
Alexey Gotsman
Ana Sokolova (Eds.)

LN
CS

 1
21

36

40th IFIP WG 6.1 International Conference, FORTE 2020
Held as Part of the 15th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2020
Valletta, Malta, June 15–19, 2020, Proceedings

Formal Techniques
for Distributed Objects,
Components, and Systems

Lecture Notes in Computer Science 12136

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Alexey Gotsman • Ana Sokolova (Eds.)

Formal Techniques
for Distributed Objects,
Components, and Systems
40th IFIP WG 6.1 International Conference, FORTE 2020
Held as Part of the 15th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2020
Valletta, Malta, June 15–19, 2020
Proceedings

123

Editors
Alexey Gotsman
IMDEA Software Institute
Pozuelo de Alarcón, Spain

Ana Sokolova
University of Salzburg
Salzburg, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-50085-6 ISBN 978-3-030-50086-3 (eBook)
https://doi.org/10.1007/978-3-030-50086-3

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2020
The chapter “Conformance-Based Doping Detection for Cyber-Physical Systems” is licensed under the terms
of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-50086-3
http://creativecommons.org/licenses/by/4.0/

Foreword

The 15th International Federated Conference on Distributed Computing Techniques
(DisCoTec 2020) took place during June 15–19, 2020. It was organized by the
Department of Computer Science at the University of Malta, but was held online due to
the abnormal circumstances worldwide affecting physical travel.

The DisCoTec series is one of the major events sponsored by the International
Federation for Information Processing (IFIP). It comprises three conferences:

– The IFIP WG 6.1 22nd International Conference on Coordination Models and
Languages (COORDINATION 2020)

– The IFIP WG 6.1 20th International Conference on Distributed Applications and
Interoperable Systems (DAIS 2020)

– The IFIP WG 6.1 40th International Conference on Formal Techniques for Dis-
tributed Objects, Components and Systems (FORTE 2020)

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues. As is customary, the event also included several plenary sessions
in addition to the individual sessions of each conference, that gathered attendants from
the three conferences. These included joint invited speaker sessions and a joint session
for the best papers from the respective three conferences.

Associated with the federated event, two satellite events took place:

– The 13th International Workshop on Interaction and Concurrency Experience
(ICE 2020)

– The First International Workshop on Foundations of Consensus and Distributed
Ledgers (FOCODILE 2020)

I would like to thank the Program Committee chairs of the different events for their
help and cooperation during the preparation of the conference, and the Steering
Committee and Advisory Boards of DisCoTec and their conferences for their guidance
and support. The organization of DisCoTec 2020 was only possible thanks to the
dedicated work of the Organizing Committee, including Davide Basile and Francisco
“Kiko” Fernández Reyes (publicity chairs), Antonis Achilleos, Duncan Paul Attard,
and Ornela Dardha (workshop chairs), Lucienne Bugeja (logistics and finances), as
well as all the students and colleagues who volunteered their time to help. Finally, I
would like to thank IFIP WG 6.1 for sponsoring this event, Springer’s Lecture Notes in
Computer Science team for their support and sponsorship, EasyChair for providing the
reviewing framework, and the University of Malta for providing the support and
infrastructure to host the event.

June 2020 Adrian Francalanza

Preface

This volume contains the papers presented at the 40th IFIP WG 6.1 International
Conference on Formal Techniques for Distributed Objects, Components, and Systems
(FORTE 2020), held as one of three main conferences of the 15th International
Federated Conference on Distributed Computing Techniques (DisCoTec 2020), during
June 15–19, 2020, online due to the coronavirus pandemic.

FORTE is a well-established forum for fundamental research on theory, models,
tools, and applications for distributed systems, with special interest in:

• Software quality, reliability, availability, and safety
• Security, privacy, and trust in distributed and/or communicating systems
• Service-oriented, ubiquitous, and cloud computing systems
• Component- and model-based design
• Object technology, modularity, and software adaptation
• Self-stabilization and self-healing/organizing
• Verification, validation, formal analysis, and testing of the above

The Program Committee received a total of 25 submissions, written by authors from
18 different countries. Of these, 11 papers were selected for inclusion in the scientific
program. Each submission was reviewed by at least three Program Committee mem-
bers with the help of 10 external reviewers in selected cases. The selection of accepted
submissions was based on electronic discussions via the EasyChair conference man-
agement system.

As program chairs, we actively contributed to the selection of the keynote speakers
of DisCoTec 2020 (which due to the conference being held online are not all confirmed
at the time of writing).

This year DisCoTec also includes a Tutorial Day of six invited tutorials. This
volume includes the following tutorial papers:

• Parameterised Verification with Byzantine Model Checker
• Typechecking Java Protocols with [St] Mungo

We wish to thank all the authors of submitted papers, all the members of the Pro-
gram Committee for their thorough evaluations of the submissions, and the external
reviewers who assisted the evaluation process. We are also indebted to the Steering
Committee of FORTE for their advice and suggestions. Last but not least, we thank the
DisCoTec general chair, Adrian Francalanza, and his organization team for their hard,
effective work in providing an excellent environment for FORTE 2020 and all other
conferences and workshops, despite of the pandemic troubles.

June 2020 Alexey Gotsman
Ana Sokolova

Organization

Program Committee

Marco Bernardo University of Urbino, Italy
Nathalie Bertrand Inria, France
Marco Carbone IT University of Copenhagen, Denmark
Andrea Corradini University of Pisa, Italy
Cezara Dragoi Inria and ENS, France
Constantin Enea Université Paris-Diderot, France
Javier Esparza TU Munich, Germany
Alexey Gotsman IMDEA Software Institute, Spain
Philipp Haller KTH, Sweden
Bart Jacobs KU Leuven, Belgium
Radha Jagadeesan DePaul University, USA
Akash Lal Microsoft Research, India
Mohsen Lesani University of California, Riverside, USA
Stephan Merz Inria, France
Antoine Miné Sorbonne Université, France
Koko Muroya RIMS Kyoto University, Japan
Catuscia Palamidessi Inria and LIX, France
Kirstin Peters TU Darmstadt, Germany
Tatjana Petrov University of Konstanz, Germany
Vincent Rahli University of Birmingham, UK
Ana Sokolova University of Salzburg, Austria
Tyler Sorensen Princeton University and University of California,

Santa Cruz, USA
Marielle Stoelinga TU Twente, The Netherlands
Sara Tucci-Piergiovanni CEA LIST, France
Nikos Tzevelekos Queen Mary University of London, UK
Viktor Vafeiadis MPI-SWS, Germany
Josef Widder TU Vienna and Interchain, Austria

Additional Reviewers

Pranav Ashok
Stephanie Delaune
Maribel Fernandez
Ernst Moritz Hahn
Yu-Yang Lin

Marco Romanelli
Ocan Sankur
Alceste Scalas
Jacopo Soldani
Stefano Tognazzi

Contents

Full Papers

Strategy Synthesis for Autonomous Driving in a Moving Block Railway
System with UPPAAL STRATEGO . 3

Davide Basile, Maurice H. ter Beek, and Axel Legay

Towards Bridging Time and Causal Reversibility . 22
Marco Bernardo and Claudio Antares Mezzina

Defining and Verifying Durable Opacity: Correctness for Persistent
Software Transactional Memory . 39

Eleni Bila, Simon Doherty, Brijesh Dongol, John Derrick,
Gerhard Schellhorn, and Heike Wehrheim

Conformance-Based Doping Detection for Cyber-Physical Systems 59
Rayna Dimitrova, Maciej Gazda, Mohammad Reza Mousavi,
Sebastian Biewer, and Holger Hermanns

On Implementable Timed Automata . 78
Sergio Feo-Arenis, Milan Vujinović, and Bernd Westphal

Deep Statistical Model Checking. 96
Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck,
and Marcel Steinmetz

Trace Equivalence and Epistemic Logic to Express Security Properties 115
Kiraku Minami

Derivation of Heard-of Predicates from Elementary Behavioral Patterns 133
Adam Shimi, Aurélie Hurault, and Philippe Queinnec

Probabilistic Timed Automata with One Clock and Initialised
Clock-Dependent Probabilities . 150

Jeremy Sproston

A Formal Framework for Consent Management . 169
Shukun Tokas and Olaf Owe

Tutorials

Tutorial: Parameterized Verification with Byzantine Model Checker 189
Igor Konnov, Marijana Lazić, Ilina Stoilkovska, and Josef Widder

Typechecking Java Protocols with [St]Mungo. 208
A. Laura Voinea, Ornela Dardha, and Simon J. Gay

Short Paper

Towards a Hybrid Verification Methodology for Communication Protocols
(Short Paper) . 227

Christian Bartolo Burlò, Adrian Francalanza, and Alceste Scalas

Author Index . 237

xii Contents

Full Papers

Strategy Synthesis for Autonomous
Driving in a Moving Block Railway
System with Uppaal Stratego

Davide Basile1(B) , Maurice H. ter Beek1 , and Axel Legay2

1 ISTI–CNR, Pisa, Italy
{davide.basile,maurice.terbeek}@isti.cnr.it

2 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
axel.legay@uclouvain.be

Abstract. Moving block railway systems are the next generation sig-
nalling systems currently under development as part of the Shift2Rail
European initiative, including autonomous driving technologies. In this
paper, we model a suitable abstraction of a moving block signalling sys-
tem with autonomous driving as a stochastic priced timed game. We then
synthesise safe and optimal driving strategies for the model by applying
advanced techniques that combine statistical model checking with rein-
forcement learning as provided by Uppaal Stratego. Hence, we show
the applicability of Uppaal Stratego in this concrete case study.

1 Introduction

Next generation railway systems are based on distributed inter-organisational
entities, such as on-board train computers and wayside radio-block centres
and satellites, which have to interact to accomplish their tasks. A longstand-
ing effort in the railway domain concerns the use of formal methods and tools
for the analysis of railway (signalling) systems in light of the sector’s stringent
safety requirements [7,10,11,17,27–31,41,42]. Due to their distributed and inter-
organisational nature, their formal verification is still an open challenge. Whilst
model-checking and theorem-proving techniques are predominant, to the best of
our knowledge, applications of controller synthesis techniques are largely lacking.

We describe a formal modelling and analysis experience with Uppaal Stra-
tego of a moving block railway signalling system. This work was conducted
in the context of several projects concerned with the use of formal methods
and tools for the development of railway systems based on moving block sig-
nalling systems, in which train movement is no longer authorised based on
sections of the railway track between fixed points, but computed in real time
as safe zones around the trains. Most notably, the H2020 Shift2Rail projects
ASTRail: SAtellite-based Signalling and Automation SysTems on Railways
along with Formal Method and Moving Block Validation (http://www.astrail.
eu) and 4SECURail: FORmal Methods and CSIRT for the RAILway sector

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 3–21, 2020.
https://doi.org/10.1007/978-3-030-50086-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_1&domain=pdf
http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0003-2287-8925
http://www.astrail.eu
http://www.astrail.eu
https://doi.org/10.1007/978-3-030-50086-3_1

4 D. Basile et al.

(http://www.4securail.eu). The European Shift2Rail initiative (http://shift2rail.
org) is a joint undertaking of the European Commission and the main railway
stakeholders to move the European railway industry forward by increasing its
competitiveness. This concerns in particular the transition to next generation
signalling systems, including satellite-based train positioning, moving-block dis-
tancing, and automatic driving. With a budget of nearly 1 billion euro, it is
unique in its kind.

Previously, in [6,8], we introduced a concrete case study of a satellite-based
moving block railway signalling system, which was developed in collaboration
with industrial partners of the ASTRail project and which was modelled and
analysed with Simulink and Uppaal SMC (Statistical Model Checker). While
those models offered the possibility to fine tune communication parameters that
are fundamental for the reliability of their operational behaviour, they did not
account for the synthesis of autonomous driving strategies.

Building on such efforts, in this paper we present a formal model of a satellite-
based moving block railway signalling system, which accounts for autonomous
driving and which is modelled in Uppaal Stratego as a stochastic priced
timed game. The autonomous driving module is not modelled manually, but it is
synthesised automatically as a strategy, after which both standard and statistical
model checking are applied under the resulting (safe) strategy. The starting point
for deriving the strategy is a safety requirement that the model must respect.
We moreover consider reliability aspects, and the autonomous driving strategy
also provides guarantees for the minimal expected arrival time. The model and
experiments are available at https://github.com/davidebasile/FORTE2020.

Related Work. At last year’s FORTE, parametric statistical model checking was
applied to Unmanned Aerial Vehicles (UAV) [4]. The model was formalised as
a parametric Markov chain with the goal of reducing the probability of failure
while varying parameters such as precision of the position. The UAV follows a
predefined flight plan, whereas we aim at automatically synthesising a strategy
to safely drive the train. It would be interesting to investigate the possibility of
synthesising flight plans under safety constraints.

A decade ago at FORTE’10, one of the first applications of statistical model
checking (using the BIP toolset) to an industrial case study was presented,
namely the heterogeneous communication system for cabin communication in
civil airplanes [9]. The goal was to study the accuracy of clock synchronisation
between different devices running in parallel on a distributed application, i.e. a
time bound within which communication must occur. An implementation of this
case study in Uppaal SMC would allow a comparison of the results.

Statistical model checking has also been used to verify the reliability of
railway interlocking systems [19] and Uppaal has been used to verify railway
timetables [34]. Uppaal Stratego has been applied to a few other case studies
belonging to the transport domain, such as traffic light controllers [3], cruise
control [38], and railway scheduling [37]. We conjecture that the Uppaal Stra-
tego model in [37] could be paired with our model to study railway scheduling

http://www.4securail.eu
http://shift2rail.org
http://shift2rail.org
https://github.com/davidebasile/FORTE2020

Synthesis of Autonomous Train Driving Strategies in Uppaal Stratego 5

for autonomous trains, with the goal of synthesising improved strategies for both
the scheduler and the autonomous driver.

Finally, there have been several recent attempts at modelling and analysing
ERTMS Level 3 signalling systems (in particular Hybrid Level 3 systems with vir-
tual fixed blocks) with Promela/Spin, mCRL2, Alloy/Electrum, iUML, SysML,
ProB, Event-B, and real-time Maude [2,5,14,21,25,33,40,43]. None of these con-
cern quantitative modelling and analysis, typically lacking uncertainty, which is
fundamental for demonstrating the reliability of the operational behaviour of
next generation satellite-based ERTMS Level 3 moving block railway signalling
system models. One of the earliest quantitative evaluations of moving block rail-
way signalling systems can be found in [36], based on GSM-R communications.

Structure of the Paper. After some background on Uppaal Stratego in Sect. 2,
we describe the setting of the case study from the railway domain in Sect. 3. In
Sect. 4, we present the formal model, followed by an extensive description of the
conducted analyses in Sect. 5. Finally, we discuss our experience with Uppaal
Stratego and provide some ideas for future work in Sect. 6.

2 Background: Uppaal Stratego

In this section, we provide some background of the tools and their input models
used in this paper, providing pointers to the literature for more details.

Uppaal Stratego [24] is the latest tool of the Uppaal [12] suite. It inte-
grates formalisms and algorithms coming from the less recent Uppaal Tiga [13]
(synthesis for timed games), Uppaal SMC [22] (Statistical Model Checking),
and the synthesis of near optimal schedulers proposed in [23].

Uppaal Tiga [13,20] implements an efficient on-the-fly algorithm for the
synthesis of strategies extended to deal with models of timed games. These are
automata modelling a game between a player (the controller) and an opponent
(the environment). Transitions are partitioned into controllable and uncontrol-
lable ones. The controller plays the controllable transitions, while the opponent
plays the uncontrollable ones. The controller is only allowed to deactivate con-
trollable transitions. The goal is to synthesise a strategy for the controller such
that, no matter the actions of the opponent, a particular property is satisfied.
Generally, uncontrollable transitions are used to model events such as delays
in communication or other inputs from the environment. On the converse, con-
trollable transitions characterise the logic of the controller, generally related to
actuators. The strategy synthesis algorithm uses a suitable abstraction of the
real-time part of the model, through zones that are constraints over the real-
time clocks. Strategy synthesis allows an algorithmic construction of a controller
which is guaranteed to ensure that the resulting system satisfies the desired
correctness properties, i.e. reachability and safety.

Uppaal SMC is a statistical model checker based on models of stochastic
timed automata. These are automata enhanced with real-time modelling through
clock variables. Moreover, their stochastic extension replaces non-determinism

6 D. Basile et al.

with probabilistic choices and time delays with probability distributions (uniform
for bounded time and exponential for unbounded time). These automata may
communicate via (broadcast) channels and shared variables. Statistical Model
Checking (SMC) [1,39] is based on running a sufficient number of (probabilistic)
simulations of a system model to obtain statistical evidence (with a predefined
level of statistical confidence) of the quantitative properties to be checked. SMC
offers advantages over exhaustive (probabilistic) model checking. Most impor-
tantly, SMC scales better since there is no need to generate and possibly explore
the full state space of the model under scrutiny, thus avoiding the combinato-
rial state-space explosion problem typical of model checking, and the required
simulations can be easily distributed and run in parallel. This comes at a price:
contrary to (probabilistic) model checking, exact results (with 100% confidence)
are out of the question.

The method proposed in [23] extends the strategy synthesis of [13] to find
near-optimal solutions for stochastic priced timed games, which are basically
stochastic timed automata enhanced with controllable and uncontrollable tran-
sitions, similarly to timed games. In short, the method starts from the most per-
missive strategy guaranteeing the time bounds, computed with the algorithms
in [13]. This strategy is then converted into a stochastic one by substituting
non-determinism with uniform distributions. Finally, reinforcement learning is
applied iteratively to learn from sampled runs the effect of control choices, to
find the near-optimal strategy.

Uppaal Stratego uses stochastic priced timed games as formalism whilst
integrating (real-time) model checking, statistical model checking, strategy syn-
thesis, and optimisation. It thus becomes possible to perform model checking
and optimisation under strategies, which are first-class objects in the tool. Inter-
nally, abstractions that allow to pass from stochastic priced timed games to
timed games similar to those in [13] are used to integrate the various algorithms.

3 Context and Case Study

The European Railway Traffic Management System (ERTMS) is a set of inter-
national standards for the interoperability, performance, reliability, and safety
of modern European rail transport [26]. It relies on the European Train Control
System (ETCS), an automatic train protection system that continuously super-
vises the train, ensuring to not exceed the safety speed and distance. The current
standards distinguish four levels (0–3) of operation of ETCS signalling systems,
depending largely on the role of trackside equipment and on the way informa-
tion is transmitted to and from trains. The ERTMS/ETCS signalling systems
currently deployed on railways throughout Europe concern at most Level 2.

Level 2 signalling systems are based on fixed blocks starting and ending at
signals. The block sizes are determined based on parameters like the speed limit,
the train’s speed and braking characteristics, drivers’ sighting and reaction times,
etc. But the faster trains are allowed to run, the longer the braking distance and
the longer the blocks need to be, thus decreasing the line’s capacity. This is

Synthesis of Autonomous Train Driving Strategies in Uppaal Stratego 7

because the railway sector’s stringent safety requirements impose the length of
fixed blocks to be based on the worst-case braking distance, regardless of the
actual speed of the train. For exact train position detection and train integrity
supervision, Level 2 signalling systems make use of trackside equipment (such
as track circuits or axle counters). However, communication of the movement
authority (MA), i.e. the permission to move to a specific location with super-
vision of speed, as well as speed information and route data to and from the
train is achieved by continuous data transmission via GSM-R or GPRS with a
wayside radio block centre. Moreover, an onboard unit continuously monitors
the transferred data and the train’s maximum permissible speed by determining
its position in between the Eurobalises (transponders on the rails of a railway)
used as reference points via sensors (axle transducers, accelerometer and radar).

The next generation Level 3 signalling systems currently under investiga-
tion and development, no longer rely on trackside equipment for train position
detection and train integrity supervision. Instead, an onboard odometry system
is responsible for monitoring the train’s position and autonomously computing
its current speed. The onboard unit frequently sends the train’s position to a
radio block centre which, in turn, sends each train a MA, computed by exploit-
ing its knowledge of the position of the rear end of the train ahead. For this
to work, the precise absolute location, speed, and direction of each train needs
to be known, which are to be determined by a combination of sensors: active
and passive markers along the track, and trainborne speedometers. The resulting
moving block signalling systems allow trains in succession to close up, since a
safe zone around the moving trains can be computed, thus considerably reducing
headways between trains, in principle to the braking distance. This allows for
more trains to run on existing railway tracks, in response to the ever-increasing
need to boost the volume of passenger and freight rail transport and the cost
and impracticability of constructing new tracks. Furthermore, the removal of
trackside equipment results in lower capital and maintenance costs [32].

One of the current challenges in the railway sector is to make moving block
signalling systems as effective and precise as possible, including satellite-based
positioning systems and leveraging on an integrated solution for signal outages
(think, e.g., of the absence of positioning in tunnels) and the problem of multi-
paths [44]. However, due to its robust safety requirements the railway sector
is notoriously cautious about adopting technological innovations. Thus, while
GNSS-based positioning systems are in use for some time now in the avionics
and automotive sectors, current train signalling systems are still based on fixed
blocks. However, experiments are being conducted and case studies are being
validated in order to move to Level 3 signalling systems [2,5,6,8,14,15,21,25,
33,40].

The components of the moving block railway signalling case study consid-
ered in this paper are depicted in Fig. 1. The train carries the location unit and
onboard unit components, while the radio block centre is a wayside component.
The location unit receives the train’s location from GNSS satellites, sends this
location (and the train’s integrity) to the onboard unit, which, in turn, sends the

8 D. Basile et al.

Fig. 1. ERTMS Level 3 moving block railway signalling (adapted from [8,31])

location to the radio block centre. Upon receiving a train’s location, the radio
block centre sends a MA to the onboard unit (together with speed restrictions
and route configurations), indicating the space the train can safely travel based
on the safety distance with preceding trains. The radio block centre computes
such MA by communicating with neighbouring radio block centres and exploiting
its knowledge of the positions of switches and other trains (head and tail posi-
tion) by communicating with a Route Management System. We abstract from
the latter and from communication among neighbouring radio block centres: we
consider one train to communicate with one radio block centre, based on a seam-
less handover when the train moves from one radio block centre supervision area
to an adjacent one, as regulated by its Functional Interface Specification [45].

4 Formal Model

In this section, we describe the formal model of the case study introduced before.
It consists of a number of SPTGs, which are basically timed automata with prices
(a cost function) and stochasticity, composed as a synchronous product.

We briefly describe the model’s components, followed by details of the
onboard unit. Delays in the communications are exponentially distributed with
rate 1:4 to account for possible delays. This is a common way of modelling
communication delays. Moreover, all transitions are uncontrollable, except for
the controllable actions of the driver in the TRAIN_ATO_T component, which are
used to synthesise the safe and optimal strategy.

Component OBU_MAIN_GenerateLocationRequest_T initiates system inter-
actions by generating a request for a new location to send to the location unit.
The location unit component LU_MAIN_T receives a new position request from
the onboard unit, replying with the current train location (computed via GNSS).
The main component OBU_MAIN_SendLocationToRBC_T of the onboard unit per-
forms a variety of operations. It receives the position from the location unit,
sends the received position to the radio block centre, and eventually implements
a safety mechanism present in the original system specification. In particular,
at each instant of time, it checks that the train’s position does not exceed the
MA received from the radio block centre; if it does, it enters a failure state.

Synthesis of Autonomous Train Driving Strategies in Uppaal Stratego 9

Fig. 2. The TRAIN_ATO_T component

The failure is also broadcast to all other components. In fact, all components
can enter a failure state if a failure is triggered. The RBC_Main_T component
model of the radio block centre receives MA requests from the onboard unit.
Once received, the radio block centre repeatedly sends a MA message until
the corresponding acknowledgement from the onboard unit is received. Also
OBU_MAIN_ReceiveMA_T models the logic of the onboard unit. It receives a MA
from the radio block centre, and sends back a corresponding acknowledgement.
Finally, the TRAIN_ATO_T component was defined to synthesise a strategy for
moving the train in a safe and optimal way. In particular, the position of the
train (variable loc) is stated in a unidimensional space and identified by one
coordinate (representing the position along its route), and the train is allowed
at each cycle to either move one unit or stay idle. To allow state-space reduction,
the value of loc represents a range of the space in which the train is located,
rather than a specific point in space. Next, we describe this component, depicted
in Fig. 2, in detail.

The initial state of TRAIN_ATO_T is the nominal state I_GO, drawn with two
circles. Two failure states (FailWhileGo and FailWhileReadLoc) are reached in
case the MA is exceeded in OBU_MAIN_SendLocationToRBC_T. The initial state
has an invariant to guarantee that the train has not passed its destination. Note
that invariants can be constraints on clocks or variables. This is done by checking
that the location of the train, which is encoded by the integer variable loc, is
less than or equal to the integer constant arrive, which is an input parameter
of the model to perform experiments. From the initial state it is possible to tran-
sit to state ReadLocWhileRun, upon a location request coming from LU_MAIN_T,
and coming back from ReadLocWhileRun to I_GO by replying to such a request.
Variable x is a buffer for value-reading messages. To reduce the model’s state
space, the value transmitted by TRAIN_ATO is the remaining headway, i.e. the dif-
ference between the MA and the location. Indeed, such value has a fixed range if

10 D. Basile et al.

compared to the location (under the assumption that the arrival point is greater
than the initial headway value, otherwise the train will never exceed its MA
before arriving to the destination). In turn, OBU_MAIN_SendLocationToRBC_T
checks if such transmitted value (headway) is negative for triggering a failure,
since in that case the train has exceeded its MA.

From both states I_GO and ReadLocWhileRun, an inner loop is used to receive
the new MA (movaut) from RBC_Main_T. The movaut should be relative to the
current location loc of the train, i.e. movaut = loc + fixed number of meters
that the train is allowed to travel. However, to reduce the state space, such
a message simply resets the headway variable to its initial value, which is an
integer constant called ma. Thus, movaut is not stored in the state space because
its value can be retrieved as loc+ma. The constant ma is another input parameter
of the model. The reason such a loop is also present in state ReadLocWhileRun
is that otherwise the MA message would be lost in this state, and similarly for
the urgent state (marked with the symbol U, described below).

We now discuss the two controllable transitions in the model. The first is
used to move a train. In Uppaal Stratego a controller cannot delay its actions
(whereas the environment can), hence the movement of the train is split into an
uncontrollable transition followed by a controllable one, with an intermediate
urgent state. An intermediate urgent state is such that a transition must be
taken without letting time pass. This is a workaround to force the controller
to perform an action at that instant of time. From the initial state I_GO, an
uncontrollable transition targeting the urgent state is used to check that the
conditions for moving the train are met. In particular, if the headway is non-
negative and the train has not arrived, the transition for moving the train is
enabled. Additionally, a test c>0 on the clock c is used to forbid Zeno behaviour.
Indeed the clock c is reset to zero after the train has moved, hence time is forced
to pass before the next movement. Such a condition cannot be stated directly
on the controllable transition, otherwise a time-lock (i.e. time is not allowed to
pass) would be reached in case the condition is not met.

The controllable transition (drawn as a solid arc) from the urgent state can
either set the integer speed to 1 or to 0, allowing the train to proceed to the
next interval of space or to remain in the previous interval, respectively. Recall
that loc is not a coordinate but rather an abstraction of a portion of space. The
controllable transition also updates the headway. To reduce the state space, the
only negative value allowed for the variable headway is −1.

Finally, the second controllable transition is used to reach a sink state DONE.
To further reduce the state space, the train is not allowed to move once loc has
reached value arrive. A hybrid clock timer is used as a stop-watch to measure
the time it takes for the train to arrive in state DONE. To this aim, the invariant
timer’==0 in state DONE sets the derivative of clock timer to zero. A hybrid
clock can be abstracted away during the synthesis of a safe strategy.

Synthesis of Autonomous Train Driving Strategies in Uppaal Stratego 11

5 Formal Analysis and Experiments

In this section, we report on analysis of the formal model. The main objective
is to synthesise a safe strategy such that the train does not exceed the MA.
Additionally, the train should be as fast as possible, within the limits imposed by
the safety requirements. To this aim, an optimal and safe strategy is synthesised.

The experiments were carried out on a machine with a processor Intel(R)
Core(TM) i7-8500Y CPU at 1.50GHz, 1601MHz, 2 cores, and 4 logical proces-
sors with 16GB of RAM, running 64 bit Windows 10. The development version of
Uppaal Stratego (academic version 4.1.20-8-beta2) was used. Indeed, when
developing the model and its analysis, minor issues were encountered (more
later). This version of Uppaal Stratego contains some patches resulting from
a series of interactions between the first author and the developers team at Aal-
borg University.

The set-up of the parameters of the statistical model checker was chosen to
provide a good confidence in the results and is as follows: probabilistic deviation
set to δ = 0.01, probability of false negatives and false positives set to α = 0.005
and β = 0.5, respectively, and the probability uncertainty set to ε = 0.005. As
anticipated in Sect. 3, we focussed on one radio block centre, one onboard unit,
and one location unit, i.e. one train communicating with one radio block centre.
Finally, we set ma = 5 and arrive = 20.

To begin with, we want to check if the hazard of exceeding the MA is possible
at all in our model. If such a hazard were never possible, the safe strategy would
simply allow all behaviour. To analyse this, we perform standard model checking:

A[] not (OBU_MAIN_SendLocationToRBC.MAexceededFailure)

This formula checks if for every possible path, the state MAexceededFailure of
the component OBU_MAIN_SendLocationToRBC is never visited. Indeed, this par-
ticular state is reached exactly when the hazard occurs, i.e. the MA is exceeded,
thus triggering a failure. After 0.016 s, using 38,200KB of memory, Uppaal
Stratego reports that this formula is not satisfied, thus such hazard is possible
without a proper strategy to drive the train. We would like to check the like-
lihood to reach this failure, given this specific set-up of parameters. First, the
average maximal time in which the train reaches its destination is computed.
This is important to fine tune the time bound for further simulations. To do so,
we use the statistical model checker to evaluate the following formula:

φ1 = E[<=700;10000] (max: TRAIN_ATO.timer)

This formula computes the average maximal value of the TRAIN_ATO.timer stop-
watch, i.e. the arrival time. It is computed based on 10000 simulations with an
experimental time bound of 700 s. The computed value is 377.235 ± 3.960, and
its probability distribution is depicted in Fig. 3. By analysing the probability
distribution it is possible to notice that the average value is lower if faults are
ignored. Indeed, in case of faults the value of timer is equal to the end of the

12 D. Basile et al.

Fig. 3. Probability distribution for average maximal arrival time (φ1)

simulation (i.e. 700 s). Hence, the time bound for the following simulations is set
to 500 s, thus considering also worst cases of arrival time.

