https://github.com/BinaryAnalysisPlatform/bap-pintraces/commit/bed2b108
14https://github.com/decaf-project/DECAF/commit/1de4ed7c95
15https://github.com/DynamoRIO/drmemory/commit/5b988e31
16We ran the same Pin-Null tool provided by LibDFT 3.1415 alpha [28].

6.3 Performance
To answer RQ1, RQ2 and RQ3, we measure the Taint Rabbit’s per-
formance on benchmarks relating to data compression, PHP, im-
age parsing, Apache and SPEC CPU. For these experiments, we
configure the Taint Rabbit to taint all data read from files, sock-
ets, command-line arguments and environment variables. While
we envisage better performance with less taint introduction, our
methodology aims for a grounded evaluation, measuring the worst
performance cases where taking optimal fast paths is difficult due
to taint prevalence17. No taint is introduced when running other
tools, which nevertheless instrument instructions even though no
taint is propagated. However, our setup benefits instruction han-
dlers that perform efficiently with untainted data only. There are
exceptions, e.g., Dr. Memory, which automatically tags memory. We
set BAP-PinTraces to taint command-line arguments to circumvent
its fast-forward mechanism and assess its taint analysis.

Data Compression. First, we evaluate the Taint Rabbit on well-
known compression utilities, including gzip 1.6, bzip2 1.0.6, pigz
2.3 and pxz 4.999.9 beta. Results are given in Figures 4a–4d. As input,
all applications were given a file that is 9.6M large and contains ran-
dom data. We note that TR-CC-ID and TR-CC-BV are substantially
slower than their RAW counterparts. For instance, TR-CC-BV and
TR-RAW-BV incur overheads of 258x and 3.7x respectively compared
to native runs. The use of fast paths further enhances performance:
TR-RAW-BV-FP reduces the overhead from 3.7x down to 2.3x. Re-
sults also show the positive impact of fast paths with respect to
expensive clean-call implementations; TR-CC-BV-FP achieves 42.6x
overhead. Consequently, fast paths also benefit users who imple-
ment taint primitives using a high-level programming language.

Comparing to existing tools, Dytan incurs a 308x overhead and
is significantly surpassed by TR-CC-BV-FP and TR-RAW-BV-FP. All
other generic engines, including DataTracker, are also slower than
TR-RAW-BV-FP. For instance, DataTracker and DataTracker-EWAH
incur overheads of 6.7x and 40.5x on gzip. By contrast, TR-RAW-
BV-FP only results in an overhead of 1.3x. Triton suffers from the
heaviest slowdown; we aborted Triton’s run on bzip2 after 60 hours
and therefore no result is reported. Owing to efficient bitwise taint-
ing, LibDFT is faster than TR-RAW-BV-FP on average. It achieves
1.9x overhead, as opposed to 2.3x achieved by TR-RAW-BV-FP.

PHP.We have applied the Taint Rabbit to PHP 7.2.4, driven by
PHPBench18 0.15.0 [32], a framework that provides a collection of
micro/macro benchmarks for measuring performance. We ran the
following benchmarks with 10,000 revolutions each: container,
hashing, kde and statistics. The results are presented in Fig-
ures 4e–4h. An improvement is achieved by TR-RAW-BV-FP when
compared to TR-CC-BV; the former achieves 94.9x while the latter
incurs a staggering 806.4x overhead relative to native execution
time. Fast paths also enhance performance for the clean call imple-
mentation, with TR-CC-BV-FP resulting in 187.5x.

Several taint engines, including Dytan and TR-CC-BV, crashed
on the kde benchmark. The crash is caused by an integer overflow
error, and suggests that the slowdown imposed by taint analysis
is to blame. We do not encounter this error when benchmarking
performant engines such as LibDFT, TR-RAW-BV and TR-RAW-ID.

17Figure 11 in the appendix gives performance results when taint is sampled.
18https://github.com/phpbench/phpbench/commit/04a1a1b

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

628

https://github.com/dytan-taint-tracking/dytan-taint-tracking/commit/5211823d575
https://github.com/m000/dtracker/commit/dc729dca8
https://github.com/vusec/vuzzer/commit/f6f7d593a
https://github.com/BinaryAnalysisPlatform/bap-pintraces/commit/bed2b108
https://github.com/decaf-project/DECAF/commit/1de4ed7c95
https://github.com/DynamoRIO/drmemory/commit/5b988e31
https://github.com/phpbench/phpbench/commit/04a1a1b

DBI Others TR TR - FP

100
101
102
103
104

slo
wd

o w
n

PIN-Null NullGrind DR-Null DECAF-VMI LibDFT DataTracker DataTracker-EWAH Dytan Triton BAP-Pintraces
TaintGrind Dr. Memory DECAF TB-CC-BV TR-RAW-BV TR-CC-ID TR-RAW-ID TR-CC-FP-BV TR-RAW-FP-BV TR-CC-FP-ID
TR-RAW-FP-ID

(a) gzip

DBI Others TR TR - FP

100

101

102

103

slo
wd

ow
n

(b) bzip2

DBI Others TR TR - FP

100

101

102

slo
wd

ow
n

(c) pigz

DBI Others TR TR - FP

100

101

102

slo
wd

o w
n

(d) pxz

DBI Others TR TR - FP

101
102
103
104

slo
wd

o w
n

(e) PHPBench – container

DBI Others TR TR - FP

101

102

103
slo

wd
o w

n

(f) PHPBench – hashing

DBI Others TR TR - FP

101

102

slo
wd

o w
n

(g) PHPBench – kde

DBI Others TR TR - FP

102

103

slo
wd

ow
n

(h) PHPBench – statistics

DBI Others TR TR - FP

100

101

slo
wd

o w
n

(i) djpeg

DBI Others TR TR - FP

100
101
102
103
104
105

slo
wd

ow
n

(j) gif2png

DBI Others TR TR - FP

101

102

slo
wd

o w
n

(k) Apache – 10,000 reqs

DBI Others TR TR - FP

100

101

102

slo
wd

o w
n

(l) Apache – 100,000 reqs

Figure 4: Results of the Taint Rabbit and other taint systems on command-line utilities, PHPBench andApache.Missing entries
imply that the corresponding taint engine timed-out or crashed.