We now compute the likelihood of the model to reach a failure, using SMC to
measure the probability of reaching the failure state with the following formula:

φ2 = Pr[<=500] (<>OBU_MAIN_SendLocationToRBC.MAexceededFailure)

Uppaal Stratego executes 33952 simulations and the probability is within
the range [0.117029, 0.127029], with confidence 0.995. The probability confidence
interval plot for this experiment is depicted in Fig. 4. We conclude that, for this
set-up of parameters, there is a relatively high probability for this hazard to
occur. This is as expected, due to the absence of a strategy for driving the train
and the non-deterministic choice of whether or not to move the train.

After these standard and statistical model-checking experiments, we exploit
the synthesis capabilities of Uppaal Stratego to automatically fix the spec-
ification to adhere to safety constraints. Indeed, no manual intervention to fix
the model is needed: it suffices to compute a driving strategy and compose it
with the model. Recall that the only controllable transitions in the model are
those for deciding whether or not to move the train (i.e. related to accelera-
tion/deceleration, accordingly). This in turn depends on the stochastic delays
in communication. The strategy prunes controllable transitions such that those
previously reachable configurations leading to the failure state are no longer

Synthesis of Autonomous Train Driving Strategies in Uppaal Stratego 13

Fig. 4. Probability confidence interval for likelihood of reaching a failure (φ2)

reachable. To compute this strategy, called safe, we evaluate the following
formula:

strategy safe = control :
A[] not (OBU_MAIN_SendLocationToRBC.MAexceededFailure)

Uppaal Stratego successfully computes the safe strategy in 7.167 s, using
576,888KB of memory. The strategy allows all possible behaviour that does not
violate the above property. To have a glimpse of the strategy at work, we ran
50 simulations of the model composed with the safe strategy to visualise the
variable TRAIN_ATO.loc (i.e. the train’s location) with the following command:

simulate 50 [<=500] TRAIN_ATO.loc under safe

Figure 5 shows the trajectory of variable TRAIN_ATO.loc for 50 simulations, com-
puted in 0.147 s, using 576,984KB. We see that in all trajectories the train never
stops before reaching its destination, i.e. no failure occurs. However, in some
simulations the train is relatively slower, when compared to other simulations.

Uppaal Stratego also allows to model check the synthesised strategies.
We ran a full state-space exploration by means of standard model checking to
formally verify that after composing the model with the safe strategy the hazard
of exceeding the MA is mitigated. This is checked through the following formula:

A[] not (OBU_MAIN_SendLocationToRBC.MAexceededFailure) under safe

This formula checks that in the model composed with the safe strategy, the
‘bad’ state is never reached. After 2.283 s and using 599,268KB of memory,

14 D. Basile et al.

Fig. 5. Simulations of the model under the safe strategy safe

Uppaal Stratego reports that the formula is satisfied, thus confirming that
we automatically synthesised a strategy for mitigating the hazard. However, even
if not showed in Fig. 5, there exist trajectories in the composition where the train
never reaches its destination. This can be formally proven with a full state-space
exploration of the strategy by standard model checking of the following formula:

A<> (TRAIN_ATO.DONE) under safe

This formula checks that in all paths eventually state TRAIN_ATO.DONE is reached
(i.e. the train reached its destination). After 0.053 s, using 599,268KB of memory,
Uppaal Stratego reports that the formula does not hold. Indeed, as expected,
the strategy does not guarantee that such a state is always reached, but it only
guarantees to avoid state OBU_MAIN_SendLocationToRBC.MAexceededFailure.
For example, there exists also a safe strategy that allows the train to remain in
its starting position.

To evaluate the probability to reach state TRAIN_ATO.DONE under the safe
strategy, we ran the statistical model checker to evaluate the following formula:

φ3 = Pr[<=500] (<>TRAIN_ATO.DONE) under safe

Uppaal Stratego executes 10617 runs and estimates the probability to be in
the interval [0.960561, 0.970561] with confidence 0.995. The probability distribu-
tion of this formula is depicted in Fig. 6. We conclude that the likelihood for the
train to not reach its destination within 500 time units under the safe strategy
is low, and it is mainly due to the possibility of large delays in communications.
These delays are indeed the only source of stochastic behaviour in the model.

Synthesis of Autonomous Train Driving Strategies in Uppaal Stratego 15

Fig. 6. Probability distribution for reaching the final destination under safe (φ3)

We now show how Uppaal Stratego can account for dependability param-
eters other than safety. In particular, reliability of the system can be related to
the capacity of the train to reach its destination quickly. We optimise the safe
strategy to minimise the arrival time, thus increasing its reliability whilst sat-
isfying safety. This can be done with the following query, computed in 0.015 s
using 580,844KB of memory:

strategy optsafe = minE (TRAIN_ATO.timer) [<=500] :
<> (TRAIN_ATO.DONE) under safe

This query creates a new strategy, called optsafe, that optimises the strategy
safe by minimising the average value of the hybrid clock timer within 500 time
units. Recall that this hybrid clock is used to measure the train’s arrival time.
The obtained strategy is thus both safe and it has an optimal speed for the train.
To check this last improvement, we measure the average maximal arrival time
under the strategies safe and optsafe with the following queries, respectively:

φ4 = E[<=700;10000] (max: TRAIN_ATO.timer) under safe
φ5 = E[<=700;10000] (max: TRAIN_ATO.timer) under optsafe

In particular, both queries run 10000 simulations with time bound of 700 time
units. For the safe strategy, the estimated value is 338.473 ± 2.264. For the
optsafe strategy, the estimated value is 331.362± 2.250. As expected, the opti-
mised safe strategy has improved the arrival time of the safe strategy. The prob-
ability distribution of query φ5 is depicted in Fig. 7.

16 D. Basile et al.

Fig. 7. Probability distribution for average maximal arrival time under optsafe (φ5)

Sensitive Analysis of Maximal Headway. Up to this point, we evaluated the
moving block railway signalling system under analysis with a specific parameter
set-up. In this set-up, each time the train receives a fresh MA, its headway is
reset to 5 (i.e. ma = 5). Thus, this is the maximal possible headway.

The parameters of the model can be tuned in such a way that the analysed
properties are within a desired range of values. In particular, we hypothesise that
reducing the maximal headway (i.e. ma) results in a deterioration in performance
of the optimal strategy and in an increment of the probability of reaching a failure
without strategy. Indeed, with a tight headway, the train is forced to move slowly
in order not to exceed its MA. In the remainder of this section, we experimentally
verify our hypothesis. Table 1 reports the evaluation of properties φ1–φ5 in three
different experiments, with values for ma taken from the set {3, 5, 10}, reporting
also the computation times and, where appropriate, the number of runs.

By reducing the maximal headway (i.e. ma = 3), we notice an overall dete-
rioration of the average maximal arrival time (cf. properties φ1, φ4, and φ5).
Moreover, without strategy the probability of failure is higher when compared
to ma = 5 (cf. property φ2). These results confirm our hypothesis and further
corroborate the reliability of our model.

As a final experiment, we enlarged the maximal headway (i.e. ma = 10) to
evaluate the improvement in performance in case of a larger headway. We recall
that a large headway is not desirable, since it would result in a lower capacity of
the railway network. In this experiment, the values of φ2 and φ3 are similar to
the case of ma = 5. However, by observing the values of φ1, φ4, and φ5, we note
that there is only a slight improvement in arrival time, even if we have doubled

Synthesis of Autonomous Train Driving Strategies in Uppaal Stratego 17

the maximal headway. This experiment confirms our intuition that an excessive
increment of the maximal headway does not lead to a better performance. This
is because the train cannot go faster than its optimal speed. On the converse,
an excessive enlargement of the headway results in a deterioration of the overall
track capacity. Hence, ma = 5 is a satisfactory set-up for the maximal headway.

Table 1. Three sets of experiments obtained by varying the ma parameter

Headway Property
φ1 φ2 φ3 φ4 φ5

ma=3 402.869±4.449
14.7 s
708,084KB

47683 runs
[0.179862, 0.189862]
0.3 s
702,676KB

11197 runs
[0.958596, 0.968595]
0.078 s
823,396KB

346.715± 2.189
28.25 s
823,580KB

338.470±2.207
36.899 s
823,580KB

ma = 5 377.235±3.960
14.518 s
38,200KB

33952 runs
[0.117029, 0.127029]
39.124 s
32,856KB

10617 runs
[0.960561, 0.970561]
17.003 s
580,764KB

338.473±2.264
25.99 s
580,844KB

331.362±2.250
34.241 s
580,868KB

ma=10 374.482±3.935
14.722 s
29,848KB

32685 runs
[0.111755, 0.121755]
0.172 s
30,232KB

9520 runs
[0.964259, 0.974258]
0.187 s
2,301,436KB

337.087±2.274
26.998 s
2,301,504KB

329.841±2.282
34.172 s
2,301,688KB

6 Conclusion and Future Work

We have modelled and analysed an autonomous driving problem for a moving
block railway signalling system. Communication between the train and the radio
block centre are modelled such that the train is allowed to proceed only within
the limits imposed by the radio block centre via the MA, which is based on
the position of the train and updated continuously. The goal is to synthesise a
strategy for the train to arrive to its destination as quickly as possible without
exceeding its limits. We modelled the problem as a stochastic priced timed game.
The controller is in charge of moving the train, playing against uncontrollable
stochastic delays in communication. We used Uppaal Stratego to compute
a strategy to enforce safety in the model. The safe strategy was statistically
model checked to evaluate the mean arrival time of the train. This quantity
was optimised, and the optimised strategy was compared to the safe one. We
observed an improvement in the mean arrival time, whilst retaining safety. As far
as we know, this is the first application of synthesis techniques to autonomous
driving for next generation railway signalling systems.

This was our first experience with strategy synthesis and optimisation of a
case study from the railway domain and also with Uppaal Stratego. Since this
is a very recent tool there has not been much experimentation, in particular not
outside of the groups involved in its development. The tool is still undergoing
testing, and new versions and patches are released frequently. In fact, while
developing the model we ran into corner cases that needed interactions with the
developers team at Aalborg University. Those interactions led to the release of
new versions, with patches fixing the issues discovered through our model.

18 D. Basile et al.

We did have experience in modelling and analysing railway case studies with
Uppaal SMC [6,8,31]. The original model developed in [8] and statistically
model checked had to be simplified considerably (cf. Sect. 4) to undergo strat-
egy synthesis and verification. Indeed, while Uppaal SMC scales to large sys-
tems by applying simulations rather than full state-space exploration, Uppaal
Stratego requires full state-space exploration of the timed game for strategy
synthesis. For example, using the set-up discussed in Sect. 5 with ma = 10, if
we double the constant arrive (i.e. 40 instead of 20) then during the strategy
synthesis the tool terminates with an error message due to memory exhaustion.

An interesting future line of research would be to adapt the statistical syn-
thesis techniques described in [16,35] to learn safety objectives, thus avoiding
the full state-space exploration (as currently performed in Uppaal Stratego)
while guaranteeing the scalability of SMC. This would enable the modelling of
more complex ERTMS case studies. Also, further experiments, with different
set-ups of the parameters and more trains and radio block centres need to be
performed, to investigate the limits of the approach described in this paper in
terms of optimisation. Finally, we intend to discuss with our railway project
partners the impact of the techniques discussed in this paper.

Acknowledgements. Funding by MIUR PRIN 2017FTXR7S project IT MaTTerS
(Methods and Tools for Trustworthy Smart Systems) and H2020 project 4SECURail
(FORmal Methods and CSIRT for the RAILway sector). The 4SECURail project
received funding from the Shift2Rail Joint Undertaking under EU’s H2020 research
and innovation programme under grant agreement 881775.

We thank the Uppaal developers team, in particular Danny Poulsen, Marius Miku-
cionis, and Peter Jensen, for their assistance with Uppaal Stratego.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 1–39 (2018). https://doi.org/10.1145/3158668

2. Arcaini, P., Ježek, P., Kofron, J.: Modelling the hybrid ERTMS/ETCS level 3 case
study in Spin. In: Butler et al. [18], pp. 277–291. https://doi.org/10.1007/978-3-
319-91271-4_19

3. Thamilselvam, B., Kalyanasundaram, S., Rao, M.V.P.: Coordinated intelligent
traffic lights using Uppaal Stratego. In: 2019 11th International Conference on
Communication Systems & Networks (COMSNETS), pp. 789–794. IEEE (2019).
https://doi.org/10.1109/COMSNETS.2019.8711457

4. Bao, R., Attiogbe, C., Delahaye, B., Fournier, P., Lime, D.: Parametric statistical
model checking of UAV flight plan. In: Pérez, J.A., Yoshida, N. (eds.) FORTE
2019. LNCS, vol. 11535, pp. 57–74. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21759-4_4

5. Bartholomeus, M., Luttik, B., Willemse, T.: Modelling and analysing ERTMS
hybrid level 3 with the mCRL2 toolset. In: Howar, F., Barnat, J. (eds.) FMICS
2018. LNCS, vol. 11119, pp. 98–114. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00244-2_7

https://doi.org/10.1145/3158668
https://doi.org/10.1007/978-3-319-91271-4_19
https://doi.org/10.1007/978-3-319-91271-4_19
https://doi.org/10.1109/COMSNETS.2019.8711457
https://doi.org/10.1007/978-3-030-21759-4_4
https://doi.org/10.1007/978-3-030-21759-4_4
https://doi.org/10.1007/978-3-030-00244-2_7
https://doi.org/10.1007/978-3-030-00244-2_7

Synthesis of Autonomous Train Driving Strategies in Uppaal Stratego 19

6. Basile, D., ter Beek, M.H., Ciancia, V.: Statistical model checking of a moving
block railway signalling scenario with Uppaal SMC. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2018. LNCS, vol. 11245, pp. 372–391. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03421-4_24

7. Basile, D., et al.: On the industrial uptake of formal methods in the railway domain.
In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 20–29. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98938-9_2

8. Basile, D., ter Beek, M.H., Ferrari, A., Legay, A.: Modelling and analysing ERTMS
L3 moving block railway signalling with Simulink and Uppaal SMC. In: Larsen,
K.G., Willemse, T. (eds.) FMICS 2019. LNCS, vol. 11687, pp. 1–21. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-27008-7_1

9. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical
abstraction and model-checking of large heterogeneous systems. In: Hatcliff, J.,
Zucca, E. (eds.) FMOODS/FORTE 2010. LNCS, vol. 6117, pp. 32–46. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13464-7_4

10. ter Beek, M.H., et al.: Adopting formal methods in an industrial setting: the rail-
ways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30942-8_46

11. ter Beek, M.H., Gnesi, S., Knapp, A.: Formal methods for transport systems. Int.
J. Softw. Tools Technol. Transf. 20(3), 237–241 (2018). https://doi.org/10.1007/
s10009-018-0487-4

12. Behrmann, G., et al.: UPPAAL 4.0. In: Quantitative Evaluation of Systems
(QEST), pp. 125–126. IEEE (2006). https://doi.org/10.1109/QEST.2006.59

13. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: time for playing games!. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73368-3_14

14. Berger, U., James, P., Lawrence, A., Roggenbach, M., Seisenberger, M.: Verification
of the European rail traffic management system in Real-Time Maude. Sci. Comput.
Program. 154, 61–88 (2018). https://doi.org/10.1016/j.scico.2017.10.011

15. Biagi, M., Carnevali, L., Paolieri, M., Vicario, E.: Performability evaluation of
the ERTMS/ETCS - level 3. Transp. Res. C Emerg. Technol. 82, 314–336 (2017).
https://doi.org/10.1016/j.trc.2017.07.002

16. Bønneland, F., Jensen, P., Larsen, K.G., Muñiz, M., Srba, J.: Partial order reduc-
tion for reachability games. In: 30th International Conference on Concurrency The-
ory (CONCUR 2019). LIPIcs, vol. 140, pp. 1–15 (2019). https://doi.org/10.4230/
LIPIcs.CONCUR.2019.23

17. Boulanger, J.L. (ed.): Formal Methods Applied to Industrial Complex Systems -
Implementation of the B Method. Wiley, New York (2014). https://doi.org/10.
1002/9781119002727

18. Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.): ABZ 2018. LNCS, vol.
10817. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4

19. Cappart, Q., Limbrée, C., Schaus, P., Quilbeuf, J., Traonouez, L., Legay, A.: Ver-
ification of interlocking systems using statistical model checking. In: 2017 IEEE
18th International Symposium on High Assurance Systems Engineering (HASE),
pp. 61–68. IEEE (2017). https://doi.org/10.1109/HASE.2017.10

20. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452_9

https://doi.org/10.1007/978-3-030-03421-4_24
https://doi.org/10.1007/978-3-030-03421-4_24
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/978-3-030-27008-7_1
https://doi.org/10.1007/978-3-642-13464-7_4
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/s10009-018-0487-4
https://doi.org/10.1007/s10009-018-0487-4
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1016/j.scico.2017.10.011
https://doi.org/10.1016/j.trc.2017.07.002
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23
https://doi.org/10.1002/9781119002727
https://doi.org/10.1002/9781119002727
https://doi.org/10.1007/978-3-319-91271-4
https://doi.org/10.1109/HASE.2017.10
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/11539452_9

20 D. Basile et al.

21. Cunha, A., Macedo, N.: Validating the hybrid ERTMS/ETCS level 3 concept with
Electrum. In: Butler et al. [18], pp. 307–321. https://doi.org/10.1007/978-3-319-
91271-4_21

22. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

23. David, A., et al.: On time with minimal expected cost!. In: Cassez, F., Raskin,
J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11936-6_10

24. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0_16

25. Dghaym, D., Poppleton, M., Snook, C.: Diagram-led formal modelling using iUML-
B for hybrid ERTMS level 3. In: Butler et al. [18], pp. 338–352. https://doi.org/
10.1007/978-3-319-91271-4_23

26. ERTMS/ETCS RAMS Requirements Specification - Chap. 2 - RAM, 30
September 1998. http://www.era.europa.eu/Document-Register/Documents/B1-
02s1266-.pdf

27. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In:
Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05032-4_13

28. Fantechi, A., Ferrari, A., Gnesi, S.: Formal methods and safety certification: chal-
lenges in the railways domain. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9953, pp. 261–265. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47169-3_18

29. Fantechi, A., Fokkink, W., Morzenti, A.: Some trends in formal methods applica-
tions to railway signaling. In: Gnesi, S., Margaria, T. (eds.) Formal Methods for
Industrial Critical Systems: A Survey of Applications, Chap. 4, pp. 61–84. Wiley,
New York (2013). https://doi.org/10.1002/9781118459898.ch4

30. Ferrari, A., Fantechi, A., Gnesi, S., Magnani, G.: Model-based development and
formal methods in the railway industry. IEEE Softw. 30(3), 28–34 (2013). https://
doi.org/10.1109/MS.2013.44

31. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing
formal tools for system design: a judgment study. In: ICSE. ACM (2020). https://
doi.org/10.1145/3377811.3380373

32. Furness, N., van Houten, H., Arenas, L., Bartholomeus, M.: ERTMS level 3:
the game-changer. IRSE News 232, 2–9 (2017). https://www.irse.nl/resources/
170314-ERTMS-L3-The-gamechanger-from-IRSE-News-Issue-232.pdf

33. Hansen, D., et al.: Validation and real-life demonstration of ETCS hybrid level
3 principles using a formal B model. Int. J. Softw. Tools Technol. Transf. 22(3),
315–332 (2020). https://doi.org/10.1007/s10009-020-00551-6

34. Haxthausen, A.E., Hede, K.: Formal verification of railway timetables - using the
UPPAAL model checker. In: ter Beek, M.H., Fantechi, A., Semini, L. (eds.) From
Software Engineering to Formal Methods and Tools, and Back. LNCS, vol. 11865,
pp. 433–448. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30985-
5_25

https://doi.org/10.1007/978-3-319-91271-4_21
https://doi.org/10.1007/978-3-319-91271-4_21
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-319-91271-4_23
https://doi.org/10.1007/978-3-319-91271-4_23
http://www.era.europa.eu/Document-Register/Documents/B1-02s1266-.pdf
http://www.era.europa.eu/Document-Register/Documents/B1-02s1266-.pdf
https://doi.org/10.1007/978-3-319-05032-4_13
https://doi.org/10.1007/978-3-319-47169-3_18
https://doi.org/10.1007/978-3-319-47169-3_18
https://doi.org/10.1002/9781118459898.ch4
https://doi.org/10.1109/MS.2013.44
https://doi.org/10.1109/MS.2013.44
https://doi.org/10.1145/3377811.3380373
https://doi.org/10.1145/3377811.3380373
https://www.irse.nl/resources/170314-ERTMS-L3-The-gamechanger-from-IRSE-News-Issue-232.pdf
https://www.irse.nl/resources/170314-ERTMS-L3-The-gamechanger-from-IRSE-News-Issue-232.pdf
https://doi.org/10.1007/s10009-020-00551-6
https://doi.org/10.1007/978-3-030-30985-5_25
https://doi.org/10.1007/978-3-030-30985-5_25

Synthesis of Autonomous Train Driving Strategies in Uppaal Stratego 21

35. Jaeger, M., Jensen, P.G., Guldstrand Larsen, K., Legay, A., Sedwards, S.,
Taankvist, J.H.: Teaching stratego to play ball: optimal synthesis for continuous
space MDPs. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS,
vol. 11781, pp. 81–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3_5

36. Jansen, D.N., Hermanns, H.: Dependability checking with StoCharts: is train radio
reliable enough for trains? In: First International Conference on the Quantitative
Evaluation of Systems, pp. 250–259. IEEE (2004). https://doi.org/10.1109/QEST.
2004.1348039

37. Karra, S.L., Larsen, K.G., Lorber, F., Srba, J.: Safe and time-optimal control
for railway games. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.)
RSSRail 2019. LNCS, vol. 11495, pp. 106–122. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-18744-6_7

38. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise
control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design.
LNCS, vol. 9360, pp. 260–277. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23506-6_17

39. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_11

40. Mammar, A., Frappier, M., Tueno Fotso, S.J., Laleau, R.: An Event-B model of
the Hybrid ERTMS/ETCS level 3 standard. In: Butler et al. [18], pp. 353–366.
https://doi.org/10.1007/978-3-319-91271-4_24

41. Mazzanti, F., Ferrari, A.: Ten diverse formal models for a CBTC automatic
train supervision system. In: MARS/VPT. EPTCS, vol. 268, pp. 104–149 (2018).
https://doi.org/10.4204/EPTCS.268.4

42. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Towards formal methods diversity in
railways: an experience report with seven frameworks. Int. J. Softw. Tools Technol.
Transf. 20(3), 263–288 (2018). https://doi.org/10.1007/s10009-018-0488-3

43. Nardone, R., et al.: Modeling railway control systems in Promela. In: Artho, C.,
Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 121–136. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-29510-7_7

44. Rispoli, F., Castorina, M., Neri, A., Filip, A., Di Mambro, G., Senesi, F.: Recent
progress in application of GNSS and advanced communications for railway sig-
naling. In: 2013 23rd International Conference Radioelektronika (RADIOELEK-
TRONIKA), pp. 13–22. IEEE (2013). https://doi.org/10.1109/RadioElek.2013.
6530882

45. UNISIG: FIS for the RBC/RBC handover, 15 June 2016. http://www.era.europa.
eu/Document-Register/Pages/set-2-FIS-for-the-RBC-RBC-handover.aspx

https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1109/QEST.2004.1348039
https://doi.org/10.1109/QEST.2004.1348039
https://doi.org/10.1007/978-3-030-18744-6_7
https://doi.org/10.1007/978-3-030-18744-6_7
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-319-91271-4_24
https://doi.org/10.4204/EPTCS.268.4
https://doi.org/10.1007/s10009-018-0488-3
https://doi.org/10.1007/978-3-319-29510-7_7
https://doi.org/10.1109/RadioElek.2013.6530882
https://doi.org/10.1109/RadioElek.2013.6530882
http://www.era.europa.eu/Document-Register/Pages/set-2-FIS-for-the-RBC-RBC-handover.aspx
http://www.era.europa.eu/Document-Register/Pages/set-2-FIS-for-the-RBC-RBC-handover.aspx

Towards Bridging Time and Causal
Reversibility

Marco Bernardo and Claudio Antares Mezzina(B)

Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy
claudio.mezzina@uniurb.it

Abstract. Causal consistent reversibility blends causality and reversibil-
ity. For a concurrent system, it says that an action can be undone provided
this has no consequences, thereby making it possible to bring the system
back to a past consistent state. Time reversibility is considered instead in
the performance evaluation field. A continuous-time Markov chain is time
reversible if its behavior remains the same when the direction of time is
reversed. We try to bridge these two theories by showing the conditions
under which both causal consistent reversibility and time reversibility can
be achieved in the setting of a stochastic process algebra.

1 Introduction

The interest into computation reversibility dates back to the 60’s, when it was
observed that irreversible computations cause heat dissipation into circuits [16].
This suggested that low energy consumption could be achieved by resorting
to reversible computing, in which there is no information loss [3]. Nowadays,
reversible computing has several applications ranging from biochemical reac-
tions [29,30] and parallel discrete-event simulation [27,32] to robotics [22], control
theory [33], fault tolerant systems [6,17,35,36], and program debugging [7,20].

In a reversible system, we can observe two directions of computation: a for-
ward one, coinciding with the normal way of computing, and a backward one,
which is able to undo the effects of the forward one. In the literature, there exist
different meanings of reversibility. For instance, in a Petri net model reversibil-
ity means that one can always reach the initial marking [2], while in distributed
systems it amounts to the capability of returning to a past consistent state [5].
In contrast, in the performance evaluation field, reversibility is intended as time
reversibility and is instrumental to develop efficient analysis methods [13].

Our focus is on the relationship between causal consistent reversibility and
time reversibility, from a process algebraic perspective. On the one hand, quanti-
tative aspects have been disregarded in the setting of causal consistent reversibil-
ity. On the other hand, the theory of time reversibility has been applied to
concurrent systems without explicitly taking causality into account.

In this paper, instead, we aim at bridging these two theories, by showing
how causal consistent reversibility and time reversibility can be jointly obtained.
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 22–38, 2020.
https://doi.org/10.1007/978-3-030-50086-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-50086-3_2

Towards Bridging Time and Causal Reversibility 23

To this purpose, we consider a stochastic process calculus in which every action
is equipped with a positive real number expressing the rate at which the action is
executed. As is well known in the literature [10], the stochastic process underlying
the calculus turns out to be a continuous-time Markov chain (CTMC) [14].

The contribution of this paper is twofold. Firstly, we apply for the first time
the technique of [28] to a stochastic process calculus. In particular, we pro-
vide forward and backward operational semantic rules – featuring forward and
backward actions and rates – and then we show that the resulting calculus is
causal consistent reversible. This is accomplished by importing from the reduc-
tion semantics setting of [5] the notion of concurrent transitions, which is new
in the structural operational semantics framework of [28].

Secondly, after observing that the CTMC underlying the calculus is station-
ary, we show that time reversibility can be achieved by using, in the operational
semantic rules, backward rates equal to the corresponding forward rates. This
is quite different from the approaches followed for example in [8,25], where time
reversibility is addressed a posteriori, as we instead obtain a calculus in which
time reversibility can be guaranteed by construction.

This paper is organized as follows. In Sects. 2 and 3 we recall background
information about causal consistent reversibility and time reversibility, respec-
tively. Then, in Sect. 4 we provide and illustrate our results about the integration
of these two forms of reversibility in the considered stochastic process calculus.
Finally, in Sect. 5 we conclude with some directions for future work.

2 Causal Consistent Reversibility

Reversibility in a system means the possibility of reverting the last performed
action. In a sequential system, this is very simple as there exists just one last
action. In a concurrent system, the situation is more complex as there is no clear
definition of last action. Indeed, there might be several concurrent last actions.
One could resort to timestamps to decide which action is the last one, but having
synchronised clocks in a distributed system is rather difficult.

A good approximation is to consider as last action each action that has not
caused any other action yet. This is at the basis of the so called causal consistent
reversibility [5], which relates reversibility with causality. Intuitively, the defini-
tion says that, in a concurrent system, any action can be undone provided that
all of its consequences, if any, are undone beforehand.

In the process algebra literature, there are two reversible variants of CCS [26].
The first one in time order, RCCS [5], uses stack-based memories attached to
processes to record all the actions executed by the processes themselves. In
contrast, [28] proposes a general method, of which CCSK is a result, to reverse
calculi whose operational semantic rules are expressed in the path format [1]. The
basic idea of this method is to make all the operators of the calculus static and to
univocally identify each executed action with a communication key. Note that,
since dynamic operators such as prefixing and choice are forgetful by definition,
making them static avoids information loss during a reduction.

24 M. Bernardo and C. A. Mezzina

Despite these two approaches may seem different, they have been shown to be
equivalent in terms of labeled transition system isomorphism [18]. The approach
of [5] is more suitable for systems whose operational semantics is given in terms
of reduction semantics, hence its application is to be preferred in the case of very
expressive calculi [4,19] as well as programming languages [21,24]. On the other
hand, the approach of [28] is very handy when it comes to deal with labeled
transition systems and CCS-like calculi, which is the case of this paper.

For example, given the process P +Q, from P
α−→ P ′ we derive P +Q

α−→ P ′.
If we assume the possibility of reverting action α, i.e., P ′ αr−→ P , we have that P ′

gets back to a state in which the information about the choice operator and Q
is lost. To avoid this, in [28] +Q is treated as a dead decoration of process P ′.
In this way, the use of explicit memories of [5] is avoided because the necessary
information is syntactically maintained within processes.

3 Time Reversibility

In the field of performance evaluation, a different notion of reversibility, called
time reversibility, is considered. We illustrate it in the specific case of continuous-
time Markov chains, which are discrete-state stochastic processes characterized
by the memoryless property [14].

A stochastic process describes the evolution of some random phenomenon
over time through a set of random variables, one for each time instant. A
stochastic process X(t) taking values into a discrete state space S for t ∈ R≥0

is a continuous-time Markov chain (CTMC) iff for all n ∈ N, time instants
t0 < t1 < · · · < tn < tn+1 ∈ R≥0, and states s0, s1, . . . , sn, sn+1 ∈ S it holds that
Pr{X(tn+1)= sn+1 | X(ti)= si, 0 ≤ i ≤ n} = Pr{X(tn+1)= sn+1 | X(tn)= sn},
i.e., the probability of moving from one state to another does not depend on the
particular path that has been followed in the past to reach the current state,
hence that path can be forgotten.

A CTMC is irreducible iff each of its states can be reached from every other
state. A state s ∈ S is recurrent iff the CTMC will eventually return to s with
probability 1, in which case s is called positive recurrent iff the expected number
of steps until the CTMC returns to it is finite. A CTMC is ergodic iff it is
irreducible and all of its states are positive recurrent; ergodicity coincides with
irreducibility in the case that the CTMC has finitely many states.

A CTMC can be represented as a labeled transition system or as a state-
indexed matrix. In the first case, each transition is labeled with some proba-
bilistic information describing the evolution from its source state to its target
state. In the second case, the same information is stored into an entry, indexed
by those two states, of a matrix. The value of this probabilistic information is,
in general, a function of the time at which the state change takes place.

For the sake of simplicity, we restrict ourselves to time-homogeneous CTMCs,
in which conditional probabilities of the form Pr{X(t + t′) = s′ | X(t) = s} do
not depend on t, so that the considered information is simply a positive real
number. This is called the rate at which the CTMC moves from state s to

Towards Bridging Time and Causal Reversibility 25

state s′ and uniquely characterizes the exponentially distributed time taken by
the considered move. It can be shown that the sojourn time in any state s ∈ S
is exponentially distributed with rate given by the sum of the rates of the moves
of s. The average sojourn time in s is the inverse of such a sum and the probability
of moving from s to s′ is proportional to the corresponding rate.

Every time-homogeneous, ergodic CTMC X(t) is stationary, which means
that (X(ti + t′))1≤i≤n has the same joint distribution as (X(ti))1≤i≤n for all
n ∈ N≥1 and t1 < · · · < tn, t′ ∈ R≥0. Specifically, X(t) has a unique steady-state
probability distribution π that for all s ∈ S fulfills π(s) = limt→∞ Pr{X(t) = s |
X(0) = s′} for any s′ ∈ S. These probabilities can be computed by solving the
linear system of global balance equations π · Q = 0 subject to

∑
s∈S π(s) = 1

and π(s) ∈ R>0 for all s ∈ S. The infinitesimal generator matrix Q contains for
each pair of distinct states the rate of the corresponding move, which is 0 in the
absence of a direct move between them, with qs,s = −∑

s′ 	=s qs,s′ for all s ∈ S
so that every row of Q sums up to 0.

Due to state space explosion and numerical stability problems [34], the calcu-
lation of the solution of the global balance equation system is not always feasible.
However, it can be tackled in the case that the behavior of the considered CTMC
remains the same when the direction of time is reversed. A CTMC X(t) is
time reversible iff (X(ti))1≤i≤n has the same joint distribution as (X(t′ −
ti))1≤i≤n for all n ∈ N≥1 and t1 < · · · < tn, t′ ∈ R≥0, in which case X(t)
and its reversed version Xr(t) = X(t′ − t) are stochastically identical; in particu-
lar, X(t) and Xr(t) share the same steady-state probability distribution π if any.
In order for a stationary CTMC X(t) to be time reversible, it is necessary and
sufficient that the partial balance equations π(s) · qs,s′ = π(s′) · qs′,s are satisfied
for all s, s′ ∈ S such that s �= s′ or, equivalently, that qs1,s2 · . . . ·qsn−1,sn

·qsn,s1 =
qs1,sn

· qsn,sn−1 · . . . · qs2,s1 for all n ∈ N≥2 and distinct s1, . . . , sn ∈ S [13].
Time reversibility of CTMC-based compositional models of concurrent sys-

tems has been investigated in [8]. More precisely, conditions relying on the con-
servation of total exit rates of states and of rate products around cycles are
examined, which support the hierarchical and compositional reversal of stochas-
tic process algebra terms. These conditions also lead to the efficient calculation
of steady-state probability distributions in a product form typical of queueing
theory [15], thus avoiding the need of solving the global balance equation system.
More recently, in [25] similar conditions have been employed to characterize the
class of ρ-reversible stochastic automata. Under certain constraints, the joint
steady-state probability distribution of the composition of two such automata is
the product of the steady-state probability distributions of the two automata.

4 Integrating Causal and Time Reversibility

In this section, we integrate the two concepts of causal consistent reversibility and
time reversibility recalled in the previous two sections. To do so, we start with a
simple calculus called RMPC – Reversible Markovian Process Calculus, in which
actions are paired with rates, whose syntax and semantics are inspired by the

26 M. Bernardo and C. A. Mezzina

approach of [28]. Then, we show that the reversibility induced by RMPC is causal
consistent by importing the notion of concurrent transitions from [5]. Finally,
we exhibit the conditions under which time reversibility is achieved too and we
compare our setting, in which time reversibility is ensured by construction, with
those of [8,25].

4.1 Syntax and Semantics for RMPC

The syntax of RMPC is shown in Table 1. A forward process P can be one of
the following: the idle process 0; the prefixed process (a, λ).P , which is able to
perform an action a at rate λ and then continues as process P ; the nondeter-
ministic choice P + Q between processes P and Q; or the cooperation P ‖L Q,
indicating that processes P and Q execute in parallel and must synchronise only
on actions prescribed by the set L.

A reversible process R is built on top of forward processes. As in [28], the
syntax of reversible processes differs from the one of forward processes by the
fact that in the former each prefix (a, λ) can be decorated with a communication
key i thus becoming (a, λ)[i]. A process of the form (a, λ)[i].R expresses that in
the past the process synchronised with the environment and this synchronisation
was identified by key i. Keys are thus attached only to already executed actions.

Table 1. Syntax of RMPC forward/standard/initial processes and reversible processes

P, Q ::= 0 | (a, λ).P | P + Q | P ‖L Q

R, S ::= P | (a, λ)[i].R | R + S | R ‖L S

Let A be the set of actions such that a, b ∈ A, R = R>0 be the set of rates
such that λ, μ ∈ R, and K be the set of keys such that i, j ∈ K. Let L = A×R×K
be the set of labels each formed by an action, a rate, and a communication key.
We let � and its decorated versions range over L. Moreover, given a forward
label � = (a, λ)[i], we denote by � = (a, λ)[i] the corresponding backward label.
Finally, P is the set of processes generated by the production for R in Table 1.

Definition 1 (standard process). Process R ∈ P is standard, written
std(R), iff it can be derived from the production for P in Table 1.

Definition 2 (process key). The set of keys of process R ∈ P, written key(R),
is inductively defined as follows:

key(P) = ∅ key((a, λ)[i].R) = {i} ∪ key(R)
key(R + S) = key(R) ∪ key(S) key(R ‖L S) = key(R) ∪ key(S)

The semantics for RMPC is defined as a labeled transition system (P,L, 	−→).
Like in [28], the transition relation 	−→⊆ P × L × P is given by −→ ∪ , where

Towards Bridging Time and Causal Reversibility 27

Table 2. Structural operational semantic rules for RMPC

Act1
std(R)

(a, λ).R
(a,λ)[i]−−−−−→ (a, λ)[i].R

Act1• std(R)

(a, λ)[i].R
(a,λ)[i]

(a, λ).R

Act2
R

(b,μ)[j]−−−−−→ R′ j �= i

(a, λ)[i].R
(b,μ)[j]−−−−−→ (a, λ)[i].R′

Act2• R
(b,μ)[j]

R′ j �= i

(a, λ)[i].R
(b,μ)[j]

(a, λ)[i].R′

Cho
R

(a,λ)[i]−−−−−→ R′ std(S)

R + S
(a,λ)[i]−−−−−→ R′ + S

Cho• R
(a,λ)[i]

R′ std(S)

R + S
(a,λ)[i]

R′ + S

Par
R

(a,λ)[i]−−−−−→ R′ a /∈ L i /∈ key(S)

R ‖L S
(a,λ)[i]−−−−−→ R′ ‖L S

Par• R
(a,λ)[i]

R′ a /∈ L i /∈ key(S)

R ‖L S
(a,λ)[i]

R′ ‖L S

Coo
R

(a,λ)[i]−−−−−→ R′ S
(a,μ)[i]−−−−−→ S′ a ∈ L

R ‖L S
(a,λ·μ)[i]−−−−−−→ R′ ‖L S′

Coo• R
(a,λ)[i]

R′ S
(a,μ)[i]

S′ a ∈ L

R ‖L S
(a,λ·μ)[i]

R′ ‖L S′

the forward transition relation −→ and the backward transition relation are
the least relations respectively induced by the forward rules in the left part and
the backward rules in the right part of Table 2.

Rule Act1 deals with prefixed processes of the form (a, λ).P , with P written
as R subject to std(R). In addition to transforming the action prefix into a
transition label, it generates a fresh key i, which is bound to the action (a, λ)
thus yielding the label (a, λ)[i]. As we can note, the prefix is not discarded by
the application of the rule, instead it becomes a key-storing decoration in the
target process. Rule Act1• reverts the action (a, λ)[i] of the process (a, λ)[i].R
provided that R is a standard process, which ensures that (a, λ)[i] is the only
past action that is left to undo. One of the main design choices of the entire
framework is how the rate λ of the backward action is calculated. For the time
being, we leave it unspecified in Act1• as the value of this rate is not necessary
to prove the causal consistency part of reversibility, but as we will see later on
it is important in the proof of time reversibility.

The presence of rules Act2 and Act2• is motivated by the fact that rule
Act1 does not discard the executed prefix from the process it generates. In
particular, rule Act2 allows a prefixed process (a, λ)[i].R to execute if R can
itself execute, provided that the action performed by R picks a key j different
from i. Rule Act2• simply propagates the execution of backward actions from
inner subprocesses that are not standard as long as key uniqueness is preserved.

Unlike the classical rules of the choice operator [26], rule Cho does not
discard the context, i.e., the part of the process that has not contributed to
the action. More in detail, if the process R + S does an action, say (a, λ)[i], and

28 M. Bernardo and C. A. Mezzina

becomes R′, then the entire process becomes R′ +S. In this way, the information
about +S is preserved. Furthermore, since S is a standard process because of the
premise std(S), it will never execute even if it is present in the process R′ + S.
Hence, the + S can be seen as a decoration, or a dead context, of process R.
Note that, in order to apply rule Cho, at least one of the two processes has to
be standard, meaning that it is impossible for two non-standard processes to
execute if they are composed by a choice operator. Rule Cho• has precisely the
same structure as rule Cho, but uses the backward transition relation. For both
rules, we omit their symmetric variants in which it is S to move.

The semantics of cooperation is inspired by [11]. Rule Par allows process R
within R ‖L S to individually perform an action (a, λ)[i], provided that a /∈ L.
Rule Coo allows R and S to cooperate through any action in the set L, provided
that the communication key is the same on both sides. For the sake of simplicity,
the rate of the cooperation action is assumed to be the product of the rates of
the two involved actions [9]. Rules Par• and Coo• respectively have the same
structure as Par and Coo; the symmetric variants of Par and Par• are omitted.

Not all the processes generated by the grammar in Table 1 are meaningful as,
e.g., there might be several action prefixes sharing the same key in a sequential
process, i.e., a process without occurrences of the cooperation operator. We only
consider processes that are initial or reachable in the following sense:

Definition 3 (initial and reachable process). Process R ∈ P is initial iff
std(R) holds. Process R ∈ P is reachable iff it is initial or can be derived from
an initial one via finitely many applications of the rules for −→ in Table 2.

4.2 Properties Preliminary to Reversibility

A basic property to satisfy in order for RMPC to be reversible is the so called
loop lemma [5,28], which will be exploited to establish both causal consistent
reversibility and time reversibility. This property states that each transition of
a reachable process can be undone. Formally:

Lemma 1 (loop lemma). Let R ∈ P be a reachable process. Then R
(a,λ)[i]−−−−→ S

iff S
(a,λ)[i]

R.

Proof. We proceed by induction on the depth of the derivation of R
(a,λ)[i]−−−−→ S

(resp., S
(a,λ)[i]

R), by noticing that for each forward (resp., backward) rule
there exists a corresponding backward (resp., forward) one.

The lemma generalizes as follows. For any sequence σ of n ∈ N>0 labels
�1, . . . , �n, let R

σ−→ S be the corresponding forward sequence of transitions
R

�1−→ R1
�2−→ · · · �n−→ S and σ be the corresponding backward sequence such

that, for each �i occurring in σ, it holds that Ri−1
�i−→ Ri iff Ri

�i
Ri−1.

A direct consequence of the loop lemma is the following:

Corollary 1. Let R ∈ P be a reachable process. Then R
σ	−→ S iff S

σ	−→ R.

Towards Bridging Time and Causal Reversibility 29

4.3 Causal Consistent Reversibility for RMPC

In order to prove the causal consistent reversibility of RMPC, we borrow some
machinery from [5] that needs to be adapted as the reversing method of [28] we
are using is different from the one of [5]. In particular, we import the notion of
concurrent transitions.

Given a transition θ : R
�	−→ S with R,S ∈ P reachable processes, we call

R the source of θ and S its target. Two transitions are said to be coinitial if
they have the same source, and cofinal if they have the same target. A sequence
of pairwise composable transitions is called a computation, where composable
means that the target of any transition in the sequence is the source of the next
transition. We let θ and its decorated variants range over transitions, while ω and
its decorated variants range over computations. If θ is a forward transition, i.e.,

θ : R
�−→ S, we denote its backward version S

�
R as θ. The notions of source,

target, and composability extend naturally to computations. We indicate with
εR the empty computation whose source is R and with ω1;ω2 the composition
of two composable computations ω1 and ω2.

Before specifying when two transitions are concurrent, we need to define the
set of causes – identified by keys – of a given communication key.

Definition 4 (causal set). Let R ∈ P be a reachable process and i ∈ key(R).
The causal set cau(R, i) is inductively defined as follows for j �= i:

cau((a, λ)[i].R, i) = ∅
cau((a, λ)[j].R, i) = {j} ∪ cau(R, i)
cau(R + S, i) = cau′(R, i) ∪ cau′(S, i)
cau(R ‖L S, i) = cau′(R, i) ∪ cau′(S, i)

where cau′(R, i) = cau(R, i) if i ∈ key(R) and cau′(R, i) = ∅ otherwise.

If i ∈ key(R), then cau(R, i) represents the set of keys in R that caused i,
with cau(R, i) ⊂ key(R) since i /∈ cau(R, i) and keys not causally related to i
are not considered. A key j causes i if it appears syntactically before i in R or,
said otherwise, i is inside the scope of j. We are now in place to define what we
mean by concurrent transitions:

Definition 5 (concurrent transitions). Two coinitial transitions θ1 and θ2
from a reachable process R ∈ P are in conflict iff one of the following holds:

1. θ1 : R
(a,λ)[j]−−−−−→ S1 and θ2 : R

(b,μ)[i]
S2 with i ∈ cau(S1, j).

2. R = R1 + R2 with θk deriving from Rk
(ak,λk)[ik]−−−−−−−→ Sk for k = 1, 2.

Two coinitial transitions are concurrent when they are not in conflict.

The first condition above just tells that a forward transition is in conflict
with a backward one whenever the latter tries to undo a cause of the key of the

30 M. Bernardo and C. A. Mezzina

former. The second condition deems as conflictual two transitions respectively
generated by the two subprocesses of a choice operator. Figure 1 shows two
related examples. In the first case, the process (a, λ)[i].(b, μ).P can perform two
transitions: a backward one and a forward one. They meet the first condition of
Definition 5 as the backward transition removes the key i that is in the causal
set of j. In the second case, we have that process (a, λ).P + (a, λ).P is able to
trigger two forward transitions. Since they arise from the same choice operator,
they are in conflict according to the second condition of Definition 5.

Remark 1. It is worth noting that in a stochastic process calculus like RMPC the
semantic treatment of the choice operator is problematic [10] because a process
of the form (a, λ).P + (a, λ).P should produce either a single a-transition whose
rate is λ + λ, or two a-transitions each having rate λ that do not collapse into
a single one. In our reversible framework, two distinct transitions are generated
thanks to the fact that the key associated with the executed action is stored into
the derivative process too, as shown in the bottom part of Fig. 1.

Fig. 1. Examples of conflicting transitions

Concurrent transitions can commute, while conflicting ones cannot. Formally:

Lemma 2 (diamond lemma). Let θ1 : R
�1	−→ S1 and θ2 : R

�2	−→ S2 be two
coinitial transitions from a reachable process R ∈ P. If θ1 and θ2 are concurrent,
then there exist two cofinal transitions θ2/θ1 : S1

�2	−→ S and θ1/θ2 : S2
�1	−→ S.

Proof. By case analysis on the form of θ1 and θ2.

We are now in a position to show that reversibility in our framework is
causally consistent. Following [23], we first define a notion of causal equivalence
between computations that abstracts from the order of concurrent transitions.
We formalize � as the least equivalence relation over computations that is closed
under composition and obeys the following rules:

θ1; θ2/θ1 � θ2; θ1/θ2 θ; θ � εsource(θ) θ; θ � εtarget(θ)

Towards Bridging Time and Causal Reversibility 31

Equivalence � states that if we have two concurrent transitions, then the two
computations obtained by swapping the order of their execution are the same,
and that any computation composed by a transition followed by its inverse is
equivalent to the empty computation. The proof of causal consistency relying on
� follows that of [5], although the arguments are different due to the fact that
the notion of concurrent transitions is formalized differently.

The following lemma says that, up to causal equivalence, one can always
reach for the maximum freedom of choice among transitions, meaning that it is
possible to undo all the executed actions and then restart.

Lemma 3 (rearranging lemma). For any computation ω there exist two for-
ward computations ω1 and ω2 such that ω � ω1;ω2.

Proof. By induction on the length of ω and on the distance (intended as number
of transitions) between the beginning of ω and the earliest pair of consecutive
transitions in ω such that the former is forward while the latter is backward.
The analysis uses both the loop lemma (Lemma 1) and the diamond lemma
(Lemma 2).

The following lemma says that if two computations ω1 and ω2 are coinitial
and cofinal and ω2 is made of forward transitions only, then in ω1 there are some
transitions that are later undone. This computation is thus causally equivalent
to a forward one in which the undone transitions do not take place at all.

Lemma 4 (shortening lemma). Let ω1 and ω2 be coinitial and cofinal com-
putations, with ω2 forward. Then there exists a forward computation ω′

1 of length
at most that of ω1 such that ω′

1 � ω1.

Proof. The proof is by induction on the length of ω1, using the diamond lemma
(Lemma 2) and the rearranging lemma (Lemma 3). In the proof, the forward
computation ω2 is the main guideline for shortening ω1 into a forward computa-
tion. Indeed, the proof relies crucially on the fact that ω1 and ω2 share the same
source and the same target and that ω2 is a forward computation.

Theorem 1 (causal consistency). Let ω1 and ω2 be coinitial computations.
Then ω1 � ω2 iff ω1 and ω2 are cofinal too.

Proof. The ‘if’ direction follows by definition of causal equivalence and computa-
tion composition. The ‘only if’ direction exploits the diamond lemma (Lemma 2),
the rearranging lemma (Lemma 3), and the shortening lemma (Lemma 4).

With Theorem 1 we have proved that the notion of causal equivalence char-
acterises a space for admissible rollbacks that are (i) consistent in the sense that
they do not lead to previously unreachable states and (ii) flexible enough to allow
undo operations to be rearranged. This implies that the states reached by a back-
ward computation could be reached by performing forward computations only.
We can therefore conclude that RMPC is causal consistent reversible.

32 M. Bernardo and C. A. Mezzina

4.4 Time Reversibility for RMPC

The rules in Table 2 associate with any initial process R ∈ P a labeled transition
system [[R]] = (P,L, 	−→, R). To investigate time reversibility, we have to derive
from [[R]] the CTMC M[[R]] underlying R and we have to specify how each
backward rate λ is obtained from the corresponding forward rate λ.

First of all, we observe that every non-terminal state of [[R]] has infinitely
many outgoing transitions. The reason is that rules Act1 and Act2 generate
a transition for each possible admissible key, with the key being part of both
the label and the derivative process term. On the one hand, this is useful for
avoiding the generation of a single (a, λ)-transition in the case of a process like
(a, λ).P + (a, λ).P whose overall exit rate is λ + λ; even if the key is the same,
two different states (a, λ)[i].P + (a, λ).P and (a, λ).P + (a, λ)[i].P are reached.
On the other hand, it requires considering transition bundles to build M[[R]].

We call transition bundle a set of transitions departing from the same state
and labeled with the same action/rate but different keys, whose target states are
syntactically identical up to keys. Formally, we denote by ≡K the least equiva-
lence relation over P induced by (a, λ)[i].S ≡K (a, λ)[j].S. We then define the
CTMC underlying an initial process R ∈ P as the labeled transition system
M[[R]] = (P/≡K,A × R, 	−→K, [R]≡K) where:

– P/ ≡K is the quotient set of ≡K over P, i.e., the set of classes of processes
that are equivalent to each other according to ≡K.

– [R]≡K is the equivalence class of R with respect to ≡K, which simply is the
singleton set {R} as R is initial and hence contains no keys.

– 	−→K ⊆ P/≡K ×(A×R)×P/≡K is the transition relation given by −→K ∪ K
such that [R]≡K

(a,λ)−−−→K [R′]≡K whenever R
(a,λ)[i]−−−−→ R′ for some i ∈ K and

[R]≡K
(a,λ)

K [R′]≡K whenever R
(a,λ)[i]

R′ for some i ∈ K.

When moving from [[R]] to M[[R]], individual states are replaced by classes of
states that are syntactically identical up to keys in the same positions, moreover
keys are removed from transition labels. As a consequence, every state of M[[R]]
turns out to have finitely many outgoing transitions. We also note that M[[R]]
is an action-labeled CTMC, as each of its transitions is labeled with both a rate
and an action.

As a preliminary step towards time reversibility, we have to show that M[[R]]
is stationary. It holds that M[[R]] is even ergodic thanks to the loop lemma.

Lemma 5. Let R ∈ P be an initial process. Then M[[R]] is time homogeneous
and ergodic.

Proof. The time homogeneity of M[[R]] is a straightforward consequence of the
fact that its rates simply are positive real numbers, not time-dependent functions.
The ergodicity of M[[R]] stems from the fact that the graph representation of the
considered CTMC is a finite, strongly connected component due to Corollary 1.

Towards Bridging Time and Causal Reversibility 33

We exploit once more the loop lemma to derive that, in the case that λ = λ,
the steady-state probability distribution of M[[R]] is the uniform distribution,
from which time reversibility will immediately follow.

Lemma 6. Let R ∈ P be an initial process, S be the set of states of M[[R]],
and n = |S|. If every backward rate is equal to the corresponding forward rate,
then the steady-state probability distribution π of M[[R]] satisfies π(s) = 1/n
for all s ∈ S.

Proof. If n = 1, i.e., R is equal to 0 or to the cooperation of several processes
whose initial actions have to synchronize but are different from each other, then
trivially π(s) = 1/n = 1 for the only state s ∈ S.
Suppose now that n ≥ 2. From Lemma 5, it follows that M[[R]] has a unique
steady-state probability distribution π. Due to Lemma 1, the global balance equa-
tion for an arbitrary s ∈ S is as follows:

π(s) ·
∑

s
(a,λ)	−−−→Ks′

λ =
∑

s′ (a,λ)	−−−→Ks

π(s′) · λ

Since every backward rate is equal to the corresponding forward rate, the global
balance equation for s boils down to:

π(s) ·
∑

s
(a,λ)	−−−→Ks′

λ =
∑

s′ (a,λ)	−−−→Ks

π(s′) · λ

Since the two summations have the same number of summands, the equation
above is satified when π(s) = π(s′) for all s′ ∈ S reached by a transition from s.
All global balance equations are thus satisfied when π(s) = 1/n for all s ∈ S.

Theorem 2 (time reversibility). Let R ∈ P be an initial process. If every
backward rate is equal to the corresponding forward rate, then M[[R]] is time
reversible.

Proof. Let S be the set of states of M[[R]] and n = |S|. From Lemma 5, it
follows that M[[R]] has a unique steady-state probability distribution π. To avoid
trivial cases, suppose n ≥ 2 and consider s, s′ ∈ S with s �= s′ connected by
a transition. Due to Lemma 1, the partial balance equation for s and s′ is as
follows:

π(s) ·
∑

s
(a,λ)	−−−→Ks′

λ = π(s′) ·
∑

s′ (a,λ)	−−−→Ks

λ

Since every backward rate is equal to the corresponding forward rate, the partial
balance equation for s and s′ boils down to:

π(s) ·
∑

s
(a,λ)	−−−→Ks′

λ = π(s′) ·
∑

s′ (a,λ)	−−−→Ks

λ

34 M. Bernardo and C. A. Mezzina

Since the two summations have the same number of summands and π(s) =
π(s′) = 1/n due to Lemma 6, the equation above is satified. The result then
follows from the fact that s and s′ are two arbitrary distinct states connected by
a transition.

The main difference between our approach to time reversibility and the ones
of [8,25] is twofold. Firstly, our approach is part of a more general framework
in which also causal consistent reversibility is addressed. Secondly, our approach
is inspired by the idea of [28] of developing a formalism in which it is possible
to express models whose reversibility is guaranteed by construction, instead of
building a posteriori the time-reversed version of a certain model like in [8] or
verifying a posteriori whether a given model is time reversible or not like in [25].

It is worth noting that these methodological differences do not prevent us
from adapting to our setting some results from [8,25], although a few preliminary
observations about notational differences are necessary.

Both [8] and [25] make a distinction between active actions, each of which is
given a rate, and passive actions, each of which is given a weight, with the con-
straint that, in case of synchronization, the rate of the active action is multiplied
by the weight of the corresponding passive action. In RMPC there is no such dis-
tinction, however the same operation, i.e., multiplication, is applied to the rates
of two synchronizing actions. A passive action can thus be rendered as an action
with rate 1, while a set of alternative passive actions can be rendered as a set of
actions whose rates sum up to 1. Moreover, in [25] synchronization is enforced
between any active-passive pair of identical actions, whereas in RMPC the coop-
eration operator is enriched with an explicit synchronization set L, which yields
as a special case the aforementioned synchronization discipline when L is equal
to the set A of all the actions. We can therefore conclude that our cooperation
operator is a generalization of those used in [8,25], hence the recalled notational
differences do not hamper result transferral.

In [8] the compositionality of a CTMC-based stochastic process calculus is
exploited to prove the reversed compound agent theorem (RCAT), which estab-
lishes the conditions under which the time-reversed version of the cooperation
of two processes is equal to the cooperation of the time-reversed versions of
those two processes. The application of RCAT leads to product-form solution
results from stochastic process algebraic models, including a new different proof
of Jackson theorem for product-form queueing networks [12].

In [25] the notion of ρ-reversibility is introduced for stochastic automata,
which are essentially action-labeled CTMCs. Function ρ is a state permutation
that ensures (i) for each action the equality of the total exit rate of any state s
and ρ(s) and (ii) the conservation of action-related rate products across cycles
when considering states in the forward direction and their ρ-counterparts in the
backward direction. For any ergodic ρ-reversible automaton, it turns out that
π(s) = π(ρ(s)) for every state s. Moreover, the synchronization inspired by [31] of
two ρ-reversible stochastic automata is still ρ-reversible and, in case of ergodicity,
under certain conditions the steady-state probability of any compound state is
the product of the steady-state probabilities of the two constituent states.

Towards Bridging Time and Causal Reversibility 35

Our time reversibility result for RMPC can be rephrased in the setting of [25]
in terms of ρ-reversibility with ρ being the identity function over states. As a
consequence, the following two results stem from Theorem 2 of the present paper
and, respectively, Theorems 2 and 3 of [25]:

Corollary 2 (time reversibility closure). Let R,S ∈ P be initial processes
and L ⊆ A. If every backward rate is equal to the corresponding forward rate,
then M[[R ‖L S]] is time reversible too.

Corollary 3 (product form). Let R,S ∈ P be initial processes and L ⊆ A.
If every backward rate is equal to the corresponding forward rate and the set of
states S of M[[R ‖L S]] is equal to SR × SS where SR is the set of states of
M[[R]] and SS is the set of states of M[[S]], then π(r, s) = πR(r) · πS(s) for all
(r, s) ∈ SR × SS.

The product form result above avoids the calculation of the global balance
equations over M[[R ‖L S]], as π(r, s) can simply be obtained by multiplying
πR(r) with πS(s). However, the condition S = SR × SS requires to check that
every state in the full Cartesian product is reachable from R ‖L S. This means
that no compound state is such that its constituent states enable some action,
but none of the enabled actions can be executed due to the constraints imposed
by the synchronization set L. The condition S = SR×SS implies that M[[R ‖L S]]
is ergodic over the full Cartesian product of the two original state spaces, which
is the condition used in [25]. Although implicit in the statement of the corollary,
the time reversibility of M[[R ‖L S]] is essential for the product form result.

5 Conclusions

Different interpretations of reversibility are present in the literature. In this
paper, we have started our research quest towards bridging causal consistent
reversibility [5] – developed in concurrency theory – and time reversibility [13]
– originated in the field of stochastic processes. We have accomplished this by
introducing the stochastic process calculus RMPC, whose syntax and semantics
follow the approach of [28], thus paving the way to concurrent system models
that are both causal consistent reversible and time reversible by construction.
Based on time reversibility, we have also adapted from [25] a product form result
that enables the efficient calculation of performance measures.

There are several lines of research that we plan to undergo, ranging from
the application of our results to examples and case studies modeled with RMPC
to the development of further theoretical results. For instance, we would like
to investigate other conditions under which time reversibility is achieved, in
addition to the one relying on the equality of forward and backward rates.