Another observation is that TR-RAW-BV and TR-RAW-ID perform
faster than TR-RAW-BV-FP and TR-RAW-ID-FP, despite the use of
fast paths. The issue is that TR-RAW-ID-FP fails to amortize many
of its initial overheads, such as those posed by the dispatcher and
the generation of fast paths pertaining to untaint cases. Since the
majority of the PHP benchmarks take less than a second to execute
natively, the optimizations of TR-RAW-ID-FP do not have enough
time to be effective. Overall, this increases the overhead from to
62.2x to 89.6x. Nevertheless, TR-RAW-ID-FP still outperforms all
other existing generic taint analyzers. For example, it is faster than
DataTracker, which incurs 250.1x overhead.

Image Parsing. We consider djpeg, version 9c, and gif2png
2.5.8 as two exemplars of image parsing. Results are given in Fig-
ures 4i–4j. Similar to the results presented so far, we again observe
the high overheads incurred by existing generic taint engines. For
instance, when running djpeg, DataTracker, DataTracker-EWAH
and Dytan achieve slowdowns of 2.7x, 13.8x and 24.3x respectively
over native execution time. Meanwhile, TR-RAW-BV-FP yields better
results with just an overhead of 1.3x. Interestingly, fast paths do not
contribute to performance on this benchmark for RAW implemen-
tations as they are not significantly taken due to the large amount
of tainted data. The short one-second runtime of gif2png also ren-
ders generation difficult to amortize. Nevertheless, TR-CC-BV-FP
achieves a lower overhead of 222.6x on gif2png in comparison to
TR-CC-BV, which incurs 292x. Since clean call based instruction
handlers are expensive, their elision is more effective in improving
performance than those implemented in efficient assembly code.

DBI Others TR TR - FP

100

101

102

slo
wd

o w
n

Pin-Null Nullgrind DR-Null DECAF-VMI LibDFT
Taintgrind DrMemory DECAF TR-RAW-BV TR-RAW-ID
TR-RAW-FP-BV TR-RAW-FP-ID

Figure 5: Average overheads on SPECrate 2017

Apache. Figures 4k–4l depict our results on Apache 2.4.33. The
benchmark tool ab [21] was used to send 10,000 and 100,000 re-
quests to Apache. Results again show that fast paths speed up taint
engines implemented using clean calls. TR-CC-BV-FP results in
29.5x overhead over native runtime execution, which is less than
the overheads of 51.4x and 122.8x incurred by TR-CC-BV and Dytan
respectively. Moreover, TR-RAW-ID-FP is only slightly slower than
LibDFT; the former incurs 7x overhead, while the latter achieves
6.1x. In our experiments, Apache primarily performs I/O and pro-
cess forks to handle requests, and hence Triton is able to com-
plete the experiment, albeit with 334x overhead. DataTracker and
DataTracker-EWAH both time-out after 3 hours.

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

629

SPEC CPU 2017. The average overheads observed on the SPEC-
rate 2017 Integer benchmark 1.0.219 are given in Figure 5. TB-RAW-
ID achieves an overhead of 36.7x over native execution, which is
reduced to 17.9x when fast paths are enabled. It fails to out-perform
specialized bitwise taint engines such as LibDFT, which achieves
10.5x. However, this is expected given its trade-off for versatility.
Moreover, the Taint Rabbit is significantly faster than Taintgrind
and DECAF, which incur overheads of 278x and 74.1x respectively.

We excluded the gcc and x264 benchmarks when calculating
results because of known limitations of the Taint Rabbit. First, the
Taint Rabbit ran out of memory on gcc for both TR-ID and TR-BV.
This problem can bemitigated by using a 64-bit architecture. Second,
TB-RAW-BV times-out on x264 because of high overhead. Moreover,
we terminated experimentation with TB-CC-ID as the duration of
the first benchmark (i.e., perlbench) exceeded 24 hours. Because
of the unmanageable overhead of the clean-call implementations
of the taint analyzers, we focused on the optimized versions when
running the SPECrate benchmark. DataTracker also faced issues
as it crashed on all benchmarks except for one. The remaining
benchmark, namely x264, exceeded 24 hours.

6.4 Dynamic Fast Path Generation
Table 6 (in the appendix) gives insight about the benefit of fast
path generation. We gathered these measurements mainly by ex-
ecuting the training sets of several SPEC CPU 2017 benchmarks.
The second column gives the percentage of basic blocks where
dynamic path generation is applicable. For instance, we exclude
basic blocks consisting of just one instruction or those that do not
contain data-flow. The third column details the average basic block
size after truncation. The fourth column gives an approximation
of the average number of instructions per basic block that elided
instrumentation due to fast path generation. The fifth and sixth col-
umn indicate the total number of fast paths dynamically generated
and reverts. The next three columns denote the execution counts of
paths with no instrumentation, adaptive instrumentation, and full
instrumentation respectively. Finally, the last two columns show
timelines when fast paths are generated and executed at runtime.

The results show that execution dominantly takes fast paths.
Although the most commonly executed path is the no taint case,
generated fast paths are executed frequently, particularly for mcf. As
one would expect, the number of fast paths generated is negligible
when compared to the number of times they are executed.

Static vs. Dynamic Fast Paths. Lift [39] does not generate fast
paths just-in-time. It is fixed to only consider fast paths that never
engage in taint propagation represented by the no taint case. If
any input or output of a basic block is tainted, execution leads to
the slow fully-instrumented path. We call this approach static path
generation, because no other fast paths are constructed at runtime.

To answer RQ1, we quantify the performance benefits of dynamic
fast path generation compared to the static variant by running the
same set of experiments described in Section 6.3. Unfortunately,
Lift is not publicly available. Therefore, we modeled similar func-
tionality by modifying the Taint Rabbit and switching off dynamic

19The new SPECint 2017 does not support 32-bit systems.