Moreover, we observe that the syntax of RMPC does not include recursion.
From the point of view of the ergodicity of the underlying CTMC, this is not
a problem because every forward transition has the corresponding backward
transition by construction. However, there might be situations in which recursion

36 M. Bernardo and C. A. Mezzina

is necessary to appropriately describe the behavior of a system. Because of the
use of communication keys, a simple process of the form P � (a, λ).P , whose
standard labeled transition system features a single state with a self-looping
transition, produces a sequence of infinitely many distinct states even if we resort
to transition bundles. Our claim is that the specific cooperation operator that
we have considered may require a mechanism lighter than communications keys
to keep track of past actions, which may avoid the generation of an infinite state
space in the presence of recursion.

Acknowledgement. We would like to thank Andrea Marin for the valuable discus-
sions on time reversibility. The second author has been partially supported by the
French ANR project DCore ANR-18-CE25-0007 and by the Italian INdAM – GNCS
project 2020 Reversible Concurrent Systems: From Models to Languages.

References

1. Baeten, J.C.M., Verhoef, C.: A congruence theorem for structured operational
semantics with predicates. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp.
477–492. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57208-2 33

2. Barylska, K., Koutny, M., Mikulski, L., Piatkowski, M.: Reversible computation
vs. reversibility in Petri nets. Sci. Comput. Program. 151, 48–60 (2018)

3. Bennett, C.H.: Logical reversibility of computations. IBM J. Res. Dev. 17, 525–532
(1973)

4. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
π-calculus. In: Proceedings of LICS 2013, pp. 388–397. IEEE-CS Press (2013)

5. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

6. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005).
https://doi.org/10.1007/11539452 31

7. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 26

8. Harrison, P.G.: Turning back time in Markovian process algebra. Theoret. Comput.
Sci. 290(3), 1947–1986 (2003)

9. Hillston, J.: The nature of synchronisation. In: Proceedings of PAPM 1994, pp.
51–70. University of Erlangen, Technical Report 27–4 (1994)

10. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River (1985)

12. Jackson, J.R.: Jobshop-like queueing systems. Manage. Sci. 10(1), 131–142 (1963)
13. Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, Chichester (1979)
14. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand, New York (1960)
15. Kleinrock, L.: Queueing Systems. Wiley, New York (1975)
16. Landauer, R.: Irreversibility and heat generated in the computing process. IBM J.

Res. Dev. 5, 183–191 (1961)

https://doi.org/10.1007/3-540-57208-2_33
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/978-3-642-54804-8_26

Towards Bridging Time and Causal Reversibility 37

17. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent
flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 370–390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37036-6 21

18. Lanese, I., Medić, D., Mezzina, C.A.: Static versus dynamic reversibility in CCS.
Acta Informatica (2019)

19. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order π. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 33

20. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent
reversible debugger for erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS
2018. LNCS, vol. 10818, pp. 247–263. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90686-7 16

21. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.
J. Log. Algeb. Meth. Program. 100, 71–97 (2018)

22. Laursen, J.S., Ellekilde, L.P., Schultz, U.P.: Modelling reversible execution of
robotic assembly. Robotica 36(5), 625–654 (2018)

23. Lévy, J.J.: An algebraic interpretation of the λβK-calculus; and an application of
a labelled λ-calculus. Theoret. Comput. Sci. 2(1), 97–114 (1976)

24. Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.-B.: A reversible abstract
machine and its space overhead. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
-2012. LNCS, vol. 7273, pp. 1–17. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30793-5 1

25. Marin, A., Rossi, S.: Quantitative analysis of concurrent reversible computations.
In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp.
206–221. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22975-1 14

26. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

27. Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance
in large parallel systems - evaluating the potential gains and systems effects. Cluster
Comput. 17(2), 303–313 (2014)

28. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Logic Algeb.
Program. 73(1–2), 70–96 (2007)

29. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36315-3 18

30. Michele Pinna, G.: Reversing steps in membrane systems computations. In: Gheo-
rghe, M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol.
10725, pp. 245–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
73359-3 16

31. Plateau, B.: On the stochastic structure of parallelism and synchronization models
for distributed algorithms. In: Proceedings of SIGMETRICS 1985, pp. 147–154.
ACM Press (1985)

32. Schordan, M., Oppelstrup, T., Jefferson, D.R., Barnes Jr., P.D.: Generation of
reversible C++ code for optimistic parallel discrete event simulation. New Gener.
Comput. 36(3), 257–280 (2018)

33. Siljak, H., Psara, K., Philippou, A.: Distributed antenna selection for massive
MIMO using reversing Petri nets. IEEE Wirel. Commun. Lett. 8(5), 1427–1430
(2019)

https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-15375-4_33
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-642-30793-5_1
https://doi.org/10.1007/978-3-642-30793-5_1
https://doi.org/10.1007/978-3-319-22975-1_14
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.1007/978-3-319-73359-3_16

38 M. Bernardo and C. A. Mezzina

34. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Prince-
ton University Press, Princeton (1994)

35. Vassor, M., Stefani, J.-B.: Checkpoint/rollback vs causally-consistent reversibility.
In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 286–303. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99498-7 20

36. de Vries, E., Koutavas, V., Hennessy, M.: Communicating transactions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 569–583.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 39

https://doi.org/10.1007/978-3-319-99498-7_20
https://doi.org/10.1007/978-3-642-15375-4_39

Defining and Verifying Durable Opacity:
Correctness for Persistent Software

Transactional Memory

Eleni Bila1, Simon Doherty2, Brijesh Dongol1(B), John Derrick2,
Gerhard Schellhorn3, and Heike Wehrheim4

1 University of Surrey, Guildford, UK
b.dongol@surrey.ac.uk

2 University of Sheffield, Sheffield, UK
3 University of Augsburg, Augsburg, Germany
4 Paderborn University, Paderborn, Germany

Abstract. Non-volatile memory (NVM), aka persistent memory, is a
new paradigm for memory that preserves its contents even after power
loss. The expected ubiquity of NVM has stimulated interest in the
design of novel concepts ensuring correctness of concurrent programming
abstractions in the face of persistency. So far, this has lead to the design
of a number of persistent concurrent data structures, built to satisfy an
associated notion of correctness: durable linearizability.

In this paper, we transfer the principle of durable concurrent cor-
rectness to the area of software transactional memory (STM). Software
transactional memory algorithms allow for concurrent access to shared
state. Like linearizability for concurrent data structures, opacity is the
established notion of correctness for STMs. First, we provide a novel
definition of durable opacity extending opacity to handle crashes and
recovery in the context of NVM. Second, we develop a durably opaque
version of an existing STM algorithm, namely the Transactional Mutex
Lock (TML). Third, we design a proof technique for durable opacity
based on refinement between TML and an operational characterisation
of durable opacity by adapting the TMS2 specification. Finally, we apply
this proof technique to show that the durable version of TML is indeed
durably opaque. The correctness proof is mechanized within Isabelle.

1 Introduction

Recent technological advances indicate that future architectures will employ
some form of non-volatile memory (NVM) that retains its contents after a sys-
tem crash (e.g., power outage). NVM is intended to be used as an intermediate

Bila and Dongol are supported by VeTSS project “Persistent Safety and Security”.
Dongol is supported by EPSRC grants EP/R019045/2 and EP/R032556/1. Derrick
and Doherty are supported by EPSRC grant EP/R032351/1. Wehrheim is supported
by DFG grant WE2290/12-1.
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 39–58, 2020.
https://doi.org/10.1007/978-3-030-50086-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-50086-3_3

40 E. Bila et al.

layer between traditional volatile memory (VM) and secondary storage, and
has the potential to vastly improve system speed and stability. Software that
uses NVM has the potential to be more robust; in case of a crash, a system
state before the crash may be recovered using contents from NVM, as opposed
to being restarted from secondary storage. However, because the same data is
stored in both a volatile and non-volatile manner, and because NVM is updated
at a slower rate than VM, recovery to a consistent state may not always be pos-
sible. This is particularly true for concurrent systems, where coping with NVM
requires introduction of additional synchronisation instructions into a program.

This observation has led to the design of the first persistent concurrent pro-
gramming abstractions, so far mainly concurrent data structures. Together with
these, the associated notion of correctness, i.e., linearizability [21], has been
transferred to NVM. This resulted in the novel concept of durable linearizabil-
ity [22]. A first proof technique for showing durable linearizability of concurrent
data structures has been proposed by Derrick et al. [11].

Besides concurrent data structures, software transactional memory (STM)
is the most important synchronization mechanism supporting concurrent access
to shared state. STMs provide an illusion of atomicity in concurrent programs.
The analogy of STM is with database transactions, which perform a series of
accesses/updates to shared data (via read and write operations) atomically in
an all-or-nothing manner. Similarly with an STM, if a transaction commits, all
its operations succeed, and in the aborting case, all its operations fail. The now
(mainly) agreed upon correctness criterion for STMs is opacity [20]. Opacity
requires all transactions (including aborting ones) to agree on a single sequen-
tial history of committed transactions and the outcome of transactions has to
coincide with this history.

In this paper, we transfer STM and opacity to the novel field of non-volatile
memory. This entails a number of steps. First, the correctness criterion of opacity
has to be adapted to cope with crashes in system executions. Second, STM
algorithms have to be extended to deal with the coexistence of volatile and
non-volatile memory during execution and need to be equipped with recovery
operations. Third, proof techniques for opacity need to be re-investigated to
make them usable for durable opacity. In this paper, we provide contributions
to all three steps.

– For the first step, we define durable opacity out of opacity in the same way that
durable linearizability has been defined based on linearizability. Durable opac-
ity requires the executions of STMs to be opaque even if they are interspersed
with crashes. This guarantees that the shared state remains consistent.

– We exemplify the second step by extending the Transactional Mutex Lock
(TML) of Dalessandro et al. [8] to durable TML (dTML). To this end, TML
needs to be equipped with a recovery operation and special statements to
guarantee consistency in case of crashes. We do so by extending TML with a
logging mechanism which allows to flush written, but volatile values to NVM
during recovery.

Defining and Verifying Durable Opacity 41

– For the third step, we build on a proof technique for opacity based on refine-
ment between IO-automata. This technique uses the automaton TMS2 [15]
which has been shown to implement opacity [26] using the PVS interactive
theorem prover. This automaton gives us a formal specification, which can
be used as the abstract level in a proof of refinement. Furthermore, the IO-
automaton framework is part of the standard Isabelle distribution. For use as
a proof technique for durable opacity, TMS2 is extended with a crash opera-
tion (mimicing system crashes and their effect on memory) to yield dTMS2.
The automaton dTMS2 is then proven to only have durably opaque execu-
tions. Thereby we obtain an operational characterisation of durable opacity.

Table 1. Events appearing in the histories of TML, where t ∈ T is a transaction
identifier, x ∈ L is a location, and v ∈ V a value

Invocations Possible matching responses

invt(TMBegin) rest(TMBegin(ok))

invt(TMCommit) rest(TMCommit(ok)), rest(TMCommit(abort))
invt(TMRd(x)) rest(TMRd(v)), rest(TMRd(abort))
invt(TMWr(x , v)) rest(TMWr(ok)), rest(TMWr(abort))

Finally, we bring all three steps together and apply our proof technique to
show that durable TML is indeed durably opaque. This proof has been mech-
anized in the interactive prover Isabelle [32]. Our mechanized proof proceeds
by encoding dTMS2 and dTML as IO-automata within Isabelle, then proving
the existence of a forward simulation, which in turn has been shown to ensure
trace refinement of IO-automata [28], and hence guarantees durable opacity of
dTML.

2 Transactional Memory and Opacity

Software Transactional Memory (STM) provides programmers with an easy-to-
use synchronisation mechanism for concurrent access to shared data, whereby
blocks of code may be treated as transactions that execute with an illusion of
atomicity. STMs usually provide a number of operations to programmers: oper-
ations to start (TMBegin) and commit a transaction (TMCommit), and operations
to read and write shared data (TMRd, TMWr). These operations can be called
(invoked) from within a client program (possibly with some arguments, e.g.,
the variable to be read) and then will return with a response. Except for opera-
tions that start transactions, all other operations might potentially respond with
abort, thereby aborting the whole transaction.

A widely accepted correctness condition for STMs that encapsulates trans-
actional phenomena is opacity [19,20], which requires all transactions, including

42 E. Bila et al.

aborting transactions to agree on a single sequential global ordering of transac-
tions. Moreover, no transactional read returns a value that is inconsistent with
the global ordering.

2.1 Histories

As standard in the literature, opacity is defined on the histories of an imple-
mentation. Histories are sequences of events that record all interactions between
the implementation and its clients. An event is either an invocation (inv) or a
response (res) of a transactional operation. For the TML implementation, pos-
sible invocation and matching response events are given in Table 1, where we
assume T is a set of transaction identifiers, L a set of addresses (or locations)
mapped to values from a set V .

The type Mem =̂ L → V describes the possible states of the shared memory.
We assume that initially all addresses hold the value 0 ∈ V .

We use the following notation on histories: for a history h, h � t is the projec-
tion onto the events of transaction t only and h[i ..j] the subsequence of h from
h(i) to h(j) inclusive. For a response event e, we let rval(e) denote the value
returned by e; for instance rval(TMBegin(ok)) = ok. If e is not a response event,
then we let rval(e) = ⊥.

We are interested in three different types of histories [2]. At the concrete level
the TML implementation produces histories where the events are interleaved. At
the abstract level we are interested in sequential histories, which are ones where
there is no interleaving at any level - transactions are atomic: a transaction com-
pletes before the next transaction starts. As part of the proof of opacity we use an
intermediate specification which has alternating histories, in which transactions
may be interleaved but operations (e.g., reads, writes) are not interleaved.

A history h is alternating if h = ε or is an alternating sequence of invocation
and matching response events starting with an invocation. For the rest of this
paper, we assume each process invokes at most one operation at a time, and
hence, assume that h � t is alternating for any history h and transaction t . Note
that this does not necessarily mean h is alternating itself. Opacity is defined
for well-formed histories, which formalises the allowable interaction between an
STM implementation and its clients. For every t , h � t = 〈s0, . . . , sm〉 of a well-
formed history is an alternating history such that s0 = invt(TMBegin), for all
0 < i < m, event si �= invt(TMBegin) and rval(si) �∈ {commit, abort}. Note that
by definition, well-formedness disallows transaction identifiers from being reused.
We say t is committed if rval(sm) = commit and aborted if rval(sm) = abort. In
these cases, the transaction t is completed, otherwise t is live. A history is well-
formed if it consists of transactions only and there is at most one live transaction
per process.

2.2 Opacity

Opacity [19,20] compares concurrent histories generated by an STM implemen-
tation to sequential histories and can be seen as a strengthening of serializability

Defining and Verifying Durable Opacity 43

to accommodate aborted transactions. Below, we first formalise the sequential
history semantics, then consider opaque histories.

Sequential History Semantics. A sequential history has to ensure that
the behaviour is meaningful with respect to the reads and writes of the
transactions.

Definition 1 (Valid history). Let h = ev0, . . . , ev2n−1 be a sequence of alter-
nating invocation and matching response events starting with an invocation and
ending with a response.

We say h is valid if there exists a sequence of states σ0, . . . , σn such that
σ0(l) = 0 for all l ∈ L, and for all i such that 0 ≤ i < n and t ∈ T :

1. if ev2i = invt(TMWr(l , v)) and ev2i+1 = rest(TMWr(ok)) then σi+1 = σi [l := v],
2. if ev2i = invt(TMRd(l)) and ev2i+1 = rest(TMRd(v)) then σi(l) = v and σi+1 =

σi ,
3. for all other pairs of events (reads and writes with an abort response, as well

as begin and commit events) we require σi+1 = σi .

We write �h�(σ) if σ is a sequence of states that makes h valid (since the sequence
is unique, if it exists, it can be viewed as the semantics of h).

The point of TM is that the effect of the writes only takes place if the trans-
action commits. Writes in a transaction that abort do not affect the memory.
However, all reads, including those executed by aborted transactions, must be
consistent with previously committed writes. Therefore, only some histories of
an object reflect ones that could be produced by a TM. We call these the legal
histories, and they are defined as follows.

Definition 2 (Legal histories). Let hs be a non-interleaved history and i an
index of hs. Let hs ′ be the projection of hs[0..(i−1)] onto all events of committed
transactions plus the events of the transaction to which hs(i) belongs. Then we
say hs is legal at i whenever hs ′ is valid. We say hs is legal iff it is legal at each
index i .

This allows us to define sequentiality for a single history, which we lift to the
level of specifications.

Definition 3 (Sequential history). A well-formed history hs is sequential if
it is non-interleaved and legal. We denote by S the set of all possible well-formed
sequential histories.

Opaque Histories. Opacity is defined by matching a concurrent history to a
sequential history such that (a) both histories consist of the same events, and
(b) the real-time order of transactions is preserved. For (b), the real-time order
on transactions t1 and t2 in a history h is defined as t1 ≺h t2 if t1 is a completed
transaction and the last event of t1 in h occurs before the first event of t2.

44 E. Bila et al.

A given concrete history may be incomplete, i.e., it may contain pending
operations, represented by invocations that do not have matching responses.
Some of these pending operations may have taken effect, and others may not.
The corresponding sequential history however must decide: either by adding
a suitable matching response event for the pending invocation (the effect has
taken place), or by removing the pending invocation (no effect yet). Therefore,
we define a function complete(h) that constructs all possible completions of h by
appending matching responses for some pending invocations and removing all
the other pending invocations. This is similar to the treatment of completions in
the formalisation of linearizability [21]. The sequential history then must have
the same events as those of one of the results returned by complete(h).

Definition 4 (Opaque history). A history h is end-to-end opaque iff for
some hc ∈ complete(h), there exists a sequential history hs ∈ S such that for all
t ∈ T , hc � t = hs � t and ≺hc⊆≺hs . A history h is opaque iff each prefix h ′ of
h is end-to-end opaque; a set of histories H is opaque iff each h ∈ H is opaque;
and an STM implementation is opaque iff its set of histories is opaque.

3 STMs over Persistent Memory

We now consider STMs over a non-volatile memory model comprising two layers:
a volatile store, whose contents are wiped clean when a system crashes (e.g., due
to power loss), and a persistent store, whose state is preserved after a crash and
available for use upon reboot. During normal program execution, contents of the
volatile store may be transferred to the persistent store by the system. The main
idea behind programs for this memory model is to include a recovery procedure
that executes over the persistent store and resets the system into a consistent
(safe) state. To achieve this, a programmer can control transfer of information
from volatile to persistent store using a FLUSH(a) operation, ensuring that the
information in address a is saved in the persistent store.

For STMs, we introduce a new notion of consistency: durable opacity which
we define in Sect. 3.1. Durable opacity extends opacity [19,20] in exactly the same
way that durable linearizability [22] extends linearizability [21], namely a history
that contains crashes is durably opaque precisely when the same history with
crashes removed is opaque. We present an example STM implementation that
satisfies durable opacity in Sect. 3.2, extending Dalessandro et al.’s Transactional
Mutex Lock [9].

3.1 Durable Opacity

Durable opacity is a correctness condition that is defined over histories that
record the invocation and response events of operations executed on the trans-
actional memory like opacity. Unlike opacity, durably opaque histories record
system crash events, thus may take the form: H = h0c1h1c2...hn−1cnhn , where
each hi is a history (containing no crash events) and ci is the ith crash event.

Defining and Verifying Durable Opacity 45

Following Izraelevitz et al. [22], for a history h, we let ops(h) denote h restricted
to non-crash events, thus for H above, ops(H) = h0h1 . . . hn−1hn , which contains
no crash events. We call the subhistory hi the i-th era of h.

The definition of a well-formed history is now updated to include crash events.
A history is durably well-formed iff ops(h) is well formed and every transaction
identifier appears in at most one era. Thus, we assume that when a crash occurs,
all running transactions are aborted.

Definition 5 (Durably opaque history). A history h is durably opaque iff
it is durably well-formed and ops(h) is opaque.

3.2 Example: Durable Transactional Mutex Lock

We now develop a durably opaque STM: a persistent memory version of the
Transactional Mutex Lock (TML) [8], as given in Fig. 1. TML adopts a strict
policy for transactional synchronisation: as soon as one transaction has success-
fully written to a variable, all other transactions running concurrently will be
aborted when they invoke another read or write operation. To enforce this pol-
icy, TML uses a global counter glb (initially 0) and local variable loc, which is
used to store a copy of glb. Variable glb records whether there is a live writing
transaction, i.e., a transaction that has started, has not yet ended nor aborted,
and has executed (or is executing) a write operation. More precisely, glb is odd
if there is a live writing transaction, and even otherwise. Initially, we have no
live writing transaction and thus glb is 0 (and hence even).

A second distinguishing feature of TML is that it performs writes in an eager
manner, i.e., it updates shared memory during the write operation1. This is
potentially problematic in a persistent memory context since writes that have
completed may not be committed if a crash occurs prior to executing the commit
operation. That is, writes of uncommitted transactions should not be seen by
any transactions that start after a crash occurs. Our implementation makes use
of an undo log mapping addresses to their persistent memory values prior to
executing the first write operation for that address. Logged values are made
persistent before the address is overwritten. Thus, if a crash occurs prior to a
transaction committing, it is possible to recover the transaction to a safe state
by undoing uncommitted transactional writes.

Operation TMBegin copies the value of glb into its local variable loc and
checks whether glb is even. If so, the transaction is started, and otherwise, the
process attempts to start again by rereading glb. A TMRead operation succeeds
as long as glb equals loc (meaning no writes have occurred since the trans-
action began), otherwise it aborts the current transaction. The first execution
of TMWrite attempts to increment glb using a cas (compare-and-swap), which
atomically compares the first and second parameters, and sets the first param-
eter to the third if the comparison succeeds. If the cas attempt fails, a write

1 This is in contrast to lazy implementations that defer transactional writes until the
commit operation is executed (e.g., [9,13]).

46 E. Bila et al.

by another transaction must have occured, and hence, the current transaction
aborts. Otherwise loc is incremented (making its value odd) and the write is
performed. Note that because loc becomes odd after the first successful write,
all successive writes that are part of the same transaction will perform the write
directly after testing loc at line W 1. Further note that if the cas succeeds, glb
becomes odd, which prevents other transactions from starting, and causes all
concurrent live transactions still wanting to read or write to abort. Thus a writ-
ing transaction that successfully updates glb effectively locks shared memory.
Operation TMEnd checks to see if a write has occurred by testing whether loc is
odd. If the test succeeds, glb is set to loc+1. At line E2, loc is guaranteed to
be equal to glb, and therefore this update has the effect of incrementing glb to
an even value, allowing other transactions to begin.

Our implementation uses a durably linearizable [11,22] set or map data struc-
ture log, such as the one described by Zuriel et al. [38]. A durably linearizable
operation is guaranteed to take effect in persistent memory prior to the operation
returning. In Fig. 1, we use operations pinsert(), pempty() and pdelete() to
stress that these operations are durably linearizable.

Our durable TML algorithm (dTML) makes the following adaptations to
TML. Note the operations build on a model of a crash that resets volatile memory
to persistent memory.

– Within a write operation writing to address addr, prior to modifying the value
at addr, we record the existing address-value pair in log, provided that addr
does not already appear in the undo log (lines W4 and W5). After updating
the value (which updates the value of addr in the volatile store), the update
is flushed to persistent memory prior to the write operation returning (line
W7).

– We introduce a recovery operation that checks for a non-empty log and trans-
fers the logged values to persistent memory, undoing any writes that have
completed (but not committed) before the crash occurred. Since a crash could
occur during recovery, we transfer values from the undo log to persistent mem-
ory one at a time.

– In the commit operation, we note that we distinguish a committing transac-
tion as one with an odd value for loc. For a writing transaction, the log must
be cleared by setting it to the empty log (line E2). Note that this is the point
at which a writing transaction has definitely committed since any subsequent
crash and recovery would no longer undo the writes of this transaction.

Defining and Verifying Durable Opacity 47

Fig. 1. A durable Transactional Mutex Lock (dTML). Initially: glb = 0, log =
emptyLog(). Line numbers for return statements are omitted and we use *addr for
the value of addr

4 Proving Durable Opacity

Previous works [1,2,14,17] have considered proofs of opacity using the opera-
tional TMS2 specification [15], which has been shown to guarantee opacity [26].
The proofs show refinement of the implementation against the TMS2 specifica-
tion using either forward or backward simulation. For durable opacity, we use
a similar proof strategy. In Sect. 4.3, we develop the dTMS2 operational spec-
ification, a durable version of the TMS2 specification, that we prove satisfies
durable opacity. Then, in Sect. 5, we establish a simulation between dTML and
dTMS2.

4.1 Background: IOA, Refinement and Simulation

We use Input/Output Automata (IOA) [29] to model both the implementation,
dTML, and the specification, dTMS2.

Definition 6. An Input/Output Automaton (IOA) is a labeled transition sys-
tem A with a set of states states(A), a set of actions acts(A), a set of start
states start(A) ⊆ states(A), and a transition relation trans(A) ⊆ states(A) ×
acts(A) × states(A) (so that the actions label the transitions).

The set acts(A) is partitioned into input actions input(A), output actions
output(A) and internal actions internal(A). The internal actions represent
events of the system that are not visible to the external environment.

48 E. Bila et al.

The input and output actions are externally visible, representing the automaton’s
interactions with its environment. Thus, we define the set of external actions,
external(A) = input(A)∪output(A). We write s a−→A s ′ iff (s, a, s ′) ∈ trans(A).

An execution of an IOA A is a sequence σ = s0a0s1a1s2 . . . snansn+1 of
alternating states and actions, such that s0 ∈ start(A) and for all states si ,
si

ai−→A si+1. A reachable state of A is a state appearing in an execution of A.
An invariant of A is any superset of the reachable states of A (equivalently, any
predicate satisfied by all reachable states of A). A trace of A is any sequence of
(external) actions obtained by projecting the external actions of any execution
of A. The set of traces of A, denoted traces(A), represents A’s externally visible
behaviour.

For automata C and A, we say that C is a refinement of A iff traces(C) ⊆
traces(A). We show that C is a refinement of A by proving the existence of a
forward simulation, which enables one to check step correspondence between the
transitions of C and those of A. The definition of forward simulation we use is
adapted from that of Lynch and Vaandrager [28].

Definition 7. A forward simulation from a concrete IOA C to an abstract IOA
A is a relation R ⊆ states(C)× states(A) such that each of the following holds.
Initialisation. ∀ cs ∈ start(C). ∃as ∈ start(A). R(cs, as)
External Step Correspondence.
∀ cs ∈ reach(C), as ∈ reach(A), a ∈ external(C), cs ′ ∈ states(C).

R(cs, as) ∧ cs a−→C cs ′ ⇒ ∃as ′ ∈ states(A). R(cs ′, as ′) ∧ as a−→A as ′
Internal Step Correspondence.
∀ cs ∈ reach(C), as ∈ reach(A), a ∈ internal(C), cs ′ ∈ states(C).

R(cs, as) ∧ cs a−→C cs ′ ⇒
R(cs ′, as) ∨ ∃a ′ ∈ internal(A), as ′ ∈ states(A). R(cs ′, as ′) ∧ as a′

−→A as ′

Forward simulation is sound in the sense that if there is a forward simulation
between A and C , then C refines A [28,30].

4.2 IOA for dTML

We now provide the IOA model of dTML. The state of dTML (Fig. 1) comprises
global (shared) variables glb ∈ IN (modelling glb in volatile memory); log ∈ L �→
V , where �→ denotes a partial function (modelling log in persistent memory);
the volatile memory store vstore ∈ L → V ; and the persistent memory store
pstore ∈ L → V . We also use the following transaction-local variables: the
program counter pc ∈ T → PC , loc ∈ T → IN, the input address addr ∈ T →
V , the input value val ∈ T → V . We also make use of an auxiliary variable
writer whose value is either the transaction id of the current writing transaction
(if one exists), or None (if no writing transaction is currently running).

Execution of the program is modelled by defining an IOA transition for each
atomic step of Fig. 1, using the values of pct (for transaction t) to model control

Defining and Verifying Durable Opacity 49

flow. Each action that starts a new operation or returns from a completed oper-
ation is an external action. The crash action is also external. All other actions
(including flush and recovery) are internal actions.

To model system behaviours (crash, system flush and recovery), we reserve
a special transaction id syst . A crash and system flush is always enabled, and
hence can always be selected for execution. Recovery steps are enabled after a
crash has taken place and are only executed by syst . The effect of a flush is to
copy the value of the address being flushed from vstore to pstore. Note that a
flush can also be executed at specific program locations. In dTML, a flush of
addr occurs at lines W7 and C5. The effect of a crash is to perform the following:

– set the volatile store to the persistent store (since the volatile store is lost),
– set the program counters of all in-flight transactions (i.e., transactions that

have started but not yet completed) to aborted to ensure that these transac-
tion identifiers are not reused after the system is rebooted, and

– set the status of syst to C1 to model that a recovery is now in progress.

In our model, it is possible for a system to crash during recovery. However, no
new transaction may start until after the recovery process has completed.

4.3 IOA for dTMS2

In this section, we describe the dTMS2 specification, an operational model that
ensures durable opacity, which is based on TMS2 [15]. TMS2 itself has been
shown to strictly imply opacity [26], and hence has been widely used as an
intermediate specification in the verification of transactional memory implemen-
tations [1,2,12,14].

We let f ⊕ g denote functional override of f by g , e.g., f ⊕{x �→ u, y �→ v} =
λ k . if k = x then u elseif k = y then v else f (k).

Formally, dTMS2 is specified by the IOA in Fig. 2, which describes the
required ordering constraints, memory semantics and prefix properties. We
assume a set L of locations and a set V of values. Thus, a memory is mod-
elled by a function of type L → V . A key feature of dTMS2 (like TMS2) is that
it keeps track of a sequence of memory states, one for each committed writing
transaction. This makes it simpler to determine whether reads are consistent
with previously committed write operations. Each committing transaction con-
taining at least one write adds a new memory version to the end of the memory
sequence. However, unlike TMS2, following [11], the memory state is considered
to be the persistent memory state. Interestingly, the volatile memory state need
not be modelled.