Compress PHP Apache Image SPEC CPU

101

102

sl
ow

do
w
n

TR-CC-BV-FP-STATIC TR-CC-BV-FP-DYNAMIC
TR-RAW-BV-FP-STATIC TR-RAW-BV-FP-DYNAMIC
TR-CC-ID-FP-STATIC TR-CC-ID-FP-DYNAMIC
TR-RAW-ID-FP-STATIC TR-RAW-ID-FP-DYNAMIC

Figure 6: Static vs. Dynamic Fast Path Generation

fast path generation. Average results are given in Figure 6. TR-CC-
BV-FP-DYNAMIC outperforms TR-CC-BV-FP-STATIC on all consid-
ered benchmarks. For instance, results obtained using the compres-
sion benchmarks show that TR-CC-BV-FP-DYNAMIC achieves an
overhead of 42.6x, while TR-CC-BV-FP-STATIC incurs 81.8x over-
head relative to native execution time. Moreover, TR-RAW-BV-FP-
DYNAMIC is faster than TR-RAW-BV-FP-STATIC on the compression
benchmarks and SPEC CPU. TR-RAW-BV-FP-STATIC incurs 2.7x
and 25x overheads on these benchmarks, respectively. Meanwhile,
TR-RAW-BV-FP-DYNAMIC improves performance with overheads of
2.3x and 22.4x.

Performance impact of the number of Fast Paths. In order
to observe the relationship between performance and the number
of possible fast paths that the Taint Rabbit can generate per basic
block, we ran our experiments with varying limits. Once the limit
is reached, the Taint Rabbit no longer monitors and attempts fast
path generation for the block. Our results are in Figures 12a–12d
(in the appendix). They indicate that the performance impact of fast
paths highly depends on whether the costs of monitor checks and
fast path generation are amortized. In particular, the generation
of multiple fast paths gradually improves the performance of the
Taint Rabbit on the compute-intensive SPEC CPU 2017 benchmark.
However, applications, such as PHP, that incur heavy costs during
the instrumentation process do not benefit.

6.5 Application-Specific Experiments
Apart from performance, we aim to validate the versatility of the
Taint Rabbit. In particular, we show that our taint-primitive based
approach supports three different taint policies to answer RQ4.

Control-Flow Hijacking Prevention. The first use case is the
detection of control-flow hijacking attacks. We configure the Taint
Rabbit to perform bitwise tainting similar to previous work [29].
The src → dst primitive does a move operation, while the src, src →
dst and src, src →M meet primitives perform a bitwise or. Table 1
presents the attacks detected by our tool called TR-CHECK. Although
the short execution times of our benchmarks make amortization
difficult, the Taint Rabbit has a faster mean detection time than
our baseline. TR-CHECK-CC and TR-CHECK-RAW-FP result in average
duration times of 1.46 s and 0.97 s, respectively.

Use-After-Free Debugging. The second application, TR-UAF,
uses taint analysis to track pointers and debug use-after-free vul-
nerabilities [8]. The 32-bit tags represent pointers to composite
labels containing debugging information, and are propagated with
primitives based on the policy given as Example 3.2. These labels

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

630

Table 1: Results for detecting control-flow attacks

Application CVE ID TR-CHECK
(CC)

TR-CHECK
(RAW-FP)

RTF2Latex 2004-1293 3.75 s 0.8 s

rsync 2004-2093 0.26 s 0.63 s

Aeon 2005-1019 0.24 s 0.5 s

Nginx 2013-2028 1.6 s 1.94 s

Table 2: Time taken to detect UAF Vulnerabilities

Application CVE ID Dr. Memory TR-UAF

V8 2017-5098 4.59 s 6.31 s

Yara 2017-5924 0.67 s 1.57 s

libzip 2017-12858 1.51 s 1.24 s

lrzip 2017-5924 1.84 s 2.47 s

libzip 2017-12858 0.51 s 0.44 s

libwebm 2018-6548 1.19 s 2.47 s

libsass 2018-19827 2.88 s 3.68 s

imagemagic 2019-19952 57.29 s 6.12 s

Table 3: Bug counts achieved by VUzzer and TR-Fuzz

Application Total Bugs VUzzer TR-Fuzz

base64 44 1 1

uniq 28 26 27

who 2136 33 55

are shared with tainted pointers derived from the same root address
and reference counting is employed to manage their memory. Taint
propagation is also turned off when entering allocation routines to
prevent false triggers. Results are given in Table 2. We validated
the results by checking public bug reports and comparing alarms
with those raised by Dr. Memory. In summary, UAF bug detection
can be performed using our generic taint analyzer.

Although our results indicate that Dr. Memory is faster than TR-
UAF, the detection mechanisms which they employ are different and
therefore performance cannot be directly compared. Unlike TR-UAF,
Dr. Memory does not tag pointers to identify UAF vulnerabilities,
but instead poisons freed memory regions. Dr. Memory also tracks
addressable data via bitwise tainting.

Fuzzing. Although a thorough evaluation of the application
of Taint Rabbit to fuzzing is beyond the scope of this paper, we
demonstrate that our approach could be used for this purpose.
We replaced VUzzer’s taint engine with our own custom tool that
provides the same output, i.e., a list of file offsets that affect lea
and comparison instructions. The rest of VUzzer’s code, e.g. its
mutator, is left untouched. Table 3 gives the bug counts obtained
on LAVA [19] by VUzzer and our version, TR-Fuzz, in 6 hour runs.

6.6 Research Questions
RQ1:Howmuch does call-avoiding instrumentation and dynamic fast
path generation improve the performance of generic taint analysis?

Our results show that the overhead of the Taint Rabbit is re-
duced from 224x down to 3.5x when call-avoiding propagation is
enabled on benchmarks related to compression and image parsing.
The optimization is effective because it essentially addresses the
main bottleneck of expensive context switching, which is experi-
enced by existing generic taint engines. Furthermore, fast paths
alone reduce the overhead from 224x to 68.8x. The benefit of this
optimization is its broad applicability as it can be used with clean
call based instruction handlers, thus removing the need to write
low-level assembly code. We observe positive synergy on these
benchmarks when the two optimizations are used together: the
overhead is further reduced to 3x. However, fast paths are mainly
effective for long-running, CPU-bound applications where tainting
does not comprehensively limit the execution of fast paths, un-
like witnessed when parsing images. On SPEC CPU, the overall
overhead is reduced to 22.4x from 39.2x.

RQ2: With these techniques, is the performance of generic taint
analysis comparable to the state of the art of bitwise taint analysis?

Inherently, specialized and generic taint engines have opposing
performance and versatility trade-offs. The Taint Rabbit has to
perform heavier analyses to support custom taint propagation logic.
We therefore cannot expect that the Taint Rabbit is faster than
optimized bitwise tainting. On SPEC CPU, TR-RAW-ID-FP is slower
than LibDFT with overheads of 17.8x and 10.5x respectively when
compared to native runs. Nevertheless, the Taint Rabbit significantly
reduces the performance gap that existed between the two types
of analyses. On the CPU-bound benchmarks (compression and
image parsing) that Dytan manages to complete, Dytan incurs 237x
overhead. By contrast, LibDFT incurs 1.5x and the Taint Rabbit is
only slightly slower with an overhead of 1.7x.