The state space of dTMS2 has several components. The first, mems is the
sequence of memory states. For each transaction t there is a program counter
variable pct , which ranges over a set of program counter values, which are used to
ensure that each transaction is well-formed, and to ensure that each transactional
operation takes effect between its invocation and response. There is also a begin
index variable beginIdxt , that is set to the index of the most recent memory

50 E. Bila et al.

version when the transaction begins. This variable is critical to ensuring the
real-time ordering property between transactions. Finally, there is a read set,
rdSett , and a write set, wrSett , which record the values that the transaction has
read and written during its execution, respectively.

Fig. 2. The state space and transition relation of dTMS2, which extends TMS2 with
a crash event

Defining and Verifying Durable Opacity 51

The read set is used to determine whether the values that have been read by
the transaction are consistent with the same version of memory (using validIdx).
The write set, on the other hand, is required because writes in dTMS2 are
modelled using deferred update semantics: writes are recorded in the transac-
tion’s write set, but are not published to any shared state until the transaction
commits.

The crash action models both a crash and a recovery. We require that it is
executed by the system thread syst . It sets the program counter of every in-
flight transaction to aborted , which prevents these transactions from performing
any further actions in the era following the crash (for the generated history).
Note that since transaction identifiers are not reused, the program counters of
completed transactions need not be set to any special value (e.g., crashed) as with
durable linearizability [11]. Moreover, after restarting, it must not be possible
for any new transaction to interact with memory states prior to the crash. We
therefore reset the memory sequence to be a singleton sequence containing the
last memory state prior to the crash.

The following theorem ensures that dTMS2 can be used as an intermediate
specification in our proof method. We provide a proof sketch below. The full
proof may be found in the appendix of [5].

Theorem 1. Each trace of dTMS2 is durably opaque.

Proof (Sketch). First we recall that TMS2 is exactly the same as the automaton
in Fig. 2, but without a crash operation. The proof proceeds by showing that for
any history h ∈ traces(dTMS2), we have that ops(h) ∈ traces(TMS2). Then
since ops(h) is opaque, we have that h is durably opaque. We establish a formal
relationship between h and ops(h) by establishing a weak simulation between
dTMS2 and TMS2 such that {ops(h) | h ∈ traces(dTMS2)} ⊆ traces(TMS2).
The simulation is weak since the external crash action in dTMS2 has no match-
ing counterpart in TMS2.

The simulation relation we use captures the following. Any transaction t of
dTMS2 that is aborted due to a crash will set pct to aborted without executing
respt(abort). This difference can easily be compensated by the simulation rela-
tion. A second difference is that mems is reset to last(mems) in dTMS2 when
a crash occurs, and hence there is a mismatch between mems in dTMS2 and
in TMS2. Let ds be a state of dTMS2 and as a state of TMS2. To compen-
sate for the difference between ds.mems and as.mems, we introduce an auxiliary
variable “allMems” to ds that records memories corresponding to all committed
writing transactions in dTMS2. We have the property that ds.mems of dTMS2
is a suffix of ds.allMems and that ds.allMems = as.mems.

5 Durable Opacity of dTML

We now describe the simulation relation used in the Isabelle proof.2

2 All Isabelle theory files related to this proof may be downloaded from [5].

52 E. Bila et al.

Our simulation relation is divided into two relations: a global relation
globalRel , and a transactional relation txnRel . The global relation describes how
the shared states of the two automata are related, and the transaction relation
specifies the relationship between the state of each transaction in the concrete
automaton, and that of the transaction in the abstract automaton. The simula-
tion relation itself is then given by:

simRel(cs, as) = globalRel(cs, as) ∧ ∀ t ∈ T • txnRel(cs, as, t)

We first describe globalRel , which assumes the following auxiliary defini-
tions where cs is the concrete state (of dTML) and as is the abstract state (of
dTMS2). These definitions are used to compensate for the fact that the commit
of a writing transaction in the dTML algorithm takes effect (i.e., linearizes) at
line E2 when the log is set to empty.

writes(cs, as) = if cs.writer = t ∧ pct �= E3 then as.wrSett else ∅

logical glb(cs) = if cs.writer = t ∧ pct = E3 then cs.glb + 1 else cs.glb

write count(cs) =
⌊

logical glb(cs)
2

⌋

Function writes(cs, as) returns the (abstract) write set of the writing transac-
tion. This is the write set of the writing transaction, t , in the abstract state as
provided t hasn’t already linearized its commit operation, and is the empty set
otherwise. Function logical glb(cs) compensates for a lagging value of glb after a
writing transaction’s commit operation is linearized. Namely, it returns the glb
incremented by 1 if a writer is already at E3. Finally, write count(cs) is used
to determine the number of committed writing transactions in cs since the most
recent crash since cs.glb is initially 0 and reset to 0 by the recovery operation,
and moreover, cs.glb is incremented twice by each writing transaction: once at
line W2 and again at line E2 when the writing transaction commits.

Relation globalRel comprises three main parts. We assume a program counter
value RecIdle which is true for pcsyst iff syst is not executing the recovery
procedure.

globalRel(cs, as)
= (pcsyst = RecIdle ⇒ cs.vstore = (last(as.mems) ⊕ writes(cs, as)) ∧ (1)

write count(cs) + 1 = length(as.mems))) ∧ (2)

(cs.vstore ⊕ cs.log) = last(mems(as)) ∧ (3)

∀ t .t �= syst ∧ cs.pct = NotStarted ⇒ as.pct = NotStarted (4)

Conditions (1) and (2) assume that a recovery procedure is not in progress.
By (1), the concrete volatile store is the last memory in as.mems overwritten

Defining and Verifying Durable Opacity 53

with the write set of an in-flight writing transaction that has not linearized its
commit operation. By (2), the number of memories recorded in the abstract
state (since the last crash) is equal to write count(cs) + 1. By (3), the last
abstract (persistent) store can by calculated from cs.vstore by overriding it with
the mappings in log. Note that this is equivalent to undoing all uncommitted
transactional writes. Finally, (4) ensures that every identifier for a transaction
that has not started at the concrete level also has not started at the abstract
level.

We turn now to txnRel . Its specification is very similar to the specification of
txnRel in the proof of TML [10]. Therefore, we only provide a brief sketch below;
an interested reader may consult [10] for further details. Part of txnRel maps con-
crete program counters to their abstract counterparts, which enables steps of the
concrete program to be matched with abstract steps. For example, concrete pc
values W1, W2, . . . , W6 correspond to abstract pc value doWrite(cs.addrt , cs.valt),
whereas W7 corresponds to writeResp, indicating that, in our proof, execution of
line W6 corresponds to the execution of an abstract DoWritet(cs.addrt , cs.valt)
operation. Moreover, as in the proof of TML [10], a set of assertions are intro-
duced to establish as.validIdx (t ,write count(cs)) for all in-flight transactions t ,
which ensures that each transactional read and write is valid with respect to
some memory snapshot.

Relation txnRel must also provide enough information to enable linearization
of a commit operation against the correct abstract step. Note that dTMS2
distinguishes between read-only and writing transactions by checking emptiness
of the write set of the committing transaction. To handle this, we exploit the fact
that in dTML, writing transactions have an odd loc value if the cas at line W2
is successful and loc is incremented at W3, indicating that a writing transaction
is in progress.

Finally, txnRel must ensure that the recovery operation is such that the
volatile store matches the last abstract store in mems prior to the crash. To
achieve this, we require that length(as.mems) = 1 when syst is executing
the recovery procedure, and the volatile store for the address being flushed
at C3 matches the abstract state before the crash, i.e., cs.vstore(cs.addrt) =
((as.mems)(0))(cs.addrt). Since the recovery loop only terminates after the log
is emptied, this ensures that the concrete memory state is consistent with the
abstract memory prior to executing any transactions after a crash has occurred.

In order to prove that our simulation relation is maintained by each step of the
algorithm, we must use certain invariants of the dTML model. These invariants
are similar to the corresponding invariants used in a proof of the original TML
algorithm for the conventional volatile RAM model (see [10] for details). For
example, our invariants imply that there is at most one writing transaction, and
there is no such transaction when glb is even. The main additional invariant
that we use for dTML constrains the possible differences between volatile and
persistent memory: volatile and persistent memory are identical except for any
location that has been written by a writer or by the recovery procedure but not
yet flushed. This simple invariant combined with the global relation is enough to

54 E. Bila et al.

prove that the memory state after each crash is correct. Our dTML invariants
have been verified in Isabelle, and can be found in the Isabelle files.

6 Related Work

Although there is existing research on extending the definition of linearizability
to durable systems, there is comparatively less work on extending other notions of
transactional memory correctness such as, but not limited to, opacity to durable
systems. Various systems attempt to achieve atomic durability, transform general
objects to persistent objects and provide a secure interface of persistent memory.
The above goals usually require the use of logging which can be software or
hardware based. Raad et al have proposed a notion of durable serialisability
under relaxed memory [34], but this model does not handle aborted transactions.

ATLAS [6] is a software system that provides durability semantics for
NVRAM with lock-base multithreaded code. The system ensures that the outer-
most critical sections, which are protected by one or more mutexes, are failure-
atomic by identifying Failure Atomic Sections (FASEs). These sections ensure
that, if at least one update that occurs to a persistent location inside a FASE
is durable, then all the updates inside the session are durable. Furthermore, like
dTML, ATLAS keeps an persistent undo log, that tracks the synchronisation
operations and persistent stores, and allows the recovery of rollback FASEs that
were interrupted by crashes.

Koburn et al. [7] integrate persistent objects into conventional programs, and
furthermore seek to prevent safety bugs that occur in predominantly persistent
memory models, such as multiple frees, pointer errors, and locking errors. This
is done by implementing NV-heaps, an interface to the NVRAM based on ACID
transactions that guarantees safety and provides reasoning about the order in
which changes to the data structures should become permanent. NV-heaps only
handle updates to persistent memory inside transactions and critical sections.
Other systems based on persistent ACID transactions include Mnemosyne [37],
Stasis [36] and BerkeleyDB [33].

Ben-David et al. [4] developed a system that can transform programs that
consist of read, write and CAS operations in shared memory, to persistent mem-
ory. The system aims to create concurrent algorithms that guarantee consistency
after a fault. This is done by introducing checkpoints, which record the current
state of the execution and from which the execution can be continued after a
crash. Two consecutive checkpoints form a capsule, and if a crash occurs inside a
capsule, program execution is continued from the previous capsule boundary. We
have not applied this technique to develop dTML, but it would be interesting
to develop and optimise capsules in an STM context.

Mnemosyne [37] provides a low-level interface to persistent memory with
high-level transactions based on TinySTM [18] and a redo log that is purposely
chosen to reduce ordering constraints. The log is flushed at the commit of each
transaction. As a result, the memory locations that are written to by the trans-
action remain unmodified until commit. Each read operation checks whether

Defining and Verifying Durable Opacity 55

data has been modified and if so, returns the buffered value instead of the value
from the memory. The size of the log increases proportionally to the size of the
transaction, potentially making the checking time consuming.

Hardware based durable transactional memory has also been proposed [24]
with hardware support for redo logging [25]. Other indicative hardware systems
help implement atomic durability either by performing accelerated ordering or
by performing the logging operation are [27,31].

7 Conclusions

In this paper we have defined durable opacity, a new correctness condition for
STMs, inspired by durable linearizability [22] for concurrent objects. The condi-
tion assumes a history with crashes such that in-flight transactions are aborted
(i.e., do not continue) after a crash takes place, and simply requires that the
history satisfies opacity [19,20] after the crashes are removed. This is a strong
notion of correctness but ensures safety for STMs in the same way that durable
linearizability [22] ensures safety for concurrent objects. It is already known
that TMS1 [15], which is a weaker condition than opacity [26] is sufficient for
contextual refinement [3]; therefore we conjecture that durable opacity can pro-
vide similar guarantees in a non-volatile context. For concurrent objects, more
relaxed notions such as buffered durable linearizability [22] have also been pro-
posed, which requires causally related operations to be committed in order, but
real-time order need not be maintained. Such notions could also be considered
in a transactional memory setting [16], but the precise specification of such a
condition lies outside the scope of this paper.

To verify durable opacity, we have developed dTMS2, an operational char-
acterisation that extends the TMS2 specification with a crash operation. We
establish that all traces of dTMS2 are durably opaque, which makes it possible
to prove durable opacity by showing refinement between an implementation and
dTMS2. We develop a durably opaque example implementation, dTML, which
extends TML [8] with a persistent undo log, and associated modifications such
as the introduction of a recovery operation. Finally, we prove durable opacity
of dTML by establishing a refinement between it and dTMS2. This proof has
been fully mechanised in Isabelle.

Our focus has been on the formalisation of durable opacity and the devel-
opment of an example algorithm and verification technique. Future work will
consider alternative implementations of the algorithm, e.g., using a persistent
set [38], or thread-local undo logs [23]. Develop and implement a logging mech-
anism based on undo and redo log properties named JUSTDO logging. This
mechanism aims to reduce the memory size of log entries while preserving data
integrity after crash occurrences. Unlike optimistic transactions [6], JUSTDO
logging resumes the execution of interrupted FASEs to their last store instruc-
tion, and then executes them until completion. A small log is maintained for
each thread, that records its most recent store within a FASE, simplifying the
log management and reduce the memory requirements. Future work will also

56 E. Bila et al.

consider weakly consistent memory models building on existing works integrat-
ing persistency semantics with hardware memory models [34,35].

References

1. Armstrong, A., Dongol, B.: Modularising opacity verification for hybrid transac-
tional memory. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321,
pp. 33–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60225-7_3

2. Armstrong, A., Dongol, B., Doherty, S.: Proving opacity via linearizability: a sound
and complete method. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS,
vol. 10321, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60225-7_4

3. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: Safety of live transactions in
transactional memory: TMS is necessary and sufficient. In: Kuhn, F. (ed.) DISC
2014. LNCS, vol. 8784, pp. 376–390. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45174-8_26

4. Ben-David, N., Blelloch, G.E., Friedman, M., Wei, Y.: Delay-free concurrency on
faulty persistent memory. In: The 31st ACM Symposium on Parallelism in Algo-
rithms and Architectures, pp. 253–264 (2019)

5. Bila, E., Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Defin-
ing and verifying durable opacity: correctness for persistent software transactional
memory (2020). https://arxiv.org/abs/2004.08200

6. Chakrabarti, D.R., Boehm, H.J., Bhandari, K.: Atlas: leveraging locks for non-
volatile memory consistency. ACM SIGPLAN Not. 49(10), 433–452 (2014)

7. Coburn, J., et al.: Nv-heaps: making persistent objects fast and safe with next-
generation, non-volatile memories. ACM SIGARCH Comput. Archit. News 39(1),
105–118 (2011)

8. Dalessandro, L., Dice, D., Scott, M., Shavit, N., Spear, M.: Transactional mutex
locks. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS,
vol. 6272, pp. 2–13. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15291-7_2

9. Dalessandro, L., Spear, M.F., Scott, M.L.: NORec: streamlining STM by abolishing
ownership records. In: Govindarajan, R., Padua, D.A., Hall, M.W. (eds.) PPoPP,
pp. 67–78. ACM (2010)

10. Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.:
Mechanized proofs of opacity: a comparison of two techniques. Formal Aspects
Comput. 30(5), 597–625 (2017). https://doi.org/10.1007/s00165-017-0433-3

11. Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Wehrheim, H.: Verifying cor-
rectness of persistent concurrent data structures. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 179–195. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8_12

12. Derrick, J., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.: Verifying opac-
ity of a transactional mutex lock. In: Bjørner, N., de Boer, F. (eds.) FM 2015.
LNCS, vol. 9109, pp. 161–177. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19249-9_11

13. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006). https://doi.org/
10.1007/11864219_14

https://doi.org/10.1007/978-3-319-60225-7_3
https://doi.org/10.1007/978-3-319-60225-7_4
https://doi.org/10.1007/978-3-319-60225-7_4
https://doi.org/10.1007/978-3-662-45174-8_26
https://doi.org/10.1007/978-3-662-45174-8_26
https://arxiv.org/abs/2004.08200
https://doi.org/10.1007/978-3-642-15291-7_2
https://doi.org/10.1007/978-3-642-15291-7_2
https://doi.org/10.1007/s00165-017-0433-3
https://doi.org/10.1007/978-3-030-30942-8_12
https://doi.org/10.1007/978-3-319-19249-9_11
https://doi.org/10.1007/978-3-319-19249-9_11
https://doi.org/10.1007/11864219_14
https://doi.org/10.1007/11864219_14

Defining and Verifying Durable Opacity 57

14. Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Proving opacity
of a pessimistic STM. In: Fatourou, P., Jiménez, E., Pedone, F. (eds.) OPODIS.
LIPIcs, vol. 70, pp. 35:1–35:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2016)

15. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Asp. Comput. 25(5), 769–799 (2013)

16. Dongol, B., Jagadeesan, R., Riely, J.: Transactions in relaxed memory architec-
tures. PACMPL 2(POPL), 18:1–18:29 (2018)

17. Dongol, B., Derrick, J.: Verifying linearisability: a comparative survey. ACM Com-
put. Surv. 48(2), 19:1–19:43 (2015)

18. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pp. 237–246 (2008)

19. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Chat-
terjee, S., Scott, M.L. (eds.) PPOPP, pp. 175–184. ACM (2008)

20. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lec-
tures on Distributed Computing Theory. Morgan & Claypool Publishers (2010)

21. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS 12(3), 463–492 (1990)

22. Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory
objects under a full-system-crash failure model. In: Gavoille, C., Ilcinkas, D. (eds.)
DISC 2016. LNCS, vol. 9888, pp. 313–327. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53426-7_23

23. Izraelevitz, J., Kelly, T., Kolli, A.: Failure-atomic persistent memory updates via
justdo logging. ACM SIGARCH Comput. Archit. News 44(2), 427–442 (2016)

24. Joshi, A., Nagarajan, V., Cintra, M., Viglas, S.: DHTM: durable hardware trans-
actional memory. In: 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pp. 452–465. IEEE (2018)

25. Joshi, A., Nagarajan, V., Viglas, S., Cintra, M.: Atom: atomic durability in non-
volatile memory through hardware logging. In: 2017 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), pp. 361–372. IEEE
(2017)

26. Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place. In: Workshop
on the Theory of Transactional Memory (2012)

27. Lu, Y., Shu, J., Sun, L., Mutlu, O.: Loose-ordering consistency for persistent mem-
ory. In: 2014 IEEE 32nd International Conference on Computer Design (ICCD),
pp. 216–223. IEEE (2014)

28. Lynch, N., Vaandrager, F.: Forward and backward simulations. Inf. Comput.
121(2), 214–233 (1995)

29. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC, pp. 137–151. ACM, New York (1987)

30. Müller, O.: I/O Automata and beyond: temporal logic and abstraction in Isabelle.
In: Grundy, J., Newey, M. (eds.) TPHOLs, pp. 331–348. Springer, Heidelberg
(1998)

31. Nalli, S., Haria, S., Hill, M.D., Swift, M.M., Volos, H., Keeton, K.: An analysis of
persistent memory use with whisper. ACM SIGPLAN Not. 52(4), 135–148 (2017)

32. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

33. Olson, M.A., Bostic, K., Seltzer, M.I.: Berkeley DB. In: USENIX Annual Technical
Conference, FREENIX Track, pp. 183–191 (1999)

https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/3-540-45949-9

58 E. Bila et al.

34. Raad, A., Wickerson, J., Vafeiadis, V.: Weak persistency semantics from the ground
up: formalising the persistency semantics of ARMV8 and transactional models.
PACMPL 3(OOPSLA), 135:1–135:27 (2019)

35. Raad, A., Vafeiadis, V.: Persistence semantics for weak memory: integrating epoch
persistency with the TSO memory model. PACMPL 2(OOPSLA), 137:1–137:27
(2018)

36. Sears, R., Brewer, E., Brewer, E., Brewer, E.: Stasis: flexible transactional storage.
In: Proceedings of the 7th symposium on Operating Systems Design and Imple-
mentation, pp. 29–44. USENIX Association (2006)

37. Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: lightweight persistent memory.
ACM SIGARCH Comput. Archit. News 39(1), 91–104 (2011)

38. Zuriel, Y., Friedman, M., Sheffi, G., Cohen, N., Petrank, E.: Efficient lock-free
durable sets. PACMPL 3(OOPSLA), 1281–12826 (2019)

Conformance-Based Doping Detection
for Cyber-Physical Systems

Rayna Dimitrova1, Maciej Gazda1, Mohammad Reza Mousavi2(B),
Sebastian Biewer3, and Holger Hermanns3

1 Department of Computer Science, University of Sheffield, Sheffield, UK
2 School of Informatics, University of Leicester, Leicester, UK

mm789@le.ac.uk
3 Saarland University - Computer Science, Saarland Informatics Campus,

Saarbrücken, Germany

Abstract. We present a novel and generalised notion of doping clean-
ness for cyber-physical systems that allows for perturbing the inputs and
observing the perturbed outputs both in the time– and value–domains.
We instantiate our definition using existing notions of conformance for
cyber-physical systems. We show that our generalised definitions are
essential in a data-driven method for doping detection and apply our
definitions to a case study concerning diesel emission tests.

1 Introduction

System doping, in our terminology, is an intentional intervention causing a
change in the system’s normal behaviour against the interests of the user or
other stakeholders (such as the society at large). Examples of system doping are
widespread and range from vendors’ enforcing a monopoly on chargers and spare
parts (by checking for and refusing third-party chargers and spare parts, respec-
tively) to tampering with exhaust emission in order to detect and pass emission
tests. Doping can be the result of embedding a piece of code or smuggling a
piece of electronic circuit into the system and it can be caused by the original
developers or by hackers. Software and system doping has been studied in the
past couple of years and rigorous theories for it have been developed [8,9,15].
These theories were subsequently adopted in order to detect doping, or formally,
to check system cleanness [10,32] (corresponding to the absence of doping).

In the present paper, we extend the theory of doping to the setting of cyber-
physical systems (CPS) by exploiting the notions of conformance testing for
CPS [1,17,33]. The existing theories of software doping define doping in terms
of drastic deviations in output as a result of minor deviations in input, where

This work is partly supported by the ERC Grant 695614 (POWVER) by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) grant 389792660 as part
of TRR 248, see https://perspicuous-computing.science, by the Saarbrücken Graduate
School of Computer Science, and by the Sino-German CDZ project 1023 (CAP).

c© The Author(s) 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 59–77, 2020.
https://doi.org/10.1007/978-3-030-50086-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_4&domain=pdf
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-50086-3_4

60 R. Dimitrova et al.

Fig. 1. Running example: specified (a) and actual (b) test cycles and emission foot-
prints obtained from different (fictitious) vehicles (c) and (d).

the term “deviation” refers to differences in validity of propositions or values of
variables. However, the current notions come short of properly dealing with the
issues of retiming and delays, which are commonly present in the signals of CPS.
We observe that this is an essential aspect of detecting doping for cyber-physical
systems: often the traces to be tested for doping have subtly different timing
behaviour, e.g., due to measurement and calibration errors or due to the slight
deviations of human actors in acting upon the planned scenarios. The insufficient
treatment of retiming and delays can both lead to false negatives, i.e., missing
cases of doping, as well as false positives, i.e., reporting spurious doping cases.

To address these issues, we exploit the notion of conformance to devise a
general theory of being clean from doping and instantiate that theory with some
existing notions of conformance for hybrid systems. We show how these notions
can account for retiming and lead to more precise notions of cleanness.

We illustrate the usefulness of our theory by empirical analysis of diesel
engine exhaust emissions in the context of one of the official test cycles, the
New European Driving Cycle (NEDC) [42]. In particular, we show that catering
for retiming is essential in effectively exploiting the actual driving cycles for
performing doping analysis. We thus demonstrate that our new theory remedies
a major shortcoming in the existing notions from the literature. To facilitate
the presentation, we use throughout the remainder of this paper the following
simple running example, which is inspired by our case study.

Example 1. Figure 1.(a) shows two test cycles (evolution of speed over time),
designed to detect whether the exhaust emission control of a particular vehicle
is doped. The test cycle ist , depicted with a black solid line, is the standard one
prescribed by the (fictitious) official regulation, while test cycle idev , depicted by
a red dotted line, is a slight deviation thereof. If the exhaust emissions measured
during the test cycle idev turn out to be significantly higher than the ones mea-
sured in test cycle ist , then we can conclude that the exhaust emission system
is potentially doped, since it appears tailored to the standard test cycle.

Figure 1.(b) addresses a notorious problem of testing cars: a human tester is
supposed to drive the car as just described, however, she can do this only up to
a certain imprecision. Assume her driving of idev exhibits a slight time shift τ
relative to the test cycle, as in iddev , while ist is being driven as intended.

Conformance-Based Doping Detection for Cyber-Physical Systems 61

The result of a test is the emission footprint measured at the exhaust pipe
of the car. Figure 1.(c) and Fig. 1.(d) show two different possible test results
(obtained from different cars) for the scenario in Fig. 1.(b). Intuitively, the foot-
prints in Fig. 1.(c) provide significant evidence for doping – a slightly different
test cycle has resulted in significantly larger footprint. However, due to the time
shift on the input side Fig. 1.(b) the point-wise difference of the two driven
test-cycles has grown very large. As we show in the remainder of this paper,
the existing theory of doping fails to detect such a clear evidence, due to the
minor delay during the execution of the driving cycle. The emission footprint in
Fig. 1.(d) is another (synthetic) example of a significant deviation which cannot
be detected for the input in Fig. 1.(b) using existing theories; this latter footprint
sheds some light on the intricate design decisions in the theory we develop in
this paper.

The contributions for this paper can be summarized as follows:

– We define a general notion of conformance that can express different ways of
comparing execution traces by allowing deviations both in value and in time.

– We define a general notion of cleanness for hybrid systems, and show that it
subsumes the existing notion of robust cleanness [15].

– We demonstrate the usefulness of the proposed generic framework by apply-
ing it to software doping tests in the automotive domain, where we show that
the new cleanness definition is able to flag a case of software doping that goes
unnoticed when robust cleanness is used.

2 Related Work

The term “software doping” was coined around 2015 [30] in media uncovering the
diesel exhaust emissions scandal. An informal problem formulation [8] pointed
out the general phenomenon of intentionally added hidden software behaviour,
which is not in the interest of the consumer. Shortly after, this observation has
been complemented by a set of formal cleanness definitions [15] laying the theo-
retical foundations upon which formal methods to detect such software behaviour
can be used. It is possible to detect missing functionality and undesired exist-
ing functionality. The definitions support both sequential programs and non-
deterministic reactive programs. To check satisfaction of the definitions, it is
necessary to compare two (or more) execution traces of the same system. Such
properties are called hyperproperties [13] (whereas classical properties are trace
properties). Tool support for analysing hyperproperties typically requires high
computational effort [12,25]. There exist several temporal logics for analysing
satisfaction of trace properties of various kinds of systems, one of them being
Linear Temporal Logic (LTL) [39] for systems producing outputs in discrete
time steps and properties that do not consider the time passing between out-
puts. LTL has been extended to the logic HyperLTL, which can express hyper-
properties by allowing explicit quantification of execution traces in front of an

62 R. Dimitrova et al.

LTL formula [12]. Tools for model-checking boolean circuits, satisfiability and
monitoring of HyperLTL specifications have been developed [6,11,21–25,29].

Signal Temporal Logic (STL) [36] is an extension of LTL that adds support
for time constraints and real-valued signals. Tools exist that automatically try
to falsify STL formulas [7,18]. There has been an extension of STL to HyperSTL
in a similar fashion as it was done for HyperLTL [37]. The syntax of HyperSTL,
however, is not able to express the cleanness definitions (for deterministic sys-
tems) in a way that allows (efficient) falsification. Robust cleanness is defined for
distance functions on inputs and outputs [15]. When used with temporal logics
the distance functions are restricted to those compatible with the logics. To be
fully independent, robust cleanness analysis has been embedded into the theory
of model-based testing [10] with input-output conformance [40,41].

Notions of conformance for discrete event systems have been discussed for
almost a century. The earliest work on this topic dates back to 1960’s when
researchers studied model-based testing of digital circuits using Finite State
Machine models [31,35]. Concurrency theory contributed ideas to this field, such
as decoupling (i.e., removing the synchronised assumption between) inputs and
outputs and observing failures to engage in a communication (and more specif-
ically quiescence) [16,40]. A theory of conformance testing for systems with
continuous dynamics was developed by Michiel van Osch [38]; this theory did
not gain much popularity in practice, partly because of its insufficient treat-
ment of approximation (e.g., differences in values and retiming). Pappas and
Girard [27,28] proposed the use of Metric Bisimulation for conformance check-
ing in dynamical systems and Pappas and Fainekos [20] developed a falsification
framework for the same purpose. This research led to two notions of conformance
used in the present paper, namely hybrid conformance by Abbas and Fainekos
[1] and Skorokhod conformance by Deshmukh, Majumdar, and Prabhu [17].

3 Preliminaries

Semantic Domain. In this section, we provide definitions regarding semantic
domain, conformance, and robust cleanness. We begin with the definition of our
semantic domain, called generalised timed traces [26]. This definition subsumes
both discrete-time state sequences and continuous-time trajectories. A gener-
alised timed trace is a function with a discrete or continuous domain (called
time domain) and a co-domain which is a metric space. Intuitively, a generalized
timed trace maps each element of its time domain to a state. We require that
the set of possible states is a metric space since we study conformance notions
that compare traces based on the distance between the states of the traces.

Definition 1. Let (Y, dY) be a metric space. A Y-valued generalised timed trace
(GTT) is a function μ : T → Y such that T ⊆ R≥0. We call T the time domain
of μ, denoted dom(μ). GTT (Y) is the set of all Y-valued generalised timed traces.

Conformance-Based Doping Detection for Cyber-Physical Systems 63

For a GTT μ : T → Y and time t0 ∈ T , by μ[. . . t0] we denote the prefix of
μ up to t0, i.e., the restriction μ|t∈T :t≤t0 ; likewise, by μ[ts . . . te], we shall denote
the restriction μ|t∈T :ts≤t≤te

A hybrid system is a mapping from generalised (input) traces to sets of
generalised (output) timed traces.

Definition 2. A Y-valued hybrid system is a function H : GTT (Y) →
P(GTT (Y)) such that for all μ ∈ GTT (Y) and all μ′ ∈ H (μ) it holds that
dom(μ′) = dom(μ). We define H(Y) to be the set of all Y-valued hybrid systems.

In addition, we distinguish deterministic hybrid systems whose output values
range over singleton sets only. In what follows, we identify deterministic hybrid
systems with functions of the type GTT (Y) → GTT (Y).

For simplicity, we assume that the input and output domain are defined on
the same metric spaces. The generalisation to different spaces is straightforward.

Conformance Relations. Recently, a number of notions of conformance for cyber-
physical systems have been proposed [3,33]. It turns out that these notions, two
of which are quoted below, can provide a rigorous basis for doping detection.

Note that throughout the paper, the variables τ and ε (with possible sub-
scripts) always range over non-negative real numbers.

Definition 3. We say that Y-valued GTTs μ1 : T1 → Y and μ2 : T2 → Y are:

– trace conformant with tolerance threshold for signal value ε, notation
TraceConfε(μ1, μ2), if T1 = T2 and for all t ∈ T1, dY(μ1(t), μ2(t)) ≤ ε

– hybrid conformant with thresholds τ and ε, denoted HybridConfτ,ε(μ1, μ2), if:
• ∀t1 ∈ T1 ∃t2 ∈ T2 : |t2 − t1| ≤ τ ∧ dY(μ2(t2), μ1(t1)) ≤ ε
• ∀t2 ∈ T2 ∃t1 ∈ T1 : |t1 − t2| ≤ τ ∧ dY(μ1(t1), μ2(t2)) ≤ ε

– Skorokhod conformant with tolerance thresholds τ and ε, notation
SkorConfτ,ε(μ1, μ2), if T1 and T2 are intervals and there is a strictly increasing
continuous bijection r : T1 → T2 called retiming, such that:

• for all t ∈ T1, |r(t) − t| ≤ τ , and
• for all t ∈ T1, dY(μ1(t), μ2(r(t))) ≤ ε.

We show in the proposition below and also in our generalisation results in
Sect. 4, that these notions are closely related. However, they also have some
fundamental differences, that can be illustrated using the example in Fig. 1.

Example 2. Consider again the example shown in Fig. 1. We can see that in
Fig. 1.(a) ist and idev are trace conformant with value threshold ε, as they only
exhibit point-wise deviations by values less than ε. In contrast, ist and iddev in
Fig. 1.(b) are not trace conformant, yet they are hybrid conformant with time
and value margins τ and ε, respectively. The key difference is that the inputs
depicted in Fig. 1.(b) are very different if compared point-wise, but if one allows
for retiming, they are close enough in value after retiming.

The outputs o′(ist) and o′(iddev) in Fig. 1.(d) illustrate the fundamental dif-
ference between hybrid and Skorokhod conformance: although the order of rising

64 R. Dimitrova et al.

and falling signals are reversed in the two trajectories, they are still hybrid con-
formant, because hybrid conformance disregards the order. However, Skorokhod
conformance requires an order-preserving retiming, and hence distinguishes these
two trajectories. On the other hand, such retiming exists, e.g., for ist and iddev
in Fig. 1.(b), witnessing their Skorokhod conformance.

We shall use the following notation. We write Conf1 	 Conf2 whenever for
all μ1 : T1 → Y and μ2 : T2 → Y, we have Conf1(μ1, μ2) =⇒ Conf2(μ1, μ2). We
write Conf1 � Conf2 whenever Conf1 	 Conf2 and ¬Conf2 	 Conf1.

Proposition 1. For any τ, ε ∈ R≥0, the following relations hold:

TraceConfε � SkorConfτ,ε � HybridConfτ,ε

Robust Cleanness. We shall now state the original definition of robust cleanness
from [15], adapted to our framework of hybrid systems. It is based on Definition
7 and Proposition 19 from [15]; the phrasing below abstracts from the so-called
parameters of interest and standard inputs. Moreover it is cast in the setting
of generalised timed traces rather than discrete-step programs, and stated using
trace conformance with different thresholds for inputs and outputs, κI and κO.

Intuitively, a hybrid system is robustly clean if for every pair of input prefixes
on which no difference in the inputs exceeding κI has occurred so far (i.e., all
sub-prefixes are trace conformant), the corresponding sets of output prefixes are
also conformant with respect to κO. As we consider nondeterministic systems,
Hausdorff distance is used to compare sets of outputs (see [15] for details).

Definition 4. A hybrid system H is robustly clean, denoted RobustClean
(κI , κO), whenever:
∀i1, i2 ∈ GTT (Y) : ∀t ∈ dom(i1) ∪ dom(i2) :(
∀t′ ≤ t : TraceConfκI

(i1[. . . t′], i2[. . . t′]) =⇒(
(∀o1 ∈ H (i1)∃o2 ∈ H (i2) : TraceConfκO

(o1[. . . t], o2[. . . t])) ∧
(∀o2 ∈ H (i2)∃o1 ∈ H (i1) : TraceConfκO

(o1[. . . t], o2[. . . t]))
)

Note that in the above definition we do not require that dom(i1) = dom(i2).
In practice, robust cleanness is typically applied to pairs of traces that are both
defined over N. Here, however, for the sake of generality we impose no such
restriction. In particular, when the time domains of two traces are different, for
example disjoint, the predicate RobustClean will trivially evaluate to true.

Example 3. Consider the traces depicted in Fig. 1. The input prefixes ist and
iddev are given in Fig. 1.(b), and the corresponding pair of outputs is shown
in Fig. 1.(c). The trace ist results in output o(ist) and iddev results in o(iddev).
Suppose that ε < |ist(t0) − iddev (t0)| and ε < |o(ist)(t1) − o(iddev)(t1)| at some
time t1. Thus, the left-hand side of the implication in the Definition 4 instantiated
with κI = κO = ε does not hold for any t′. Hence, regardless of the outputs, this
pair of inputs satisfies the condition of RobustClean(ε, ε), and, if these are the only
traces in a hybrid system H then we can conclude that H is RobustClean(ε, ε).

Conformance-Based Doping Detection for Cyber-Physical Systems 65

4 Conformance-Based Cleanness

We now define a general notion of conformance-based cleanness and provide two
instantiations based on the conformance notions defined in the previous section.
The need for considering disturbance in time as well as in value is motivated
by our running example from Fig. 1. One of the challenges in performing doping
tests for cyber-physical systems is that in such systems timing is rarely perfectly
precise, due to imprecision in measurements, or caused by the interaction with
the physical world. As illustrated in Example 1, for instance, when checking for
software doping in a car [10], the input to the system is the value of the car’s
speed over time, which is under the control of a driver, and can thus vary from
one execution to the other, even if the driver is trying to execute the same input
sequence. Clearly, those variations can be in value, as well as in time.

Example 4. Consider the test setup sketched in Fig. 1. There, ist and iddev ,
depicted in Fig. 1.(b) define speed of a car as a function of time. These two input
sequences follow a trajectory of values differing by a small margin ε (the differ-
ence in value allowed by the standard defining the doping tests), but also shifted
by a small unit of time τ . Observe further that |ist(t0) − iddev (t0)| � ε. Thus,
without allowing for deviations in time when comparing these input sequences,
they will be considered sufficiently different, and as a result their respective
exhaust emission outputs will fall out of the comparison when checking for doping
according to Definition 4, even if the NOx emission values in the corresponding
outputs H (ist(t)) and H (iddev (t)) are vastly different, as depicted in Fig. 1.(c).
This results in a false negative, i.e., failing to detect a clearly doped system.

In the above example, we demonstrated that not accounting for timing dis-
turbances when relating input trajectories can result in false negatives in doping
detection. Dually, using the traditional comparison for output traces can result
in false positives by requiring overly strict matching of outputs.

The above example motivates the need to account for timing deviations in tra-
jectories. Intuitively, for input trajectories this relaxation results in considering
more traces as conforming, and thus enforcing more comparisons when checking
if a system is clean. For output trajectories this means relaxing the conformance
requirement by considering two output sequences as conforming even if their
values are not perfectly aligned in time. Furthermore, different types of timing
deviations need to be considered in different scenarios, for example, depending
on whether the order in which values occur is important or not.

Example 5. Consider the testing workflow from Example 1 and Fig. 1, where
inputs ist and iddev are passed to a car. In the second experiment, depicted in
Fig. 1.(d), the car outputs o′(ist) and o′(iddev), which are hybrid conformant
for ε and τ . Hence this observation of the system is classified as clean under
hybrid output conformance. However, the output o′(iddev) is clearly suspicious,
as the values in o′(iddev) and o′(ist) are reversed. This motivates considering
conformance notions that require retimings to be order-preserving. Indeed, using
Skorokhod conformance we can detect that the system is doped.

66 R. Dimitrova et al.

The above examples show that in order to be useful in a diverse set of applica-
tions, a software cleanness theory should allow for using a variety of conformance
notions. To this end, we next take a more general view on conformance notions,
in order to be able to develop a generic conformance-based cleanness framework.

So far, we have defined three specific notions of conformance which either
coincide, or are closely inspired by ones that have appeared in the literature. In
order to define a general framework for cleanness, we also wish to treat notions
of conformance in a more generic manner. To this end, we propose an abstract
definition of conformance predicates. As conformance predicates admit variations
in time, as well as in value, our definition is based on retimings, a device that
will play a key role in the context of this work. In its general form a retiming
is a pair of functions between two time domains. Intuitively, given two GTTs, a
retiming will define a mapping from points in each of the traces to points in the
other trace. Note that in general the mappings are not required to be injective;
this way we can cater for notions of conformance allowing for the so-called local
disorder phenomenon (in particular hybrid conformance – see Proposition 2).

Definition 5. A retiming is a pair of functions between two time domains, i.e.,
a pair of the form (r1, r2), where r1 : T1 → T2 and r2 : T2 → T1, with time
domains T1, T2 ⊆ R≥0. Given two time domains T1 and T2, we denote the set of
all retimings between T1 and T2 with RET (T1, T2).

Retiming is explicitly present in the definition of Skorokhod conformance;
there, each Skorokhod retiming is required to be a strictly increasing continuous
bijection. We can express a Skorokhod retiming r as an instance of our definition
as the pair (r, r−1). In fact, one can also define hybrid conformance, as well as a
whole class of conformance notions, using a suitable family of retimings.

A family of retimings Ret can be further constrained by τ to a subset Retτ of
Ret containing only functions that shift time by at most τ time units. In order
to use a family of retimings for concrete sequences μ1 and μ2, it is necessary to
consider only functions that match the domains of the sequences. This leads to
a generic notion of conformance associated with a given family of retimings Ret,
a given time threshold τ and a given value threshold ε.

Definition 6. Let Ret be a family of retimings, and let

Retτ
�
= {(r1, r2) ∈ Ret | ∀t ∈ dom(ri) : |ri(t) − t| ≤ τ (i = 1, 2)},

Retτ (T1, T2)
�
= Retτ ∩ RET (T1, T2).

A conformance notion with time threshold τ and value threshold ε induced by Ret
is a predicate Conf Retτ,ε on pairs of GTTs such that, for μ1 : T1 → Y, μ2 : T2 → Y:

Conf Retτ,ε (μ1, μ2) ⇐⇒ ∃(r1, r2) ∈ Retτ (T1, T2) : ∀t ∈ T1 : dY(μ1(t), μ2 ◦ r1(t)) ≤ ε
∧ ∀t ∈ T2 : dY(μ2(t), μ1 ◦ r2(t)) ≤ ε.

Using the above definition, we can easily express the specific notions of confor-
mance defined in the previous section by selecting a suitable family of retimings.

Conformance-Based Doping Detection for Cyber-Physical Systems 67

Proposition 2. The conformance predicates below coincide with the notions of
conformance induced by the corresponding families of retimings:

– TraceConfε is induced by the family of retimings containing only identity func-
tions: Retid = {(id, id) | id : T → T is the identity on some T ⊆ R≥0}.

– SkorConfτ,ε is induced by the family of retimings
Ret = {(r, r−1) | r is a strictly increasing continuous bijection}.

– HybridConfτ,ε is induced by pairs of arbitrary functions.

Definition 6 also enables us to define other notions of conformance, such as,
for instance a “shift conformance”, which, intuitively, shifts all time points by a
given constant c ∈ R, i.e., Retc = {(r, r−1) | r(t) = t + c}.

Next, we define a generic notion of cleanness, parametrised by conformance
predicates for the input and for the output traces. Instantiating these predicates
with existing or new conformance notions, yields different conformance-based
notions of cleanness that can capture a variety of cleanness specifications.

We now extend the notion of robust cleanness [15] to allow for “small” varia-
tions in time, in addition to the variations in value. To this end, the new notion
makes use of two conformance predicates, one that postulates when two input
traces should be considered close enough, and another one that specifies when
two output traces are close enough.

Our starting point, the notion of robust cleanness in Definition 4, is based on
comparison of matching prefixes of a pair of input traces and the corresponding
prefixes of the associated output traces. As we now want to accommodate for
distance in time, we (1) compare prefixes using a conformance relation, and
(2) allow for variation in the length of the compared prefixes that is within
the corresponding time-distance threshold. More precisely, when comparing two
prefixes, we allow for discarding start and end segments of length at most τ .

This intuition is formalized by the predicate PrefConf for relaxed compari-
son of GTT prefixes using a notion of conformance Conf with tolerance thresh-
old τ for time disturbance. We use cascaded notation to define PrefConf as a
higher-order function taking Conf as its first argument. The predicate PrefConf
compares two prefixes μ1 and μ2 by requiring that there exist traces μ1[ts1 . . . te1]
and μ2[ts2 . . . te2] obtained from them, that are conformant with respect to Conf.
These traces are obtained by possibly removing a sub-prefix of length at most
τ , and/or removing extending with a suffix of length at most τ .

Definition 7. Let Conf be a notion of conformance on GTTs with tolerance
threshold τ for time disturbance. For any pair of GTTs μ1 : T1 → Y, μ2 : T2 →
Y, and t ∈ T = T1 ∪ T2, the predicate PrefConf is defined as:

PrefConf(μ1, μ2, t)⇐⇒∃ts1 ∈ [0, τ] ∩ T1,∃te1 ∈ [t − τ, t + τ] ∩ T1,
∃ts2 ∈ [0, τ] ∩ T2,∃te2 ∈ [t − τ, t + τ] ∩ T2:
Conf(μ1[ts1 . . . te1], μ2[ts2 . . . te2]).

The predicate PrefConf provides a generic notion of prefix-conformance. By
instantiating it with conformance relations ConfI and ConfO for input and out-
put traces respectively, we define the notion of (ConfI ,ConfO)-cleanness.

68 R. Dimitrova et al.

For deterministic systems (ConfI ,ConfO)-cleanness requires that for all pairs
of input prefixes for which all sub-prefixes are prefix-conformant w.r.t. ConfI ,
the corresponding pair of output prefixes are prefix-conformant w.r.t. ConfO .

Definition 8. A deterministic system H is (ConfI ,ConfO)-clean if
∀i1, i2 ∈ GTT (Y) : ∀t ∈ dom(i1) ∪ dom(i2) :

(∀t′ ≤ t : PrefConfI (i1, i2, t′)
)

=⇒ PrefConfO(H (i1),H (i2), t).

The above definition naturally generalises to nondeterministic hybrid systems,
by comparing sets of possible output prefixes using Hausdorff distance as in [15].

Definition 9. A system H is (ConfI ,ConfO)-clean if

∀i1, i2 ∈ GTT (Y) : ∀t ∈ dom(i1) ∪ dom(i2) :(
∀t′ ≤ t : PrefConfI (i1, i2, t′)

)
=⇒(

(∀o1 ∈ H (i1)∃o2 ∈ H (i2) : PrefConfO(o1, o2, t)) ∧
(∀o2 ∈ H (i2)∃o1 ∈ H (i1) : PrefConfO(o1, o2, t))

)
.

Robust cleanness [15] can be now formulated as conformance-based cleanness,
which establishes that (ConfI ,ConfO)-cleanness is a generalisation. Using hybrid
conformance, we define hybrid-conformance cleanness, and similarly, plugging in
Skorokhod conformance, we define Skorokhod-conformance cleanness. Formally:

– A hybrid system H is robustly clean, denoted RobustClean(κI , κO), if and
only if H is (TraceConfκI

,TraceConfκO
)-clean.

– A hybrid system H is hybrid-conformance clean with conformance thresholds
(τI , εI , τO, εO), which we denote by HybridClean(τI , εI , τO, εO), if and only if
H is (HybridConfτI ,εI , HybridConfτO,εO)-clean.

– A hybrid system H is Skorokhod-conformance clean with conformance thresh-
olds (τI , εI , τO, εO), denoted SkorClean(τI , εI , τO, εO), if and only if H is
(SkorConfτI ,εI , SkorConfτO,εO)-clean.

We will now establish some key relations between the cleanness notions
defined previously. We begin by lifting the implication between conformance
relations to implication between cleanness notions defined using those relations.

Proposition 3. Suppose that Conf 1I � Conf 2I and Conf 1O 	 Conf 2O. Then for
any system H: H is (Conf 1I ,Conf 1O)-clean =⇒ H is (Conf 2I ,Conf 2O)-clean.

The proposition above has two important corollaries. The first one explains
the relationships between the original robust cleanness, and notions of cleanness
based on Skorokhod conformance and hybrid conformance, in particular stat-
ing the conservative generalisation property for the latter notions. The second
corollary compares cleanness notions with different conformance thresholds.

Corollary 1. For all τI , τO, εI , εO ∈ R≥0, the following implications hold:

1. RobustClean(εI , εO) =⇒ SkorClean(0, εI , τO, εO) =⇒ HybridClean(0, εI ,
τO, εO),

Conformance-Based Doping Detection for Cyber-Physical Systems 69

2. HybridClean(τI , εI , 0, εO) =⇒ SkorClean(τI , εI , 0, εO) =⇒ RobustClean
(εI , εO).

Also, RobustClean(εI , εO) = SkorClean(0, εI , 0, εO) = HybridClean(0, εI , 0, εO)
and hence SkorClean and HybridClean are conservative extensions of robust clean-
ness.

Corollary 2. For all εI , ε
′
I , εO , ε′

O , τI , τ
′
I , τO , τ ′

O that satisfy the inequalities
ε′
I ≤ εI , τ ′

I ≤ τI , ε′
O ≥ εO , τ ′

O ≥ τO the following implications hold:

1. RobustClean(εI , εO) =⇒ RobustClean(ε′
I , ε

′
O);

2. HybridClean(εI , τI , εO , τO) =⇒ HybridClean(ε′
I , τ

′
I , ε

′
O , τ ′

O);
3. SkorClean(εI , τI , εO , τO) =⇒ SkorClean(ε′

I , τ
′
I , ε

′
O , τ ′

O).

Example 6. Consider the testing workflow in Fig. 1. The inputs passed to a car
are ist and iddev , depicted in Fig. 1.(b). One of the test results is presented in
Fig. 1.(c), where ist reveals output o(ist) and iddev reveals o(iddev). We assume
that ε < |ist(t0) − iddev (t0)| and ε < |o(ist)(t1) − o(iddev)(t1)| at some time t1.

– For inputs ist and iddev , any output is immediately deemed RobustClean(ε, ε),
as the left-hand side of the implication in Definition 8 does not hold for
any t′. Note, that for other inputs the car used for testing might not be
RobustClean(ε, ε).

– As explained in Example 2, ist and iddev are hybrid conformant for ε and
τ , i.e., the predicate PrefConfI on the left-hand side of the implication in
Definition 8 holds. PrefConfO, however, fails at time t1 for signals o(ist) and
o(iddev). Hence, the system tested in Fig. 1.(c) is not HybridClean(ε, τ, ε, τ).

We now discuss testing and falsification of conformance-based cleanness.
For systems with discrete time domains the existing methods for verifying [15]

or testing [10] robust cleanness can be readily applied.
In the case of hybrid cleanness, existing methods for testing hybrid confor-

mance, such as [2] and [4] can be extended to testing and falsification of hybrid
cleanness of hybrid systems consisting of traces with finite time domains. Meth-
ods for checking Skorokhod conformance were presented in [17]. Due to the
quantification over all time-points t′ in our Definition 8 and Definition 9, it is not
clear how to directly extend them to testing Skorokhod cleanness.

5 Case Study

In this section we evaluate the proposed notion of hybrid cleanness in the context
of doping detection in relation to the recent Diesel Emissions Scandal.

Conducting software doping tests for cyber-physical systems has a range of
applications. A prominent example is the body of recent work [8–10,14,15,32,34]
that gives insights into the Diesel Emissions Scandal. This is a world-wide scandal
where millions of diesel cars have been equipped with defeat devices reducing the
effectiveness of emission cleaning systems during real-world usage – in contrast

70 R. Dimitrova et al.

Fig. 2. Left: New European Driving Cycle (NEDC); Right: test setup with Nissan
NV200 Evalia on a chassis dynamometer attached to a PEMS.

to the regulator-defined driving scenarios on a chassis dynamometer, where the
amount of emitted pollutants are well below the applicable limits.

Assuming the existence of a contract that formalizes when software is consid-
ered to be doped, recent work demonstrates how doping tests can be generated
automatically and how the characteristic challenges arising with these kinds of
tests can be tackled [10]. A major challenge is the distortion of inputs that can
occur during test execution. As doping tests have to be conducted on the final
product, i.e., a vehicle such as a passenger car, a human driver has to provide the
inputs to the car by driving it. It is far from trivial to provide the inputs exactly
as defined by the test case. Official regulations, that define the approval process
for new car models, precisely specify test cycles for which they allow tolerances
in the input of up to 2 km/h (in car speed). But even driving a car within this
tolerance requires a very experienced driver. To strengthen the position of con-
sumers against manufacturers, it is necessary to allow manufacturer-independent
methods to check the compliance of a car model with the applicable regulations,
i.e., the absence of defeat devices. These methods are supposed to require a
reasonable amount of effort, and training a driver over months so that she has
enough experience to stay within the tolerance of 2 km/h is way beyond rea-
sonable effort. This means that the responsibility for accounting for the driver’s
imprecision must be shifted to the techniques for checking for software doping.

In this section we give a short summary of recent doping tests with a diesel
car and demonstrate how the theory developed in this paper addresses the above
challenge. More precisely, it allows us to overcome the imprecise timing leading
to minor input distortions, by appropriately accounting for the effect of retiming
on the input value error. We further show how using our theory one of the tests
reveals strong indications for a defeat device in the car under test – despite a
very inexperienced driver conducting the test. This doping detection would not
have been possible using the cleanness notions existing prior to this work.

Physical Set-Up of the Experiment. Before a car model can be sold, it must meet
the requirements defined in the official regulations. The type approval procedure
requires the car to be placed on a chassis dynamometer. Cars have to follow
certain standardized test cycles, each defined as a function from time to speed.
One of the test cycles, involved in the diesel scandal, was the New European
Driving Cycle (NEDC) [42] shown in Fig. 2. For the tests here, we consider the

Conformance-Based Doping Detection for Cyber-Physical Systems 71

Fig. 3. Initial 200s of PowerNEDC (left) and SineNEDC (right) planned test cycles
(red, dotted) and actually driven (black). (Color figure online)

speed of the car as input, since this is the parameter defining a test cycle. The
total amount of NO and NO2 (abbreviated as NOx) is the only output of interest.

The car under test is a Nissan NV200 Evalia, with Renault 1.5 dci (110hp)
diesel engine and approved w.r.t. regulation Euro 6b. The test set-up is shown
in Fig. 2.

In order to perform a check for defeat devices using a cleanness test, we con-
sider, in addition to the original NEDC, two manually synthesized tests. These
test cycles, denoted PowerNEDC and SineNEDC were proposed in previous
work [10] and are defined as follows. PowerNEDC is based on the NEDC
but slightly deviates from it by enforcing higher accelerations (1.5m

s2 instead of
0.94m

s2) after 56 s, 251 s, 446 s and 641 s. The maximum input deviation from
NEDC is κI = 10 km/h. SineNEDC is defined as the NEDC superimposed by
a sine curve, formally SineNEDC(t) = max{0, NEDC(t) + 5 sin(0.5t)}, with a
maximum input deviation from NEDC of κI = 5 km/h.

These test cycles are defined by specifying the input value (the car’s speed)
in each second. Both test cases are shown by the red dotted lines in Fig. 3.

Conformance-Based Cleanness Tests for NEDC. We have applied our theory of
conformance-based cleanness to check for doping, i.e., the presence of a defeat
device, in the car under test. For this, we have at our disposal the raw data
obtained from three test drives: (1) Test drive dNEDC is the result of NEDC
cycle driven by a human driver. It serves as the reference behaviour of the car,
to which we will compare the executions of the other two test cycles. (2) Test
drive dPowerNEDC is the trajectory that is produced as the result of a human
driver driving PowerNEDC. (3) Test drive dSineNEDC is the trajectory that
is produced as the result of a human driver driving SineNEDC.

The values of the actual sequences of inputs executed by driving the car
are sampled in steps of 0.05 s. As mentioned earlier, the human in the loop
makes testing considerably more challenging. The maximum deviation of inputs
compared to the test specification for NEDC is just below 10 km/h, for Pow-
erNEDC is almost 12 km/h, and for SineNEDC it approaches 16 km/h.
This shows that the perturbation introduced by the human driver is clearly
noticeable. The amount of NOx measured for dNEDC is 180 mg/km, for
dPowerNEDC and dSineNEDC the measurements revealed 204 mg/km and
584 mg/km, respectively.

72 R. Dimitrova et al.

In order to detect doping (by falsifying cleanness), the input sequences of
dPowerNEDC and dSineNEDC have to be each compared to dNEDC, and if
the input sequences in the corresponding pair are conforming, then the respective
outputs (the total NOx emission values) have to be checked for conformance.

As we desire for our doping tests to be as strict as possible, we identify hybrid
conformance HybridConfτI ,εI , i.e., the weakest of the conformance relations dis-
cussed in Sect. 3, as the most suitable conformance relation for the comparison
of input traces. As the outputs are just single values, the choice of output con-
formance relation is immaterial in this case, so we take HybridConf0,εO .

Formally, we consider the deterministic hybrid system H defined by the input
GTTs dNEDC, dPowerNEDC, and dSineNEDC, and check whether H is
HybridClean(τI , εI , 0, εO)-clean for given values of τI , εI and εO.

The driver’s imprecision has a significant effect on the values in the input
sequences and their timing. This can lead to dismissing pairs of sequences if
they are incorrectly deemed too far apart, and thus missing some indications of
doping. For instance, a too strict comparison of dSineNEDC to dNEDC will
dismiss this pair of executions; however, the measured NOx emission during the
dSineNEDC drive is three times more than the one measured during dNEDC.

Testing HybridClean(τI , εI , 0, εO) allows us to perform a realistic comparison
by taking into account the two possible sources of driving errors: the over- or
undershooting of the speed, and the timing offsets, where the driver accelerates
or decelerates too fast or too slowly. In comparison, prior doping tests based
on Robust Cleanness, considered only the former, i.e., the point-wise offset in
speed. As we demonstrate, depending on the specified value threshold, there
are cases when this is insufficient to identify doping. Indeed, looking into the
official regulations, we can see that they allow for a timing variation of one
second [19,42]. Thus, essentially, the regulations allow for hybrid conformance
with τI = 1 s.

Hybrid Cleanness Testing. In order to test HybridClean(τI , εI , 0, εO) we have
to examine the conformance relations HybridConfτI ,εI (dNEDC,dPowerNEDC)
and HybridConfτI ,εI (dNEDC,dSineNEDC) between the corresponding input
sequences. Recall that since the output of the system measured in each test
is the total amount of NOx emitted during the test, i.e., a single value for the
whole execution, timing plays no role when quantifying the value error for the
output.

In order to evaluate the power of using hybrid cleanness for detecting doping,
we consider different values for εI and τI , and perform two types of analysis of
the results of testing HybridClean(τI , εI , 0, εO), which we describe below.

Effect of τI on the Minimal εI for Which Inputs are Conforming. First,
we fix a maximum value that we allow for the time offset τI . For this τI we
analyse our dataset to find the minimal εI such that for the combination τI and
εI the input traces under consideration satisfy hybrid conformance. For τI = 0
we get exactly the εI for which the two traces are trace conformant. Table 1 (left
side) shows the computed εI values for τI = 0, 0.5, 1, 2, 5, 10.

Conformance-Based Doping Detection for Cyber-Physical Systems 73

As expected, when we increase τI , the minimal εI decreases. At some point
(at τI = 2 for PowerNEDC and τI = 5 for SineNEDC) the decrease in the
value error reduces notably. This happens because the error is only partially
caused by the incorrect timing of the driver.

From the values reported in Table 1 (left) we see that if, for example, we
allow deviation for the input τI = 1, as per the official regulation, and set
εI = 15, then we have that both HybridConfτI ,εI (dNEDC,dPowerNEDC) and
HybridConfτI ,εI (dNEDC,dSineNEDC) are true, while, for τI = 0 both are false.
Thus, under hybrid conformance these pairs of traces will be considered in the
cleanness test, while under trace conformance they will be dismissed.

Table 1. Value thresholds for fixed τI (left) and time thresholds for fixed εI (right).
Values are given as mg/km and time in seconds.

τI = 0 τI = 0.5 τI = 1 τI = 2 τI = 5 τI = 10 εI = κI εI = κI+2

Power εI = 15.88 εI = 15.03 εI = 12.41 εI = 10.10 εI = 10.07 εI = 10.07 τI = 67.35 τI = 10.8

Sine εI = 16.17 εI = 15.46 εI = 14.24 εI = 12.91 εI = 11.67 εI = 11.37 τI = 72.4 τI = 4.05

Since the difference between the outputs measured during dSineNEDC and
during dNEDC is vast, we establish that HybridClean(1, 15, 0, 180) does not hold.

Effect of εI on the Minimal τI for Which Inputs are Conforming. Sec-
ond, we fix the maximum value error εI and examine what minimal τI results
in a combination τI and εI for which the analysed data is hybrid conformant.
For the synthesized test cases we study the error tolerance εI set to the respec-
tive input thresholds κI . As discussed above, this is 10 km/h for PowerNEDC
and 5 km/h for SineNEDC. We also consider the scenario where the error tol-
erance allowed by the official regulation for the test cycle is added, that is, we
also consider εI = κI + 2 km/h. The two rightmost columns of Table 1 show the
necessary time shifts to achieve these value errors. As apparent, they reduce by
approximately 84% and 94% when adding the error tolerance of 2 km/h.