RQ3: Can the improved generic taint analysis scale to real-world
target applications?

We argue that our proposed optimizations increase the perfor-
mance of generic taint analysis to the point that real-world target
applications can be analyzed. For instance, DataTracker fails to run
SPEC CPU, while TR-RAW-BV-FP achieves an overhead of 22.4x. On
smaller real-world benchmarks relating to compression and image
parsing, the Taint Rabbit has an overhead of 2.8x, and therefore
outperforms DataTracker significantly, which incurs an overhead
of 14.5x. Unfortunately, like the existing generic tools, we did en-
counter one case, namely SPEC CPU’s gcc benchmark, where the
Taint Rabbit crashed because of memory limitations. However, this
limitation is exacerbated by our current implementation, which is
intended to analyze 32-bit software. Nevertheless, the Taint Rab-
bit provides a new opportunity to better scale expensive dynamic
analyses when applied to large and CPU-bound applications.

RQ4: Do taint primitives enable generic taint analysis?
To answer RQ4, we demonstrate versatility by considering a

variety of exemplars. Our results indicate that it is feasible for
user-defined primitives to support security applications concerning
exploit detection, UAF debugging and fuzzing, all of which rely on
different taint policies.

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

631

6.7 Threats to Validity
Our experimental setup may have impacted our results. Particu-
larly, we use old versions of Pin (i.e., 2.12 and 2.14) since LibDFT
and Triton do not support newer, potentially faster, versions. To
reduce this threat, we ran Pin-Null with a recent version of Pin (3.7,
released in 2018) on SPEC CPU. The results (given in the appendix)
indicate no major changes in performance (with an average over-
head difference of 0.01x). Moreover, unlike many other tools that
use Pin as a DBI framework, we use DynamoRIO. Therefore results
cannot be compared directly. However, the Taint Rabbit is faster
than other generic taint engines with high margins, which should
exceed any performance benefits provided by the DBI framework.
We also built our own baseline, TR-CC, to mitigate this threat.

Moreover, there might exist a taint policy that cannot be imple-
mented effectively using the interfaces between Taint Rabbit and
the taint primitives. This would impact our claim that the Taint
Rabbit delivers generic taint analysis. We are also exposed to the
problem of benchmark bias, i.e., our findings might not general-
ize to further benchmarks. We have addressed these two threats
by considering three different taint-based applications and a wide
range of complex benchmarks.

7 RELATEDWORK
There is a substantial body of work on improving the efficiency
of bitwise taint analysis [3, 12, 39]. LibDFT includes carefully im-
plemented routines so that they are automatically inlined by DBI
tools. Minemu [3] reduces register spillage by sacrificing the SSE
registers, which are assumed to be dead, to store taint status. Lastly,
unlike our dynamic approach, Lift [39] uses static fast paths, and
Davanian et al. [17] apply this approach system-wide. Overall, these
works present performant bitwise solutions but lack the versatility
of generic taint analysis.

Dytan [14] supports generic taint analysis that enables the user
to define custom merging policies for multiple tags stored in bit
vectors. Unfortunately, its routines are not optimized and suffer
from high overhead. DECAF [24] performs bitwise-tainting inline
to QEMU’s TCG intermediate language, but maintains taint labels
asynchronously via tracing at a slower pace. The Taint Rabbit per-
forms generic taint analysis that is also optimized.

Other works [27, 42] perform preliminary analysis to reduce
runtime overhead. Jee et al. [27] avoid instrumentation by means
of code abstraction and TaintEraser [56] leverages taint summaries
of standard API functions. These approaches are orthogonal to our
work, and could further improve performance.

While the Taint Rabbit is an online taint tracker, other works [9,
15, 34, 35] propose offline variants where analysis is decoupled from
the application’s execution. FlowWalker [15] employs DBI to log
traces and after runtime performs taint analysis. StraightTaint [34]
takes a similar approach, but uses an efficient multi-threaded buffer
to save data required for constructing the trace. Chabbi et al. [9]
investigate taint analysis performed on a secondary shadow thread,
which is in sync with the application’s thread. Meanwhile, Taint-
Pipe [35] uses threads that perform symbolic execution on code
recently executed by the application until a concrete taint state
is processed by a thread spawned earlier. Unlike the Taint Rabbit,

these approaches face issues related to discrepancies in time of at-
tack versus time of detection, or require expensive synchronization.

Iodine [1] also uses dynamic information to drive static analysis.
Instrumentation is optimistically pruned such that it avoids roll-
backs upon violations of likely runtime invariants. The Taint Rabbit
instead uses dynamic information when performing forward data-
flow analysis to generate fast paths. Iodine does not support binaries
and depends on a prior profiling stage.

Similar to versatility, precision is also a trade-off for better perfor-
mance, and in the context of pointer tracking, has fostered several
discussions [16, 46, 47]. The Taint Rabbit works at the byte-level
for speed, while Yadegari et al. [52] perform bit-level taint analysis
to tackle obfuscation techniques.

Recently, Chua et al. [13] investigated synthesising propagation.
The approach aims to reduce implementation effort, but the effi-
ciency of the generated analyses remains unclear. Therefore, our
work provides reciprocal benefits.

DBI Optimisations. Kleckner [30] reduces clean calls via par-
tial inlining, while Wang et al. [51] extend the applicability of
persistent code caching. Hawkins et al. [23] enhance the speed of
DBI for JIT applications by using parallel memory mapping. Such
approaches could further improve the Taint Rabbit.

8 CONCLUSION
In this work, we make several contributions towards generic taint
analysis. First, call-avoiding instruction handlers and dynamic fast
path generation are shown to be effective optimizations. Second,
we demonstrate that our approach, based on taint primitives, is
flexible enough to support a variety of taint policies.