These values for τI give us the minimal tolerance threshold for time, for
which HybridClean(τI , εI , 0, 180) is violated in H for the given εI ; the value of εO

is fixed at 180 mg/km according to the standard [10].

Evaluation and Discussion. The analysis of the data shows that it is indeed
necessary to not only consider a deviation of value, but to also allow for timing
deviations, especially when the quality of the studied driving tests suffers from
the human-caused input distortions. In terms of the theory established in this
paper, this means that in scenarios like this one, employing HybridClean is more
adequate than using prior notions such as RobustClean, and without this, the
cases of doping we have detected would go unnoticed. Allowing a retiming of
up to 10.8 s (for PowerNEDC) and of 4.05 s (for SineNEDC) makes both
inputs conformant to the NEDC input, so we are able to detect the violation
of SineNEDC for the hybrid cleanness for the specified desired value error

74 R. Dimitrova et al.

tolerance. While these time deviations appear large given the test cycle timeline,
they are acceptable when we recall that the tests are executed by human drivers.

If, on the other hand, we want to restrict the tolerance in time to one sec-
ond, we are able to consider both tests for the hybrid cleanness for value error
tolerance of 12.41 km/h for PowerNEDC and 14.24 km/h for SineNEDC.

This demonstrates how conformance-based cleanness notions like HybridClean
allow us to some extent to account for human-caused errors related to timing.

Finally, while hybrid cleanness is arguably the appropriate notion for the case
study considered here, our generic theory of conformance-based cleanness allows
for using other conformance notions as appropriate for the CPS under test.

6 Conclusions

In this paper, we presented a theory of doping detection and cleanness based on
the notions of conformance for cyber-physical systems. Our new notion accounts
for possible “deviations” of the system output, upon “perturbing” its inputs,
both in time and in values. Both notions of “deviation” and “perturbation”
turn out to be expressible using a generic notion of retiming. We instantiate
our definition with specific notions of retiming from the conformance testing
literature. We apply our notions to a case study from the automotive domain and
demonstrate how our generalised notions are useful in using actual driving cycles
for doping detection according to the New European Driving Cycle (NEDC) [42].

We intend to turn our theory into an automatic tool for doping detection,
using hybrid systems models. We intend to use the HyConf tool [4] as the start-
ing point and use our search-based testing implementation in HyConf [5] to
automate the process of test-case generation and test-case selection. Once this
process is automated, one can generate test-cases that can go beyond a specific
standard and detect intelligent defeat devices that cheat the standards and the
tests prescribed by them.

We also intend to organise widespread experiments regarding emission detec-
tion to put our theory into practice. Our experimental set-up involves instru-
menting a large number of cars using low-cost equipments, constructing models
of emission behaviour, and generating realistic driving scenarios that are more
likely to detect doping.

References

1. Abbas, H., Mittelmann, H.D., Fainekos, G.E.: Formal property verification in a
conformance testing framework. In: MEMOCODE 2014, pp. 155–164. IEEE (2014)

2. Abbas, H., Hoxha, B., Fainekos, G., Deshmukh, J.V., Kapinski, J., Ueda, K.: WiP
abstract: conformance testing as falsification for cyber-physical systems. In: 2014
ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), Berlin,
p. 211 (2014)

3. Aerts, A., Mousavi, M.R., Reniers, M.A.: Model-based testing of cyber-physical
systems. In: Cyber-Physical Systems: Foundations, Principles and Applications.
Elsevier (2017). Chap. 19

Conformance-Based Doping Detection for Cyber-Physical Systems 75

4. Araujo, H., Carvalho, G., Mohaqeqi, M., Mousavi, M.R., Sampaio, A.: Sound con-
formance testing for cyber-physical systems: theory and implementation. Sci. Com-
put. Program. 162, 35–54 (2018)

5. Araujo, H., Carvalho, G., Mousavi, M.R., Sampaio, A.: Multi-objective search for
effective testing of cyber-physical systems. In: Ölveczky, P.C., Salaün, G. (eds.)
SEFM 2019. LNCS, vol. 11724, pp. 183–202. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30446-1 10

6. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in HyperLTL. In: CSF 2016, pp. 239–252. IEEE Computer Society (2016)

7. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

8. Barthe, G., D’Argenio, P.R., Finkbeiner, B., Hermanns, H.: Facets of software
doping. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 601–
608. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 46

9. Biewer, S., D’Argenio, P.R., Hermanns, H.: Cyber-physical doping tests. In: 3rd
Workshop on Monitoring and Testing of Cyber-Physical Systems, MT@CPSWeek,
vol. 201, pp. 18–19. IEEE (2018)

10. Biewer, S., D’Argenio, P., Hermanns, H.: Doping tests for cyber-physical sys-
tems. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 313–331.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-8 18

11. Brett, N., Siddique, U., Bonakdarpour, B.: Rewriting-based runtime verification for
alternation-free HyperLTL. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 77–93. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54580-5 5

12. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

13. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: CSF2008, pp. 51–65 (2008)
14. Contag, M., et al.: How they did it: an analysis of emission defeat devices in modern

automobiles SP 2017, pp. 231–250. IEEE Computer Society (2017)
15. D’Argenio, P.R., Barthe, G., Biewer, S., Finkbeiner, B., Hermanns, H.: Is your

software on dope? In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 83–110.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-1 4

16. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

17. Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the
Skorokhod metric. Formal Methods Syst. Des., 168–206 (2017). https://doi.org/
10.1007/s10703-016-0261-8

18. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

19. European Comission: Commission Regulation (EU) 2017/1151 (2017)
20. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for

continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)
21. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: Desharnais, J., Jagadeesan,

R. (eds.) CONCUR 2016 LIPIcs, vol. 59, pp. 13:1–13:14 (2016)

https://doi.org/10.1007/978-3-030-30446-1_10
https://doi.org/10.1007/978-3-030-30446-1_10
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-47169-3_46
https://doi.org/10.1007/978-3-030-30281-8_18
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17

76 R. Dimitrova et al.

22. Finkbeiner, B., Hahn, C., Stenger, M.: EAHyper: satisfiability, implication, and
equivalence checking of hyperproperties. In: Majumdar, R., Kunčak, V. (eds.) CAV
2017. LNCS, vol. 10427, pp. 564–570. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63390-9 29

23. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 190–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 12

24. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: a runtime verifica-
tion tool for temporal hyperproperties. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 194–200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 11

25. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

26. Gazda, M., Mousavi, M.R.: Logical characterisation of hybrid conformance. In:
ICALP 2020 (2020, To appear)

27. Girard, A., Julius, A.A., Pappas, G.J.: Approximate simulation relations for hybrid
systems. Discrete Event Dyn. Syst. 18(2), 163–179 (2008)

28. Girard, A., Pappas, G.J.: Approximate bisimulation: a bridge between computer
science and control theory. Eur. J. Control 17(5–6), 568–578 (2011)

29. Hahn, C., Stenger, M., Tentrup, L.: Constraint-based monitoring of hyperproper-
ties. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 115–131.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 7

30. Hapke, T., Hornung, P., Becker, J.: Schummeln auch in Europa.
ARD/Norddeutscher Rundfunk. https://www.tagesschau.de/wirtschaft/vw-
schummelsoftware-101.html (2015). Accessed 19 Apr 2019

31. Hennie, F.C.: Fault detecting experiments for sequential circuits. In: 5th Annual
Symposium on Switching Circuit Theory and Logical Design, Princeton, New Jer-
sey, USA, 11–13 November 1964, pp. 95–110. IEEE Computer Society (1964)

32. Hermanns, H., Biewer, S., D’Argenio, P.R., Köhl, M.A.: Verification, testing, and
runtime monitoring of automotive exhaust emissions. In: LPAR-22. EPiC Series in
Computing, vol. 57, pp. 1–17. EasyChair (2018)

33. Khakpour, N., Mousavi, M.R.: Notions of conformance testing for cyber-physical
systems: overview and roadmap (invited paper). In: CONCUR 2015 LIPIcs, vol.
42, pp. 18–40 (2015)

34. Köhl, M.A., Hermanns, H., Biewer, S.: Efficient monitoring of real driving emis-
sions. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 299–315.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 17

35. Lee, D., Yannakakis, M.: Principles and methods of testing finite-state machines -
a survey. Proc. IEEE 84(8), 1089–1123 (1996)

36. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

37. Nguyen, L.V., Kapinski, J., Jin, X., Deshmukh, J.V., Johnson, T.T.: Hyperprop-
erties of real-valued signals. In: MEMOCODE 2017, pp. 104–113. ACM (2017)

38. van Osch, M.: Hybrid input-output conformance and test generation. In: Havelund,
K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS, vol. 4262, pp.
70–84. Springer, Heidelberg (2006). https://doi.org/10.1007/11940197 5

https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-67531-2_12
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-030-17465-1_7
https://www.tagesschau.de/wirtschaft/vw-schummelsoftware-101.html
https://www.tagesschau.de/wirtschaft/vw-schummelsoftware-101.html
https://doi.org/10.1007/978-3-030-03769-7_17
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/11940197_5

Conformance-Based Doping Detection for Cyber-Physical Systems 77

39. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE Computer Society (1977)

40. Tretmans, J.: A formal Approach to conformance testing. Ph.D. thesis, University
of Twente, The Netherlands (1992)

41. Tretmans, J.: Conformance testing with labelled transition systems: implementa-
tion relations and test generation. Comput. Netw. ISDN Syst. 29(1), 49–79 (1996)

42. United Nations: UN Vehicle Regulations - 1958 Agreement, Revision 2, Addendum
100, Regulation No. 101, Revision 3 – E/ECE/324/Rev. 2/Add.100/Rev.3 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

On Implementable Timed Automata

Sergio Feo-Arenis1, Milan Vujinović2, and Bernd Westphal2(B)

1 Airbus Central R&T, Munich, Germany
2 Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany

westphal@informatik.uni-freiburg.de

Abstract. Generating code from networks of timed automata is a well-
researched topic with many proposed approaches, which have in common
that they not only generate code for the processes in the network, but
necessarily generate additional code for a global scheduler which imple-
ments the timed automata semantics. For distributed systems without
shared memory, this additional component is, in general, undesired.

In this work, we present a new approach to the generation of correct
code (without global scheduler) for distributed systems without shared
memory yet with (almost) synchronous clocks if the source model does
not depend on a global scheduler. We characterise a set of implementable
timed automata models and provide a translation to a timed while lan-
guage. We show that each computation of the generated program has a
network computation path with the same observable behaviour.

1 Introduction

Automatic code generation from real-time system models promises to avoid
human implementation errors and to be cost and time efficient, so there is a need
to automatically derive (at least parts of) an implementation from a model. In
this work, we consider a particular class of distributed real-time systems consist-
ing of multiple components with (almost) synchronous clocks, yet without shared
memory, a shared clock, or a global scheduler. Prominent examples of such sys-
tems are distributed data acquisition systems such as data aggregation in satel-
lite constellations [16,18], the wireless fire alarm system [15], IoT sensors [30],
or distributed database systems (e.g. [12]). For these systems, a common notion
of time is important (to meet real-time requirements or for energy efficiency)
and is maintained up to a certain precision by clock synchronisation protocols,
e.g., [17,23,24]. Global scheduling is undesirable because schedulers are expen-
sive in terms of network bandwidth and computational power and the number
of components in the system may change dynamically, thus keeping track of all
components requires large computational resources.

Timed automata, in particular in the flavour of Uppaal [7], are widely used
to model real-time systems (see, for example, [14,32]) and to reason about the

Partly supported by the German Research Council (DFG) under grant WE 6198/1-1.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 78–95, 2020.
https://doi.org/10.1007/978-3-030-50086-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_5&domain=pdf
http://orcid.org/0000-0002-6824-0567
https://doi.org/10.1007/978-3-030-50086-3_5

On Implementable Timed Automata 79

correctness of systems as the ones named above. Modelling assumptions of timed
automata such as instantaneous updates of variables and zero-time message
exchange are often convenient for the analysis of timed system models, yet they,
in general, inhibit direct implementations of model behaviour on real-world plat-
forms where, e.g., updating variables take time.

In this work, we aim for the generation of distributed code from networks
of timed automata with exactly one program per network component (and no
other programs, in particular no implicit global scheduler), where all execution
times are considered and modelled (including the selection of subsequent edges),
and that comes with a comprehensible notion of correctness. Our work can be
seen as the first of two steps towards bridging the gap between timed automata
models and code. We propose to firstly consider a simple, iterative programming
language with an exact real-time semantics (cf. Sect. 4) as the target for code
generation. In this step, which we consider to be the harder one of the two,
we deal with the discrepancy between the atomicity of the timed automaton
semantics and the non-atomic execution on real platforms. The second step will
then be to deal with imprecise timing on real-world platforms.

Our approach is based on the following ideas. We define a short-hand notation
(called implementable timed automata) for a sub-language of the well-known
timed automata (cf. Sect. 3). We assume independency from a global scheduler [5]
as a sufficient criterion for the existence of a distributed implementation. For the
timing aspect, we propose not to use platform clocks directly in, e.g., edge guards
(see related work below) but to turn model clocks into program variables and to
assume a “sleep” operation with absolute deadlines on the target platform (cf.
Sect. 4). In Sect. 5, we establish the strong and concrete notion of correctness
that for each time-safe computation of a program obtained by our translation
scheme there is a computation path in the network with the same observable
behaviour. Section 6 shows that our short-hand notation is sufficiently expressive
to support industrial case studies and discusses the remaining gap towards real-
world programming languages like C, and Sect. 7 concludes.

Generating code for timed systems from timed automata models has been
approached before [3,4,20,25,29]. All these works also generate code for a sched-
uler (as an additional, explicit component) that corresponds to the implicit,
global scheduler introduced by the timed automata semantics [5]. Thus, these
approaches do not yield the distributed programs that we aim for. A different
approach in the context of timed automata is to investigate discrete sampling
of the behaviour [28] and so-called robust semantics [28,33]. A timed automa-
ton model is then called implementable wrt. to certain robustness parameters.
Bouyer et al. [11] have shown that each timed automaton (not a network, as in
our case) can be sampled and made implementable at the price of a potentially
exponential increase in size. A different line of work is [1,2,31]. They use timed
automata (in the form of RT-BIP components [6]) as abstract model of the
scheduling of tasks. Considering execution times for tasks, a so-called physical
model (in a slightly different formalism) is obtained for which an interpreter has
been implemented (the real-time execution engine) that then realises a schedul-
ing of the tasks. The computation time necessary to choose the subsequent task

80 S. Feo-Arenis et al.

(including the evaluation of guards) is “hidden” in the execution engine (which
at least warns if the available time is exceeded), and they state the unfortunate
observation that time-safety does not imply time-robustness with their approach.

There is an enormous amount of work on so-called synchronous languages
like Esterel [10], SIGNAL [8], Lustre [19] and time triggered architectures such as
Giotto/HTL [21]. These approaches provide an abstract programming or mod-
elling language such that for each program, a deployable implementation, in
particular for signal processing applications, can be generated.

2 Preliminaries

As modelling formalism (and input to code generation), we consider timed
automata as introduced in [7]. In the following, we recall the definition of timed
automata for self-containedness. Our presentation follows [26] and is standard
with the single exception that we exclude strict inequalities in clock constraints.

A timed automaton A = (L,A,X, V, I, E, �ini) consists of a finite set of loca-
tions (including the initial location �ini), sets A, X, and V of channels, clocks,
and (data) variables. A location invariant I : L → Φ(X) assigns a clock con-
straint over X from Φ(X) to a location. Finitely many edges in E are of the
form (�, α, ϕ,�r, �′) ∈ L × A!? × Φ(X,V) × R(X,V)∗ × L where A!? consists of
input and output actions on channels and the internal action τ , Φ(X,V) are
conjunctions of clock constraints from Φ(X) and data constraints from Φ(V),
and R(X,V)∗ are finite sequences of updates, an update either resets a clock or
updates a data variable. For clock constraints, we exclude strict inequalities as
we do not yet support their semantics (of reaching the upper or lower bound
arbitrarily close but not inclusive) in the code generation. In the following, we
may write �(e) etc. to denote the source location of edge e.

The operational semantics of a network N = A1‖ . . . ‖An of timed automata
as components – and with pairwise disjoint sets of clocks and variables – is
the (labelled) transition system T (N) = (C,Λ, { λ−→| λ ∈ Λ}, Cini) over con-
figurations. A configuration c ∈ C = {〈��, ν〉 | ν |= I(��)} consists of location
vector �� (an n-tuple whose i-th component is a location of Ai) and a valuation
ν : X(N) ∪ V (N) → R+

0 ∪ D of clocks and variables. The location vector has
invariant I(��) =

∧n
i=1 I(�i), and we assume a satisfaction relation between val-

uations and clock and data constraints as usual. Labels are Λ = {τ} ∪ R+
0 , and

the set of initial configurations is Cini = {〈(�ini,1, . . . , �ini,n), 0〉} ∩ C. There is a
delay transition 〈��, ν〉 t−→ 〈��, ν + t〉, t ∈ R+

0 , if and only if ν + t′ |= I(��) for all
t′ ∈ [0, t]. There is an internal transition 〈��, ν〉 τ−→ 〈��′, ν′〉, if and only if there is
an edge e = (�, τ, ϕ, �r, �′) enabled in 〈��, ν〉 and ν′ is the result of applying e’s
update vector to ν. An edge is enabled in 〈��, ν〉 if and only if its source location
occurs in the location vector, its guard is satisfied by ν, and ν′ satisfies the des-
tination location’s invariant. There is a rendezvous transition 〈��, ν〉 τ−→ 〈��′, ν′〉, if
and only if there are edges e0 = (�0, a!, ϕ0, �r0, �

′
0) and e1 = (�1, a?, ϕ1, �r1, �

′
1) in

two different automata enabled in 〈��, ν〉 and ν′ is the result of first applying e0’s
and then e1’s update vector to ν.

On Implementable Timed Automata 81

A transition sequence of N is any finite or infinite, initial and consecutive
sequence of the form 〈��0, ν0〉 λ1−→ 〈��1, ν1〉 λ2−→ · · · . N is called deadlock-free if no
transition sequence of N ends in a configuration c such that there are no c′, c′′

such that c
t−→ c′ λ−→ c′′ with t ∈ R+

0 , λ /∈ R+
0 . A computation path of N is a

time stamped transition sequence 〈��0, ν0〉, t0 λ1−→ 〈��1, ν1〉, t1 λ2−→ · · · s.t. t0 = 0,
ti+1 = ti + λi+1 if λi+1 ∈ R+

0 and ti+1 = ti if λi+1 = τ .

Next, Deadline, Boundary. Given an edge e with source location � and clock
constraint ϕclk , and a configuration c = 〈��, ν〉, we define next(c, ϕclk) = min{d ∈
R+

0 | ν+d |= I(�)∧ϕclk} and deadline(c, ϕclk) = max{d ∈ R+
0 | ν+next(c, ϕclk)+

d |= I(�)∧ϕclk} if minimum/maximum exist and ∞ otherwise. That is, next gives
the smallest delay after which e is enabled from c and deadline gives the largest
delay for which e is enabled after next . The boundary of a location invariant ϕclk

is a clock constraint ∂ϕclk s.t. ν + d |= ∂ϕclk if and only if d = next(c, ϕclk) +
deadline(c, ϕclk). A simple sufficient criterion to ensure existence of boundaries
is to use location invariants of the form ϕclk = x ≤ q, then ∂ϕclk = x ≥ q.

3 Implementable Timed Automata

In the following, we introduce implementable timed automata that can be seen
as a definition of a sub-language of timed automata as recalled in Sect. 2. As
briefly discussed in the introduction, a major obstacle with implementing timed
automata models is the assumption that actions are instantaneous. The goal
of considering the sub-language defined below is to make the execution time of
resets and the duration of message transmissions explicit. Other works like, e.g.,
[13], propose higher-dimensional timed automata where actions take time. We
propose to make action times explicit within the timed automata formalism.

Definition 1. An implementable timed automaton I = (L, �ini , A,X, V, I, E)
consists of locations, initial location, channels, clocks, variables like timed
automata, a location invariant I : L → Φ(X) s.t. each I(�) has a boundary
∂I(�), and a finite set E = Eτ ∪ E! ∪ E? of edges consisting of

– internal edges (�, ϕ, �rdat , �rclk , �′) ∈ Eτ ⊆ L × Φ(X,V) × R(V) × R(X) × L,
– send edges (�, ϕ, a!, �rclk , �′) ∈ E! ⊆ L × Φ(X,V) × A! × R(X) × L,
– receive edges (�, ϕclk , {(a1?, �′

1), . . . , (an?, �′
n)}, �rclk , �′) n ≥ 0,

in E? ⊆ L × Φ(X) × 2A?×L × R(X) × L. ♦

Implementable timed automata distinguish internal, send, and receive edges
by action and update in contrast to timed automata. An internal edge models
(only) updates of data variables or sleeping idle (which takes time on the plat-
form), a send edge models (only) the sending of a message (which takes time),
and a receive edge (only) models the ability to receive a message with a timeout.
All kinds of edges may reset clocks. Figure 1 shows an example implementable
timed automaton using double-outline edges to distinguish the graphical repre-
sentation from timed automata. The edge from �0 to �1, for example, models that

82 S. Feo-Arenis et al.

Fig. 1. The LZ-protocol of sensors [15] as implementable timed automaton.

Fig. 2. Edges of the timed automaton of an implementable timed automaton.

message ‘LZ[id]’ may be transmitted between time s0 + g (including guard time
g and operating time) and s0 + g + m, i.e., the maximal transmission duration
here is m. The time nl1 would be the operating time budgeted for location �1.

The semantics of the implementable network N consisting of implementable
timed automata I1, . . . , In is the labelled transition system T (AI1‖ . . . ‖AIn

).
The timed automata AIi

are obtained from Ii by applying the translation scheme
in Fig. 2 edge-wise. The construction introduces fresh �×-locations. Intuitively,
a discrete transition to an �×-location marks the completion of a data update
or message transmission in I that started at the next time of the considered
configuration. After completion of the update or transmission, implementable
timed automata always wait up to the deadline. If the update or transmission
has a certain time budget, then we need to expect that the time budget may be
completely used in some cases. Using the time budget, possibly with a subsequent
wait, yields a certain independence from platform speed: if one platform is fast
enough to execute the update or transmission in the time budget, then all faster
platforms are. Note that the duration of an action may be zero in implementable
timed automata (exactly as in timed automata), yet then there will be no time-
safe execution of any corresponding program on a real-world platform.

On Implementable Timed Automata 83

Fig. 3. Artificial example of a non-implementable network if s2,0 + w2 > s1,0 + w1.

In [5], the concept of not to depend on a global scheduler is introduced.
Intuitively, independency requires that sending edges are never blocked because
no matching receive edge is enabled or because another send edge in a different
component is enabled. That is, the schedule of the network behaviour ensures
that at each point in time at most one automaton is ready to send, and that
each automaton that is ready to send finds an automaton that is ready for the
matching receive. Similar restrictions have been imposed on timed automaton
models in [9] to verify the ZeroConf protocol. Whether a network depends on a
global scheduler is decidable; for details, we refer the reader to [5].

Figure 3 shows an artificial network of implementable timed automata whose
independency from a global scheduler depends on the parameters s1,0 + w1 and
s2,0 + w2. If the location �1,1 is reached, then the standard semantics of timed
automata would (using the implicit global scheduler) block the sending edge until
�2,1 is reached. Yet in a distributed system, the sender should not be assumed to
know the current location of the receiver. By choosing the parameters accordingly
(i.e., by protocol design), we can ensure that the receiver is always ready before
the sender so that the sender is never blocked. In this case, we can offer a
distributed implementation.

In the following sections, we only consider networks of implementable timed
automata that are deadlock-free, closed component (no shared clocks or vari-
ables, no committed locations (cf. [7])), and do not depend on a global scheduler.

4 Timed While Programs

In this section, we introduce a timed programming language that provides the
necessary expressions and statements to implement networks of implementable
timed automata as detailed in Sect. 5. The semantics is defined as a structural
operational semantics (SOS) [27] that is tailored towards proving the correct-
ness of the implementations obtained by our translation scheme from Sect. 5.
We use a dedicated time component in configurations of a program to track
the execution times of statements and support a snapshot operator to measure
the time that passed since the execution of a particular statement. Due to lack
of space, we introduce expressions on a strict as-needed basis, including mes-
sage, location, edge, and time expressions. In a general purpose programming
language, the former kinds of expressions can usually be realised using integers
(or enumerations), and time expressions can be realised using platform-specific
representations of the current system time.

84 S. Feo-Arenis et al.

Syntax. Expressions of our programming language are defined wrt. given network
variables V and X. We assume that each constraint from Φ(X,V) or expression
from Ψ(V) over V and X has a corresponding (basic type) program expression
and thus that each variable v ∈ V and each clock x ∈ X have corresponding
(basic type) program variables vv, vx ∈ Vb. In addition, we assume typed vari-
ables for locations, edges, and messages, and for times (on the target platform).
We additionally consider location variables Vl to store the current location, edge
variables Ve to store the edge currently worked on, message variables Vm to
store the outcome of a receive operation, and time variables Vt to store plat-
form time. Message expressions are of the form mexpr ::= m | a, m ∈ Vm, a ∈ A,
location expressions are of the form lexpr ::= l | � | nextlocI(mexpr), l ∈ Vl,
� ∈ L, and edge expressions are of the form eexpr ::= e | e, e ∈ Ve, e ∈ E. A
time expression has the form texpr ::= � | t | t + expr , where � is the current
platform time and t ∈ Vt. Note that time variables are different from clock
variables. The values of clock variable vx are used to compute a new next time,
which is then stored in a time variable, which can be compared to the platform
time. Clock variables can be represented by platform integers (given their range
is sufficient for the model) while time variables will be represented by platform
specific data types like timespec with C [22] and POSIX. In this way, model
clocks are only indirectly connected (and compared) to the platform clock.

Table 1. Statements S, statement sequences S, and programs P .

S ::= v ← expr | t ← texpr | m ← mexpr | l ← lexpr | sleepto(texpr)

| send(mexpr) | m ← receive(expr) | e, v1, v2 ← nextedgeI([mexpr])

| if � e = eexpr1 : S1 . . . � e = eexprn : Snfi | while expr do S od

S ::= ε | S | S� | S; S | S�; S (ε; S ≡ S; ε ≡ S), P ::= S1‖ · · · ‖Sn.

The set of statements, statement sequences, and timed programs are given
by the grammar in Table 1. The term nextedgeI([mexpr]) represents an imple-
mentation of the edge selection in an implementable timed automaton that can
optionally be called with a message expression. We denote the empty statement
sequence by ε and introduce � as an artificial snapshot operator on statements
(see below). The particular syntax with snapshot and non-snapshot statements
allows us to simplify the semantics definition below. We use StmSeq to denote
the set of all statement sequences.

Component Configurations and Interpretation of Expressions. A component con-
figuration is a tuple π = 〈S, (β, γ, w, u), σ〉 consisting of a statement sequence
S ∈ StmSeq , the operating time of the current statement β ∈ R+

0 i.e., the time
passed since starting to work on the current statement), the time to completion
of the current statement γ ∈ R+

0 ∪ {∞} (i.e., the time it will take to complete
the work on the current statement), the snapshot time w ∈ R+

0 (i.e., the time

On Implementable Timed Automata 85

Table 2. Discrete reductions of the timed programming language. Rules (R2), (R3),
and (R4) for time, message, and location assignment are similar to (R1).

(R1)
〈v ← expr ;S, (β, 0, w, u), σ〉

〈S, (0, γ′, w′, u), σ[v := σ(expr)]〉 (R5)
〈sleepto(texpr);S, (σ(texpr), 0, w, u), σ〉

〈S, (0, γ′, w′, u), σ〉

(R6)

〈send(mexpr);S,

(β, 0, w, u), σ〉
〈S, (0, γ′, w′, u), σ〉 (R7)

〈m ← receive(expr);S,

(β, γ, w, u), σ〉
〈S, (0, γ′, w′, u), σ[m := a]〉 ,

a ∈ A, if β ≤ σ(expr),

a = ⊥, if β ≥ σ(expr),

(R8)
〈e, v1, v2 ← nextedgeI([mexpr]);S, (β, 0, w, u), σ〉

〈S, (0, γ′, w′, u), σ[e, v1, v2 := �nextedgeI([mexpr])�(σ)]〉

(R9a)
〈if · · · � e = eexpr i : Si · · ·fi;S, (β, 0, w, u), σ〉

〈Si;S, (0, γ′, w′, u), σ〉 , σ(e) = σ(eexpr i)

(R9b)

〈if � e = eexpr1 : S1 . . . � e = eexprn : Sn fi;S,

(β, 0, w, u), σ〉
〈S, (0, γ′, w′, u), σ〉 ,

∀ 0 ≤ i ≤ n •
σ(e)
= σ(eexpr i)

(R10a)
〈while expr do S od;S, (β, 0, w, u), σ〉

〈S;while expr do S od;S, (0, γ′, w′, u), σ〉 , σ(expr) = true

(R10b)
〈while expr do S od;S, (β, 0, w, u), σ〉

〈S, (0, γ′, w′, u), σ〉 , σ(expr) = false

since the last snapshot), the platform clock value1 u ∈ R+
0 , and a type-consistent

valuation σ of the program variables. We will use operating time and time to
completion to define computations of timed while programs (with discrete tran-
sitions when the time to completion is 0), and we will use the snapshot time
w as an auxiliary variable in the construction of predicates by which we relate
program and network computations. The valuation σ maps basic type variables
from Vb to values from a domain that includes all values of data variables from
D as used in the implementable timed automaton and all values needed to eval-
uate clock constraints (see below), i.e. σ(Vb) ⊆ Db. Time variables from Vt are
mapped to non-negative real numbers, i.e., σ(Vt) ⊆ R+

0 , message variables from
Vm are mapped to channels, i.e., σ(Vm) ⊆ A ∪ {⊥} or the dedicated value ⊥
representing ‘no message’, location variables from Vl are mapped to locations,
i.e., σ(Vl) ⊆ L, and edge variables from Ve are mapped to edges, i.e., σ(Ve) ⊆ E.