While our results indicate that avoiding clean calls when exe-
cuting instruction handlers delivers the highest performance im-
provements, fast paths also provides additional speed-ups once
amortized. The total speed up is substantial: Dytan achieves an
overhead of 237x on CPU-bound benchmarks concerning com-
pression and image parsing when compared to native execution
times, and our optimizations enable the Taint Rabbit to reduce that
overhead to 1.7x. Overall, the techniques presented reduce the per-
formance gap between generic and bitwise taint engines, and offer
better scalability for difficult dynamic analyses.

ACKNOWLEDGEMENT
We would like to extend our sincere gratitude to Derek Bruening,
Hendrik Greving and the rest of the DynamoRIO team for answer-
ing any queries we had about the DBI engine, and reviewing our
pull requests. We also thank the creators of other taint engines for
making their tools available, and the anonymous reviewers for their
invaluable feedback. This work is supported by the EPSRC CDT
in Cyber Security, VETSS and the Endeavour Scholarship Scheme
(partly financed by the European Social Fund).

REFERENCES
[1] Subarno Banerjee, David Devecsery, Peter M Chen, and Satish Narayanasamy.

2018. Iodine: Fast Dynamic Taint Tracking Using Rollback-free Optimistic Hybrid
Analysis. In Symposium on Security and Privacy. IEEE.

[2] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel,
and Engin Kirda. 2009. Scalable, behavior-based malware clustering. In Network
and Distributed System Security Symposium. Internet Society, 8–11.

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

632

[3] Erik Bosman, Asia Slowinska, and Herbert Bos. 2011. Minemu: The World’s
Fastest Taint Tracker. In International Workshop on Recent Advances in Intrusion
Detection. Springer LNCS, 1–20.

[4] Derek Bruening and Qin Zhao. 2011. Practical Memory Checking with Dr. Mem-
ory. In Code Generation and Optimization. IEEE, 213–223.

[5] Derek Bruening, Qin Zhao, and Saman Amarasinghe. 2012. Transparent Dynamic
Instrumentation. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on
Virtual Execution Environments. 133–144.

[6] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011.
BAP: A binary analysis platform. In International Conference on Computer Aided
Verification. Springer LNCS, 463–469.

[7] James Bucek, Klaus-Dieter Lange, et al. 2018. SPEC CPU2017: Next-Generation
Compute Benchmark. In International Conference on Performance Engineering.
ACM, 41–42.

[8] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Un-
dangle: Early Detection of Dangling Pointers in Use-after-free and Double-free
Vulnerabilities. In International Symposium on Software Testing and Analysis.
ACM, 133–143.

[9] Milind Chabbi, Somu Peritanayagam, Gregory Andrews, and Saumya Debray.
2007. Efficient Dynamic Taint Analysis using Multicore Machines. Master’s thesis.
The University of Arizona, Department of Computer Science.

[10] Walter Chang, Brandon Streiff, and Calvin Lin. 2008. Efficient and extensible
security enforcement using dynamic data flow analysis. In Computer and Com-
munications Security. ACM, 39–50.

[11] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In Symposium on Security and Privacy. IEEE, 711–725.

[12] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. 2006. TaintTrace: Efficient
flow tracing with dynamic binary rewriting. In Computers and Communications,.
IEEE, 749–754.

[13] Zheng Leong Chua, Yanhao Wang, Teodora Baluta, Prateek Saxena, Zhenkai
Liang, and Purui Su. 2019. One Engine To Serve’em All: Inferring Taint Rules
Without Architectural Semantics. In Network and Distributed System Security
Symposium. Internet Society.

[14] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A Generic Dy-
namic Taint Analysis Framework. In International Symposium on Software Testing
and Analysis. ACM, 196–206.

[15] Baojiang Cui, Fuwei Wang, Tao Guo, Guowei Dong, and Bing Zhao. 2013.
FlowWalker: A Fast and Precise Off-Line Taint Analysis Framework. In Emerging
Intelligent Data and Web Technologies. IEEE, 583–588.

[16] Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2010. Tainting is not
pointless. ACM SIGOPS Operating Systems Review 44, 2 (2010), 88–92.

[17] Ali Davanian, Zhenxiao Qi, and Yu Qu. 2019. DECAF++: Elastic Whole-System
Dynamic Taint Analysis. In RAID. USENIX Association.

[18] Arnaldo Carvalho De Melo. 2010. The new Linux Perf tools. In
Slides from Linux Kongress. https://pdfs.semanticscholar.org/16ca/
fd05fa375dfe370274cd22b4c16c72d6c53b.pdf

[19] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
Wil Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-scale
Automated Vulnerability Addition. In Symposium on Security and Privacy. IEEE,
110–121.

[20] DynamoRIO. 2017. Documentation: Clean Calls. http://dynamorio.org/docs/
API_BT.html#sec_clean_call

[21] The Apache Software Foundation. [n. d.]. ab – Apache HTTP server benchmark-
ing tool. https://httpd.apache.org/docs/2.4/programs/ab.html

[22] Brendan Gregg. 2016. The Flame Graph. Commun. ACM 59, 6 (2016), 48–57.
[23] Byron Hawkins, Brian Demsky, Derek Bruening, and Qin Zhao. 2015. Optimiz-

ing binary translation of dynamically generated code. In Code Generation and
Optimization. IEEE, 68–78.

[24] Andrew Henderson, Lok Kwong Yan, Xunchao Hu, Aravind Prakash, Heng
Yin, and Stephen McCamant. 2017. DECAF: A Platform-Neutral Whole-System
Dynamic Binary Analysis Platform. Transactions on Software Engineering 43
(2017), 164–184. Issue 2.

[25] Intel. 2016. Intel 64 and IA-32 architectures software developer’s manual.
Intel Corporation. https://www.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-software-developer-instruction-
set-reference-manual-325383.pdf

[26] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. 2010. An Empiri-
cal Study of Privacy-Violating Information Flows in JavaScript Web Applications.
In Computer and Communications Security, Vol. 10. ACM, 270–283.

[27] Kangkook Jee, Georgios Portokalidis, Vasileios P Kemerlis, Soumyadeep Ghosh,
David I August, and Angelos D Keromytis. 2012. A General Approach for Effi-
ciently Accelerating Software-based Dynamic Data Flow Tracking on Commodity
Hardware. In Network and Distributed System Security Symposium. Internet Soci-
ety.

[28] Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D
Keromytis. 2012. LibDFT: Practical Dynamic Data Flow Tracking for Commodity
Systems. In ACM Sigplan Notices, Vol. 47. ACM, 121–132.

[29] Wei Ming Khoo. 2012. Taintgrind: A taint-tracking plugin for the Valgrind
memory checking tool. https://github.com/wmkhoo/taintgrind

[30] Reid Kleckner. 2011. Optimization of Naïve Dynamic Binary Instrumentation Tools.
Master’s thesis. Massachusetts Institute of Technology.

[31] David Korczynski and Heng Yin. 2017. Capturing Malware Propagations with
Code Injections and Code-Reuse Attacks. In Computer and Communications
Security. ACM, 1691–1708.

[32] Daniel Leech. 2015. PHPBench. https://phpbench.readthedocs.io/en/latest/index.
html#

[33] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation. In
ACM Sigplan Notices, Vol. 40. ACM, 190–200.

[34] Jiang Ming, Dinghao Wu, Jun Wang, Gaoyao Xiao, and Peng Liu. 2016. Straight-
Taint: Decoupled Offline Symbolic Taint Analysis. In Automated Software Engi-
neering. ACM, 308–319.

[35] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu. 2015. TaintPipe:
Pipelined Symbolic Taint Analysis. In USENIX Security Symposium. 65–80.

[36] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In ACM Sigplan Notices. ACM, 89–100.

[37] James Newsome and Dawn Song. 2005. Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Commodity Soft-
ware. In Network and Distributed System Security Symposium. Internet Society.

[38] Pin. 2015. Pin 2.14 User Guide. https://software.intel.com/sites/landingpage/
pintool/docs/71313/Pin/html/

[39] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and Youfeng
Wu. 2006. Lift: A Low-overhead Practical Information Flow Tracking System for
Detecting Security Attacks. In Microarchitecture. IEEE, 135–148.

[40] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In Network
and Distributed System Security Symposium. Internet Society, 1–14.

[41] Florent Saudel and Jonathan Salwan. 2015. Triton: ADynamic Symbolic Execution
Framework. In Symposium sur la sécurité des technologies de l’information et des
communications. SSTIC, 31–54.

[42] Prateek Saxena, R Sekar, and Varun Puranik. 2008. Efficient Fine-grained Binary
Instrumentation with Applications to Taint-tracking. In Code Generation and
Optimization. ACM, 74–83.

[43] Jonathan L Schilling. 2003. The Simplest Heuristics May be the Best in Java JIT
Compilers. ACM Sigplan Notices 38, 2 (2003), 36–46.

[44] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You
Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic
Execution (but Might have been Afraid to Ask). In Symposium on Security and
Privacy. IEEE, 317–331.

[45] Fermin J Serna. 2012. The Info Leak Era on Software Exploitation. Black Hat
USA.

[46] Asia Slowinska and Herbert Bos. 2009. Pointless Tainting? Evaluating the Practi-
cality of Pointer Tainting. In European Conference on Computer Systems. ACM,
61–74.

[47] Asia Slowinska and Herbert Bos. 2010. Pointer Tainting Still Pointless (But We
All See the Point of Tainting). ACM SIGOPS Operating Systems Review 44, 3 (2010),
88–92.

[48] Manolis Stamatogiannakis, Paul Groth, and Herbert Bos. 2014. Looking Inside
the Black-box: Capturing Data Provenance using Dynamic Instrumentation. In
International Provenance and Annotation Workshop. Springer LNCS, 155–167.

[49] Gang-Ryung Uh, Robert Cohn, Bharadwaj Yadavalli, Ramesh Peri, and Ravi Ayya-
gari. 2006. Analyzing Dynamic Binary Instrumentation Overhead. In Workshop
on Binary Instrumentation and Applications.

[50] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. 2007. Cross Site Scripting Prevention with Dynamic
Data Tainting and Static Analysis. In Network and Distributed System Security
Symposium. Internet Society.

[51] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCamant. 2016.
A General Persistent Code Caching Framework for Dynamic Binary Translation
(DBT). In USENIX Annual Technical Conference. USENIX Association, 591–603.

[52] Babak Yadegari and Saumya Debray. 2014. Bit-level taint analysis. In Source Code
Analysis and Manipulation. IEEE, 255–264.

[53] Heng Yin and Dawn Song. 2010. TEMU: Binary Code Analysis via Whole-system
Layered Annotative Execution. Technical Report UCB/EECS-2010-3. EECS Depart-
ment, University of California, Berkeley.

[54] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda. 2007.
Panorama: Capturing System-wide Information Flow for Malware Detection and
Analysis. In Computer and Communications Security. ACM, 116–127.

[55] Qin Zhao, Derek Bruening, and Saman Amarasinghe. 2010. Umbra: Efficient and
Scalable Memory Shadowing. In Code Generation and Optimization. ACM, 22–31.

[56] David Yu Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wetherall.
2011. TaintEraser: Protecting Sensitive Data Leaks using Application-level Taint
Tracking. ACM SIGOPS Operating Systems Review 45, 1, 142–154.

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

633

https://pdfs.semanticscholar.org/16ca/fd05fa375dfe370274cd22b4c16c72d6c53b.pdf
https://pdfs.semanticscholar.org/16ca/fd05fa375dfe370274cd22b4c16c72d6c53b.pdf
http://dynamorio.org/docs/API_BT.html#sec_clean_call
http://dynamorio.org/docs/API_BT.html#sec_clean_call
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://github.com/wmkhoo/taintgrind
https://phpbench.readthedocs.io/en/latest/index.html#
https://phpbench.readthedocs.io/en/latest/index.html#
https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/

APPENDIX

5 10 15 20 25

perlbench
gcc

omnetpp
mcf

xalancbmk
x264

deepsjeng
leela

exchange2
xz

slowdown factor (normalized)

Inline
Clean-Call

Figure 7: Peformance of clean call and inline instruction ex-
ecution counters. The inline optimization is turned on/off
via DynamoRIO’s -opt_cleancall option.

Algorithm 3: Pointer tracking propagation [8]
Data: Taint labels s1 and s2
Result: Taint label d

1 if s1 = NULL and s2 = NULL then
2 d ← NULL;
3 else if s1 , NULL and s2 , NULL then
4 d ← NULL;
5 else if s1 , NULL then
6 d ← s1;
7 else
8 d ← s2;
9 end

10 return d ;

Listing 1: An instruction handler of LibDFT. It propagates
taint using a bitwise or for an instruction, e.g., add, where two
registers are sources and one is also the destination.
1 static void PIN_FAST_ANALYSIS_CALL
2 r2r_binary_opl(thread_ctx_t *thread_ctx , uint32_t dst , uint32_t

↪→ src) {
3 thread_ctx ->vcpu.gpr[dst] |= thread_ctx ->vcpu.gpr[src];
4 }

Listing 2: An instruction handler of DataTracker. Propagation
performs union operations on the sets associated with each
source byte (lines 5–8). tag_combine calls set_union at line 13.
1 static void PIN_FAST_ANALYSIS_CALL
2 r2r_binary_opl(thread_ctx_t *thread_ctx , uint32_t dst , uint32_t

↪→ src)
3 {
4 ...
5 RTAG[dst][0] = tag_combine(dst_tag [0], src_tag [0]);
6 RTAG[dst][1] = tag_combine(dst_tag [1], src_tag [1]);
7 RTAG[dst][2] = tag_combine(dst_tag [2], src_tag [2]);
8 RTAG[dst][3] = tag_combine(dst_tag [3], src_tag [3]);
9 }
10
11 std::set <uint32_t > tag_combine(std::set <uint32_t > const & lhs ,

↪→ std::set <uint32_t > const & rhs) {
12 std::set <uint32_t > res;
13 std:: set_union(lhs.begin(), lhs.end(), rhs.begin(), rhs.end(),
14 std:: inserter(res , res.begin()));
15 ...

Algorithm 4: Taint propagation for one source operand
Data: ID dst, ID src1, Integer opnd_size

1 meet_label1← NULL;
2 for i ← 0 to opnd_size − 1 do
3 label← lookup_label(src1 + i);
4 meet_label1← meetprimitive(meet_label1, label)
5 end
6 for i ← 0 to opnd_size − 1 do
7 dst_label← src_dstprimitive(meet_label1);
8 set_label(dst + i , dst_label);
9 end

Algorithm 5: Optimized taint propagation for one source
operand with independent bytes
Data: ID dst, ID src1, Integer opnd_size

1 for i ← 0 to opnd_size − 1 do
2 src_label1← lookup_label(src1 + i);
3 dst_label← src_dstprimitive(src_label1);
4 set_label(dst + i , dst_label);
5 end

Figure 8: Perf [18], along with Flame Graphs [22], aided the
profiling of the Taint Rabbit. The figure illustrates a record-
ing of the Taint Rabbit on perlbench. Most of the flames are
caused by basic block instrumentation. Meanwhile, the flat
area represents execution in the DBI’s code cache. Its dom-
inance is a positive result as time is not heavily spent on
instrumentation (only 2% in this recording). Unfortunately,
symbols required for generating the flames are not available
as this code is JIT’ed. However, profiling helped discover a
bottleneck related to shadow memory during development.

0 0.5 1 1.5 2

perlbench
gcc

mcf

omnetpp

xalancbmk

x264
deepsjeng

leela

exchange2
xz

slowdown

Pin 2.14
Pin 3.7

Figure 9: Performance of PinNull on Pin 2.14 and 3.7

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

634

Table 4: The list of instructions that the Taint Rabbit supported at the time of experimentation. Instructions, such as jmp and
prefetchnta, that have no effect on taint propagation are not listed. Most of the missing instructions relate to floating-point
arithmetic and AVX. We plan to add support for additional instructions. Therefore this list may not reflect the current state.

add or adc sbb and sub xor inc dec push pop
imul call mov lea xchg cwde cdq leave rdtsc cmovo cmovno
cmovb cmovnb cmovz cmovnz cmovbe cmovnbe cmovs cmovns cmovp cmovnp cmovl
cmovnl cmovle cmovnle punpcklbw punpcklwd punpckldq packsswb pcmpgtb pcmpgtw pcmpgtd packuswb

punpckhbw punpckhwd punpckhdq packssdw punpcklqdq punpckhqdq movd movq movdqu movdqa pshufw
pshufd pshufhw pshuflw pcmpeqb pcmpeqw pcmpeqd seto setno setb setnb setz
setnz setbe setnbe sets setns setp setnp setl setnl setle setnle
shld shrd cmpxchg movzx bsf bsr movsx xadd pextrw bswap psrlw
psrld psrlq paddq pmullw pmovmskb pminub pand pmaxub pandn psraw psrad

pmulhuw pmulhw movntdq pminsw por pmaxsw pxor psllw pslld psllq pmaddwd
psubb psubw psubd psubq paddb paddw paddd psrldq pslldq rol ror
rcl rcr shl shr sar not neg mul div idiv movups

movupd movlps movlpd movaps andps andpd andnps andnpd orps orpd xorps
xorpd movs rep movs stos rep stos lddqu pshufb palignr lzcnt pcmpeqq movntdqa

packusdw pcmpgtq pminsd pminuw pminud pmaxsb pmaxsd pmaxuw pmaxud pmulld pextrb
pextrd xgetbv movq2dq movdq2q tzcnt pext

Table 5: Overview of the taint engines considered in our experimental comparison. aBAP Pin-Traces assigns a special constant
integer value to indicate merged taint.

Taint Engine Granularity Meta-Data Union Operator Approximation DBI Platform

LibDFT [28] Byte Bit/Byte Bitwise Under Pin

Triton [41] Byte Bool Bitwise Over Pin

Dytan [14] Byte Bit-Vector Generic Under Pin

DataTracker [48] Byte Set Set Union Under Pin

DataTracker-EWAH [40] Byte Compressed Set Set Union Under Pin

BAP-Pin Traces [6] Byte 32-Bit Unsigned Offset Set to topa Over Pin

Taintgrind [29] Byte Bit Bitwise Under Valgrind

DECAF [24] Bit Bit Bitwise Over QEMU

Dr. Memory [4] Byte 2 Bits Bitwise Under DynamoRIO

Taint Rabbit Byte 32-Bit Word Generic Over DynamoRIO

Table 6: Statistics related to Dynamic Fast Path Generation. Generation and execution timelines are relative to each other.
Generation counts are less than execution counts and therefore are hardly visible on the timeline.

App. % BB
Instrum.

Avg.
BB Size.

Avg. Instr
Elided.

FP
Gen. # Revert # Exec.

None
Exec.
FP

Exec.
Full

FP Gen.
Timeline

Exec. FP
Timeline

perlbench 81.0% 4 1 2009 1255 2.77E9 3.43E9 1.53E6

mcf 82.3% 5 4 281 92 3.42E9 4.03E9 9.32E7

xalancbmk 81.2% 4 3 213 57 3.51E9 3.14E9 1.43E9

exchange2 81.2% 5 4 791 245 3.82E9 5.19E7 1.67E9

bzip2 87.4% 4 3 510 77 1.69E9 2.82E8 6.27E7

djpeg 84% 4 1 141 73 1.49E8 6.42E8 7.33E8

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

635

(1) Truncation
1 mov eax, dword ptr [eax]

2 mov dword ptr [ebp], eax

3 mov ecx, dword ptr [ebx]

4 mov eax, dword ptr [ecx]

5 mov dword ptr [ebp], eax

6 mov eax, dword ptr [ebx]

7 jz 0xb7fdba45

(2) Duplication
1 UNTAINTED CASE LABEL

2 mov eax, dword ptr [eax]

3 mov dword ptr [ebp], eax

4 mov ecx, dword ptr [ebx]

5 jmp EXIT LABEL

6 TAINTED CASE LABEL

7 mov eax, dword ptr [eax]

8 mov dword ptr [ebp], eax

9 mov ecx, dword ptr [ebx]

10 EXIT LABEL

(3) Control Dispatch
1 ⟨TAINT CHECK CODE⟩

2 UNTAINTED CASE LABEL

3 cmp ecx, 0x00

4 jnz TAINTED CASE LABEL

5 mov eax, dword ptr [eax]

6 mov dword ptr [ebp], eax

7 mov ecx, dword ptr [ebx]

8 jmp EXIT LABEL

9 TAINTED CASE LABEL

10 cmp ecx, 0x15

11 jnz ⟨CLEAN CALL CODE⟩

12 mov eax, dword ptr [eax]

13 mov dword ptr [ebp], eax

14 mov ecx, dword ptr [ebx]

15 EXIT LABEL

(4) Default Cases
1 ⟨TAINT CHECK CODE⟩

2 UNTAINTED CASE LABEL

3 cmp ecx, 0x00

4 jnz TAINTED CASE LABEL

5 mov eax, dword ptr [eax]

6 mov dword ptr [ebp], eax

7 mov ecx, dword ptr [ebx]

8 jmp EXIT LABEL

9 TAINTED CASE LABEL

10 cmp ecx, 0x15

11 jnz ⟨CLEAN CALL CODE⟩

12 ⟨TAINT ANALYSIS CODE⟩

13 mov eax, dword ptr [eax]

14 ⟨TAINT ANALYSIS CODE⟩

15 mov dword ptr [ebp], eax

16 ⟨TAINT ANALYSIS CODE⟩

17 mov ecx, dword ptr [ebx]

18 EXIT LABEL

(5) Path Generation
1 ⟨TAINT CHECK CODE⟩

2 UNTAINTED CASE LABEL

3 cmp ecx, 0x00

4 jnz FAST PATH CASE LABEL

5 mov eax, dword ptr [eax]

6 mov dword ptr [ebp], eax

7 mov ecx, dword ptr [ebx]

8 jmp EXIT LABEL

9 FAST PATH CASE LABEL

10 cmp ecx, 0x04

11 jnz TAINTED CASE LABEL

12 mov eax, dword ptr [eax]

13 mov dword ptr [ebp], eax

14 ⟨TAINT ANALYSIS CODE⟩

15 mov ecx, dword ptr [ebx]

16 jmp EXIT LABEL

17 TAINTED CASE LABEL

18 cmp ecx, 0x15

19 jnz ⟨CLEAN CALL CODE⟩

20 ⟨TAINT ANALYSIS CODE⟩

21 mov eax, dword ptr [eax]

22 ⟨TAINT ANALYSIS CODE⟩

23 mov dword ptr [ebp], eax

24 ⟨TAINT ANALYSIS CODE⟩

25 mov ecx, dword ptr [ebx]

26 EXIT LABEL

Figure 10: A code example showing the instrumentation steps for fast path generation. The basic block is first truncated as the
address in ecx is obtained via another memory access (at line 3). The remaining code is duplicated in the second step. Jumps
and labels are also inserted. Taint checks and the control dispatcher are then inserted in step 3. At line 11, a clean call triggers
path generation when control reaches the end of the compare and branch sequence. In step 4, the Taint Rabbit weaves analysis
code for the two default cases (i.e. no taint and full taint instrumentation). Step 5 shows the inclusion of a generated path.

Compress PHP Image Apache SpecCPU
100

101

102

sl
ow

do
w
n

100% (all) 50% 25% 5% 0% (none)

Figure 11: The Taint Rabbit achieves better performance
when less taint is introduced because more fast paths are
executed. To aid validate this claim, we ran the same ex-
periments but randomly sampled taint introduction based
on various probabilities. For instance, on SPEC CPU, overall
overhead is reduced to 12.5x from 22.4x when the odds of
introducing taint is set to 1

25 .

0 1 2 4 8

2.4

2.5

2.6

2.7

Possible Fast Paths

Sl
ow

do
w
n

(a) Compression

0 1 2 4 8

96

98

100

Possible Fast Paths

Sl
ow

do
w
n

(b) PHPBench

0 1 2 4 8

4.4

4.6

Possible Fast Paths

Sl
ow

do
w
n

(c) Image Processing

0 1 2 4 8

22

23

24

25

Possible Fast Paths

Sl
ow

do
w
n

(d) SPEC CPU

Figure 12: Overhead vs. Number of Possible Fast Paths

Session 12: Software Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

636

	Abstract
	1 Introduction
	2 Overview
	3 Background
	3.1 Applications of Taint Analysis
	3.2 Taint Analysis via DBI

	4 The Taint Rabbit
	5 Optimized Design
	5.1 Challenges
	5.2 Dynamic Fast Path Generation
	5.3 Efficient Instruction Handlers
	5.4 Other Optimizations
	5.5 Implementation
	5.6 Limitations

	6 Evaluation
	6.1 The Taint Rabbit Engines
	6.2 Other Taint-Based Systems
	6.3 Performance
	6.4 Dynamic Fast Path Generation
	6.5 Application-Specific Experiments
	6.6 Research Questions
	6.7 Threats to Validity

	7 Related Work
	8 Conclusion
	References