For the interpretation of expressions in a component configuration we assume
that, if the valuation σ of the program variables corresponds to the valuation of
data variables ν, then the interpretation �expr�(π) of basic type expression expr
corresponds to the value of expr under ν. Other variables obtain their values
from σ, too, i.e. �t�(π) = σ(t), �m�(π) = σ(m), �l�(π) = σ(l), and �e�(π) = σ(e);

1 Using a real, unbounded value for the platform clock avoids the issue of overflows
in executions of programs as defined here. When refining the programs of imple-
mentable timed automata to programs on realistic platforms, we need to handle
possible overflows in the finitely represented current platform time.

86 S. Feo-Arenis et al.

constant symbols are interpreted by their corresponding value, i.e. �a�(π) = a,
���(π) = �, and �e�(π) = e, and we have �t + expr�(π) = �t�(π) + �expr�(π).

There are two non-standard cases. The �-symbol denotes the platform clock
value of π, i.e.. ���(π) = u, and we assume that �nextlocI([mexpr])�(π) yields
the destination location of the edge that is currently processed (as given by
e), possibly depending on a message name given by mexpr . If �e�(π) denotes
an internal action or send edge e, this is just the destination location �′(e), for
receive edges it is �′(e) if mexpr evaluates to the special value ⊥, and an �i from
a (ai?, �i) pair in the edge otherwise. If the receive edge is non-deterministic, we
assume that the semantics of nextlocI resolves the non-determinism.

Program Computations. Table 2 gives an SOS-style semantics with discrete
reduction steps of a statement sequence (or component). Note that the rules
in Table 2 (with the exception of receive) apply when the time to completion
is 0, that is, at the point in time where the current statement completes. Each
rule then yields a configuration with the operating time γ′ for the new current
statement. The new snapshot time w′ is 0 if the first statement in S is a snapshot
statement S�, and w otherwise. Rule (R7) updates m to a, which is a channel or,
in case of timeout, the ‘no message’ indicator ‘⊥’. Rule (R8) is special in that
it is supposed to represent the transition relation of an implementable timed
automaton. Depending on the program valuation σ, (R8) is supposed to yield a
triple of the next edge to work on, this edge’s next and deadline. For simplicity,
we assume that the interpretation of nextedgeI([mexpr]) is deterministic for a
given valuation of program variables.

A configuration of program P = S1‖ · · · ‖Sn is an n-tuple

Π = (〈S1, (β1, γ1, w1, u1), σ1〉, . . . , 〈Sn, (βn, γn, wn, un), σn〉)

of component configurations; C(P) denotes the set of all configurations of P .
The operational semantics of a program P is the labelled transition system

on system configurations defined as follows. There is a delay transition

(〈S1, (β1, γ1, w1, u1), σ1〉, . . .) δ−→
(〈S1, (β1 + δ, γ1 − δ, w1 + δ, u1 + δ), σ1〉, . . .)

(by delay δ ∈ R+
0) if, for all i, 1 ≤ i ≤ n, δ ≤ γi, i.e. if no current statement

completes strictly before δ. There is an internal transition

(. . . , 〈Si, (βi, 0, wi, ui), σi〉, . . .) τ−→ (. . . , 〈S ′
i, (0, γ′

i, w
′
i, ui), σ′

i〉, . . .)

if for some i, 1 ≤ i ≤ n, a discrete reduction rule from Table 2 applies, i.e. if

〈Si, (βi, 0, wi, ui), σi〉 � 〈S ′
i, (0, γ′

i, w
′
i, ui), σ′

i〉.

There is a synchronisation transition

(. . . , 〈Si, (βi, 0, wi, ui), σi〉, . . . 〈Sj , (βj , γj , wj , uj), σj〉, . . .)
�mexpr�(σi)−−−−−−−−→

(. . . , 〈S ′
i, (0, γ′

i, w
′
i, ui), σi〉, . . . 〈S ′

j , (0, γ′
j , w

′
j , uj), σ′

j〉, . . .)

On Implementable Timed Automata 87

Fig. 4. Scheduling of work and operating time.

if 〈Si, (βi, 0, wi, ui), σi〉 � 〈S ′
i, (0, γ′

i, w
′
i, ui), σi〉 by (R6), and 〈Sj , (βj , γj , wj ,

uj), σj〉 � 〈S ′
j , (0, γ′

j , w
′
j , uj), σ′

j〉 by (R7), and βj ≥ βi, i.e. if component j has
been listening at least as long as component i has been sending.

Note that this definition of synchronisation allows multiple components to
send at the same time (which may cause message collision on a shared medium)
and that, similar to the rendezvous communication of timed automata, out of
multiple receivers, only one takes the message. In our application domain these
cases do not happen because we assume that implementable networks do not
depend on a global scheduler. That is, the program of an implementable network
never exhibits any of these two behaviours.

A program configuration is called initial if and only if the k-th component
configuration, 1 ≤ k ≤ n, is at Sk, with any βk, γk = 0, wk = 0, uk = 0, and
any σk with σk(Vb) = 0. We use Cini(P) to denote the set of initial configura-
tions of program P . A computation of P is an initial and consecutive sequence
of program configurations ζ = Π0,Π1, . . . , i.e. Π0 ∈ Cini(P) and for all i ∈ N0

exists λ ∈ R+
0 ∪ {τ} such that Πi

λ−→ Πi+1 as defined above. We need not con-
sider terminating computations of programs here because we assume networks
of implementable timed automata without deadlocks.

5 Correct Implementation of Implementable Networks

The program of the network of implementable timed automata N = I1‖ . . . ‖In

is P (N) = S(I1)‖ . . . ‖S(In) (cf. Table 3c). The edges’ work is implemented in
the corresponding Line 2 of the statement sequences in Tables 3a and 3b. The
remaining Lines 3 to 8 include the evaluation of guards to choose the edge to be
executed next. The result of choosing the edge is stored in program variable e
which (by the while loop and the if-statement) moves to Line 1 of the implemen-
tation of that edge. The program’s timing behaviour is controlled by variable t
and is thus decoupled from clocks in the timed automata model. After Line 8,
the value of t denotes the absolute time where the execution of the next edge is
due. That is, clocks in the program are not directly compared to the platform
time (which would raise issues with the precision of platform clocks) but are
used to determine points in time that the target platform is supposed to sleep
to. By doing so, we also lower the risk of accumulating imprecisions in the sleep
operation of the target platform when sleeping for many relative durations.

88 S. Feo-Arenis et al.

Table 3. Implementation scheme for implementable timed automaton.

The idea of scheduling work and operating time is illustrated by the timing
diagram in Fig. 4. Row (a) shows a näıve schedule for comparison: From time
ti−1, decide on the next edge to execute and determine this edge’s next time at
ti (light grey phase: operating time, must complete within the next edge’s next
time ne), then sleep up to the next time (dashed grey line), then execute the
edge(s) actions (dark grey phase: work time, must complete within the edge’s
deadline de), then sleep up to the edge’s deadline at ti+1, and start over. The
program obtained by our translation scheme implements the schedule shown
in Row (b). The program begins with determining the next edge right after
the work phase and then has only one sleep phase up to, e.g., ti+2 where the
next work phase begins. In this manner, we require only one interaction with
the execution platform that implements the sleep phases. Row (c) illustrates a
possible extension of our approach where operating time is needed right before
the work phase, e.g., to prepare the platform’s transceiver for sending a message.

We call the program P (N) a correct implementation of network N if and
only if for each observable behaviour of a time-safe execution of P (N) there is a
corresponding computation path of N . In the following, we provide our notion of
time-safety and then elaborate on the above mentioned correspondence between
program and network computations.

On Implementable Timed Automata 89

Intuitively, a computation of P (N) is not time-safe if either the execution of
an edge’s statement sequence takes longer than the admitted deadline or if the
next time of the subsequent edge is missed, e.g., by an execution platform that
is too slow. Note that in a given program computation, the performance of the
platform is visible in the operation time β and time to completion γ.

We write Πk:Le
n to denote that the program counter of component k is at

Line n of the statement sequence of edge e. We use σ|X∪V to denote the (network)
configuration encoded by the values of the corresponding program variables. We
assume2 that for each program variable v, the old value, i.e., the value before
the last assignment in the computation is available as @v.

Definition 2. A computation Π0,Π1, . . . of P (N) is time-safe if and only if,
for each component k, 0 ≤ k ≤ n and all i ∈ N0,

1. Πk
i :Le

2 ∧ γi,k = 0 =⇒ wk ≤ deadline(〈σi,k(l), σi,k|X∪V 〉, σi,k(e)), i.e., if the
i-th configuration completes (γi,k = 0) Line 2 of an edge’s statement sequence,
not more time than admitted by its deadline has been used (wk),

2. Πk
i :Le

1 ∧ γi,k = 0 =⇒ wk = σi,k(@d)+next(〈σi,k(l), σi,k|X∪V 〉, σi,k(e)), i.e.,
the sleepto statement in Line 1 completes exactly after the deadline of the
previously worked on edge plus the current edge’s next time. ♦

Note that, by Definition 2, operating times may be larger than the subsequent
edge’s next time in a time-safe computation (if the execution of the current edge
completes before its deadline). Stronger notions of time-safety are possible.

For correctness of P (N), recall that we introduced Timed While Programs to
consider the computation time that is needed to compute the transition relation
of an implementable network on the fly. In addition, program computations have
a finer granularity than network computations: In network computations, the
current location and the valuation of clocks and variables are updated atomically
in a transition. In the program P (N), these updates are spread over three lines.

We show that, for each time-safe computation ζ of program P (N), there is a
computation of network N that is related to ζ in a well-defined way. The relation
between program and network configurations decouples both computations in
the sense that at some times (given by the respective timestamp) the, e.g., clock
values in the program configuration are “behind” network clocks (i.e., correspond
to an earlier network configuration), at some times they are “ahead”, and there
are points where they coincide.

Figure 5 illustrates the relation for one edge e. The top row of Fig. 5 gives a
timing diagram of the execution of the program for edge e of one component.
The rows below show the values over time for each program variable v up to e,
n, and d. For example, the value of l will denote the source location � of e until
Line 3 is completed, and then denotes the destination location �′. Similarly, v′

and x′ denote the effects of the update vector of e on data variables and clocks.
Note that, during the execution of Line 3, we may observe combinations of values

2 Without loss of generality, since the program could be augmented by an auxiliary
variable @v for each variable v that provides the old value of v.

90 S. Feo-Arenis et al.

Fig. 5. Relating program and network computations for one component.

Fig. 6. Cases of changing from intermediate location to destination location.

for v and l that are never observed in a network computation due to the atomic
semantics of networks.

The two bottom lines of Fig. 5 show related network configurations aligned
with their corresponding program lines. Note that the execution of each line
except for Line 1 may be related to two network configurations depending on
whether the program timestamp is before or after the current edge’s deadline.
Figure 6 illustrates the three possible cases: The execution of program Line 2
(work time, dark gray) is related to network configurations with the source loca-
tion � of the current edge. Right after the work time, the network location �× is
related and at the current edge’s deadline the destination location �′ is related.
In the related network computation, the transition from �× to �′ always takes
place at the current edge’s deadline. This point in time may, in the program
computation, be right after work time (Fig. 6a, no delay in �×), in the operating
time (Fig. 6b), or in the sleep time (Fig. 6c).

The relation between program and network configurations as illustrated in
Fig. 5 can be formalised by predicates over program and network configura-
tions, one predicate per edge and program line.3 The following lemma states the
described existence of a network computation for each time-safe program com-
putation. The relation gives a precise, component-wise and phase-wise relation
of program computations to network computations. In other words, we obtain
a precise accounting of which phases of a time-safe program computation cor-
respond to a network computation and how. We can argue component-wise by
the closed component-assumption from Sect. 3.

3 Details on these predicates and a detailed proof of Lemma 1 are provided in a
corresponding technical report.

On Implementable Timed Automata 91

Lemma 1. For each time-safe computation ζ = Π0,Π1, . . . of P (N), there
exists a computation path ξ = c0,0, . . . , c0,m0 , c1,0, . . . of N s.t. each network
configuration ci,j is properly related to program configuration Πi. ♦

Proof (sketch). The proof is a technical check of the predicates mentioned above
during an inductive construction of computation path ξ. For the base case, we
show that the initialisation statements in Lines 1 to 4 of Table 3c reach the
Line 2 of a send or receive edge (cf. Table 3a and 3b) and establish a related
network configuration. For the induction step, we need to consider delays and
discrete steps of the program. From time-safety of ζ we can conclude to possible
delays in N for the related configurations with a case-split wrt. the deadline (cf.
Fig. 6). When the program time is at the current edge’s deadline, the network
may delay up to the deadline in an intermediate location �×, take a transition
to the successor location �′, and possibly delay further. For discrete program
steps, we can verify that N has enabled discrete transitions that reach a net-
work configuration that is related to the next program line. Here, we use our
assumptions from the program semantics that update vectors have the same
effect in the program and the network. And we use the convenient property of
our program semantics that the effects of statements only become visible with
the discrete transitions. For synchronisation transitions of the program, we use
the assumption that the considered network of implementable timed automata
does not depend on a global scheduler, in particular that send actions are never
blocked, or, in other words, that whenever a component has a send edge locally
enabled, then there is a receiving edge enabled on the same channel. ��

Our main result in Theorem 1 is obtained from Lemma 1 by a projection onto
observable behaviour (cf. Definition 3). Intuitively, the theorem states that at
each point in time with a discrete transition to Line 2, the program configuration
exactly encodes a configuration of network P (N) right before taking an internal,
send, or receive edge.

Definition 3. Let ξk = 〈�k
0,0, ν

k
0,0〉

λ0,1−−→ . . .
λ0,m0−−−−→ 〈�k

1,0, ν
k
1,0〉 . . . be the projec-

tion of a computation path ξ of the implementable network N onto component
k, 1 ≤ k ≤ n, labelled such that each configuration 〈�k

i,0, ν
k
i,0〉 is initial or reached

by a discrete transition to a source location of an internal, send, or receive edge.
The sequence ξk

obs = 〈�k
0,i0

, νk
0,i0

+ d0〉, 〈�k
1,i1

, νk
1,i1

+ d1〉, . . . , dj ≥ 0, where
(j, ij) is the largest index such that between c := 〈�k

j,0, ν
k
j,0〉 and 〈�k

j,ij
, νk

j,ij
+ dj〉

exactly next(c) time units have passed, is called the observable behaviour of
component k in ξ. ♦

Theorem 1. Let N be an implementable network and ζk = π0,0, . . . ,
π0,n0 , π1,0, . . . the projection onto the k-th component of a time-safe computa-
tion ζ of P (N) labelled such that πi,ni

, πi+1,0 are exactly those transitions in ζ
from a Line 1 to the subsequent Line 2. Then (〈σi,0(l), σi,0|X∪V 〉, ui,0)i∈N0 is an
observable behaviour of component k on some computation path of N . ♦

92 S. Feo-Arenis et al.

Fig. 7. Timed automaton of the implementable timed automaton (after applying the
scheme from Fig. 2) for the LZ-protocol of sensors [15].

6 Evaluation and Discussion

The work presented here was motivated by a project to support the develop-
ment of a new communication protocol for a distributed wireless fire alarm
system [15], without shared memory, only assuming clock synchronisation and
message exchange. We provided modelling and analysis of the protocol a priori,
that is, before the first line of code had been written. In the project, the engi-
neers manually implemented the model and appreciated how the model indicates
exactly which action is due in which situation. Later, we were able to study the
handwritten code and observed (with little surprise) striking regularities and
similarities to the model. So we conjectured that there exists a significant sub-
language of timed automata that is implementable. In our previous work [5], we
identified independency from a global scheduler as a useful precondition for the
existence of a distributed implementation (cf. Sect. 2).

For this work, we have modelled the LZ-protocol of sensors in the wireless
fire alarm system from [15] as an implementable timed automaton (cf. Fig. 1;
Fig. 7 shows the timed automaton obtained by applying the scheme from Fig. 2).
Hence our modelling language supports real-world, industry case-studies. Imple-
mentable timed automata also subsume some models of time-triggered, periodic
tasks that we would model by internal edges only.

From the program obtained by the translation scheme given in Table 3, we
have derived an implementation of the protocol in C. Clock, data, location,
edge, and message variables become enumerations or integers, time variables
use the POSIX data-structure timespec. The implementation runs timely for
multiple days. Although our approach with sleeping to absolute times reduces
the risk of drift, there is jitter on real-world platforms. The impact of timing
imprecision needs to be investigated per application and platform when refining
the program of a network to code, e.g., following [11]. In our case study, jitter is
much smaller than the model’s time unit. Another strong assumption that we use
is synchrony of the platform clocks and synchronised starting times of programs
which can in general not be achieved on real-world platforms. In the wireless

On Implementable Timed Automata 93

fire alarm system, component clocks are synchronised in an initialisation phase
and kept (sufficiently) synchronised using system time information in messages.
Robustness against limited clock drift is obtained by including so-called guard
times [23,24] in the protocol design. In the model, this is constant g: Components
are ready to receive g time units before message transmission starts in another
component.

Note that Theorem 1 only applies to time-safe computations. Whether an
implementation is time-safe needs to be analysed separately, e.g., by conducting
worst-case execution time (WCET) analyses of the work code and the code
that implements the timed automata semantics. The C code for the LZ-model
mentioned above actually implements a sleepto function that issues a warning
if the target time has already passed (thus indicating non-time-safety). The
translation scheme could easily be extended by a statement between Lines 2
and 3 that checks whether the deadline was kept and issues a warning if not.
Then, Theorem 1 would strengthen to the statement that all computations of
P (I) either correspond to observable behaviour of I or issue a warning. Note
that, in contrast to [1,2,31], our approach has the practically important property
that time-safety implies time-robustness, i.e., if a program is time-safe on one
platform then it is time-safe on any ‘faster’ platform. Furthermore, we have
assumed a deterministic choice of the next edge to be executed for simplicity
and brevity of the presentation. Non-deterministic models can be supported
by providing a non-deterministic semantics to the nextedgeI function in the
programming language and the correctness proof.

7 Conclusion

We have presented a shorthand notation that defines a subset of timed automata
that we call implementable. For networks of implementable timed automata that
do not depend on a global scheduler, we have given a translation scheme to a sim-
ple, exact-time programming language. We obtain a distributed implementation
with one program for each network component, the programs are supposed to be
executed concurrently, possibly on different computers. We propose to not sub-
stitute (imprecise) platform clocks for (model) clocks in guards and invariants,
but to rely on a sleep function with absolute deadlines. The generated programs
do not include any “hidden” execution times, but all updates, actions, and the
time needed to select subsequent edges are taken into account. For the gener-
ated programs, we have established a notion of correctness that closely relates
program computations to computation paths of the network. The close relation
lowers the mental burden for developers that is induced by other approaches
that switch to a slightly different, e.g., robust semantics for the implementation.

Our work decomposes the translation from timed automata models to code
into a first step that deals with the discrepancy between atomicity of the timed
automaton semantics and the non-atomic execution on real platforms. The sec-
ond step, to relate the exact-time program to real platforms with imprecise
timing is the subject of future work.

94 S. Feo-Arenis et al.

References

1. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time
applications. In: Carloni, L.P., Tripakis, S. (eds.) EMSOFT, pp. 229–238. ACM
(2010). https://doi.org/10.1145/1879021.1879052

2. Abdellatif, T., Combaz, J., Sifakis, J.: Rigorous implementation of real-time sys-
tems - from theory to application. Math. Struct. Comput. Sci. 23(4), 882–914
(2013). https://doi.org/10.1017/S096012951200028X

3. Abdullah, J., Mohaqeqi, M., Yi, W.: Synthesis of Ada code from graph-based task
models. In: Seffah, A., Penzenstadler, B., Alves, C., Peng, X. (eds.) SAC, pp.
1467–1472. ACM (2017). https://doi.org/10.1145/3019612.3019681

4. Amnell, T., Fersman, E., Pettersson, P., Sun, H., Yi, W.: Code synthesis for timed
automata. Nord. J. Comput. 9(4), 269–300 (2002)

5. Feo-Arenis, S., Vujinović, M., Westphal, B.: On global scheduling independency in
networks of timed automata. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017.
LNCS, vol. 10419, pp. 42–57. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-65765-3 3

6. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM, pp. 3–12. IEEE (2006). https://doi.org/10.1109/SEFM.2006.27

7. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

8. Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous programming with
events and relations: the SIGNAL language and its semantics. Sci. Comput. Pro-
gram. 16(2), 103–149 (1991). https://doi.org/10.1016/0167-6423(91)90001-E

9. Berendsen, J., Vaandrager, F.: Compositional abstraction in real-time model check-
ing. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 233–249.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85778-5 17

10. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992). https://
doi.org/10.1016/0167-6423(92)90005-V

11. Bouyer, P., Larsen, K.G., Markey, N., Sankur, O., Thrane, C.: Timed automata
can always be made implementable. In: Katoen, J.-P., König, B. (eds.) CONCUR
2011. LNCS, vol. 6901, pp. 76–91. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23217-6 6

12. Corbett, J.C., Dean, J., Epstein, M., et al.: Spanner: Google’s globally
distributed database. ACM Trans. Comput. Syst. 31(3), 8:1–8:22 (2013).
https://dl.acm.org/citation.cfm?id=2491245

13. Fahrenberg, U.: Higher-dimensional timed automata 51(16), 109–114 (2018).
https://doi.org/10.1016/j.ifacol.2018.08.019

14. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 13

15. Feo-Arenis, S., Westphal, B., Dietsch, D., Muñiz, M., Andisha, S., Podelski, A.:
Ready for testing: ensuring conformance to industrial standards through formal
verification. Formal Aspects Comput. 28(3), 499–527 (2016). https://doi.org/10.
1007/s00165-016-0365-3

https://doi.org/10.1145/1879021.1879052
https://doi.org/10.1017/S096012951200028X
https://doi.org/10.1145/3019612.3019681
https://doi.org/10.1007/978-3-319-65765-3_3
https://doi.org/10.1007/978-3-319-65765-3_3
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1016/0167-6423(91)90001-E
https://doi.org/10.1007/978-3-540-85778-5_17
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1007/978-3-642-23217-6_6
https://doi.org/10.1007/978-3-642-23217-6_6
https://dl.acm.org/citation.cfm?id=2491245
https://doi.org/10.1016/j.ifacol.2018.08.019
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/s00165-016-0365-3
https://doi.org/10.1007/s00165-016-0365-3

On Implementable Timed Automata 95

16. Feo-Arenis, S., Westphal, B.: Parameterized verification of track topology aggrega-
tion protocols. In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE -2013. LNCS,
vol. 7892, pp. 35–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38592-6 4

17. Flammini, A., Ferrari, P.: Clock synchronization of distributed, real-time, indus-
trial data acquisition systems. In: Vadursi, M. (ed.) Data Acquisition, chap. 3.
IntechOpen, Rijeka (2010). https://doi.org/10.5772/10458

18. Gobriel, S., Khattab, S.M., Mossé, D., Brustoloni, J.C., Melhem, R.G.: Rideshar-
ing: fault tolerant aggregation in sensor networks using corrective actions. In:
SECON, pp. 595–604. IEEE (2006). https://doi.org/10.1109/SAHCN.2006.288516

19. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

20. Hendriks, M.: Translating Uppaal to not quite C (2001). http://repository.ubn.ru.
nl/bitstream/handle/2066/19058/19058.pdf?sequence=1

21. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language for
embedded programming. Proc. IEEE 91(1), 84–99 (2003)

22. ISO/IEC: 9899:2018, Programming Languages - C, 4th edn. (2018)
23. Jubran, O., Westphal, B.: Formal approach to guard time optimization for TDMA.

In: Auguin, M., de Simone, R., Davis, R.I., Grolleau, E. (eds.) RTNS, pp. 223–233.
ACM (2013). https://doi.org/10.1145/2516821.2516849

24. Jubran, O., Westphal, B.: Optimizing guard time for TDMA in a wireless sen-
sor network - case study. In: LCN, pp. 597–601. IEEE Computer Society (2014).
https://doi.org/10.1109/LCNW.2014.6927708

25. Kristensen, J., Mejlholm, A., Pedersen, S.: Automatic translation from Uppaal to
C (2005). http://mejlholm.org/uni/pdfs/dat4.pdf

26. Olderog, E.R., Dierks, H.: Real-Time Systems - Formal Specification and Auto-
matic Verification. Cambridge University Press, Cambridge (2008)

27. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60–61, 17–139 (2004)

28. Puri, A.: Dynamical properties of timed automata. Discrete Event Dyn. Syst. 10(1–
2), 87–113 (2000). https://doi.org/10.1023/A:1008387132377

29. Senthooran, I., Watanabe, T.: On generating soft real-time programs for non-real-
time environments. In: Nishizaki, S.Y., Numao, M., Caro, J., Suarez, M.T. (eds.)
Theory and Practice of Computation, pp. 1–12. Springer, Tokyo (2013). https://
doi.org/10.1007/978-4-431-54436-4 1

30. Tirado-Andrés, F., Rozas, A., Araujo, Á.: A methodology for choosing time syn-
chronization strategies for wireless IoT networks. Sensors 19(16), 3476 (2019).
https://doi.org/10.3390/s19163476

31. Triki, A., Combaz, J., Bensalem, S., Sifakis, J.: Model-based implementation of
parallel real-time systems. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS,
vol. 7793, pp. 235–249. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37057-1 18

32. Wibling, O., Parrow, J., Pears, A.: Ad Hoc routing protocol verification through
broadcast abstraction. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 128–
142. Springer, Heidelberg (2005). https://doi.org/10.1007/11562436 11

33. Wulf, M.D., Doyen, L., Raskin, J.: Almost ASAP semantics: from timed models
to timed implementations. Formal Asp. Comput. 17(3), 319–341 (2005). https://
doi.org/10.1007/s00165-005-0067-8

https://doi.org/10.1007/978-3-642-38592-6_4
https://doi.org/10.1007/978-3-642-38592-6_4
https://doi.org/10.5772/10458
https://doi.org/10.1109/SAHCN.2006.288516
http://repository.ubn.ru.nl/bitstream/handle/2066/19058/19058.pdf?sequence=1
http://repository.ubn.ru.nl/bitstream/handle/2066/19058/19058.pdf?sequence=1
https://doi.org/10.1145/2516821.2516849
https://doi.org/10.1109/LCNW.2014.6927708
http://mejlholm.org/uni/pdfs/dat4.pdf
https://doi.org/10.1023/A:1008387132377
https://doi.org/10.1007/978-4-431-54436-4_1
https://doi.org/10.1007/978-4-431-54436-4_1
https://doi.org/10.3390/s19163476
https://doi.org/10.1007/978-3-642-37057-1_18
https://doi.org/10.1007/978-3-642-37057-1_18
https://doi.org/10.1007/11562436_11
https://doi.org/10.1007/s00165-005-0067-8
https://doi.org/10.1007/s00165-005-0067-8

Deep Statistical Model Checking

Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck(B),
and Marcel Steinmetz

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
{timopgros,hermanns,hoffmann,klauck,steinmetz}@cs.uni-saarland.de

Abstract. Neural networks (NN) are taking over ever more decisions
thus far taken by humans, even though verifiable system-level guaran-
tees are far out of reach. Neither is the verification technology available,
nor is it even understood what a formal, meaningful, extensible, and
scalable testbed might look like for such a technology. The present paper
is a modest attempt to improve on both the above aspects. We present
a family of formal models that contain basic features of automated deci-
sion making contexts and which can be extended with further orthogonal
features, ultimately encompassing the scope of autonomous driving. Due
to the possibility to model random noise in the decision actuation, each
model instance induces a Markov decision process (MDP) as verification
object. The NN in this context has the duty to actuate (near-optimal)
decisions. From the verification perspective, the externally learnt NN
serves as a determinizer of the MDP, the result being a Markov chain
which as such is amenable to statistical model checking. The combina-
tion of a MDP and a NN encoding the action policy is central to what we
call “deep statistical model checking” (DSMC). While being a straight-
forward extension of statistical model checking, it enables to gain deep
insight into questions like “how high is the NN-induced safety risk?”,
“how good is the NN compared to the optimal policy?” (obtained by
model checking the MDP), or “does further training improve the NN?”.
We report on an implementation of DSMC inside The Modest Toolset
in combination with externally learnt NNs, demonstrating the potential
of DSMC on various instances of the model family.

1 Introduction

Neural networks (NN), in particular deep neural networks, promise astounding
advances across a manifold of computing applications across domains as diverse
as image classification [27], natural language processing [21], and game play-
ing [40]. NNs are the technical core of ever more intelligent systems, created to
assist or replace humans in decision-making.

This development comes with the urgent need to devise methods to analyze,
and ideally verify, desirable behavioral properties of such systems. Unlike for

Authors are listed alphabetically.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 96–114, 2020.
https://doi.org/10.1007/978-3-030-50086-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-50086-3_6

Deep Statistical Model Checking 97

traditional programming methods, this endeavor is hampered by the nature of
neural networks, whose complex function representation is not suited to human
inspection and is highly resistant to mechanical analysis of important properties.

Verification Challenge. As a matter of fact, remarkable progress is being made
towards automated NN analysis, be it through specialized reasoning methods
of the SAT-modulo-theories family [10,23,25], or through suitable variants of
abstract interpretation [13,31] or quantitative analysis [7,42]. All these works
thus far focus on the verification of individual NN decision episodes, i.e., the
behavior of a single input/output function call. In contrast, the verification of
NNs being the decisive (in the literal sense of the word) authorities inside larger
systems placed in possibly uncertain contexts, is wide-open scientific territory.

Very many real-world examples, where NNs are expected to become central
decision entities – from autonomous driving to medical care robotics – involve
discrete decision making in the presence of random phenomena. The former are
to be taken in the best possible manner, and it is the NN that decides which
decisions to take when and where. A very natural formal model for studying
the principles, requirements, efficacy and robustness of such a NN, is the model
family of Markov decision processes [38] (MDP). MDPs are a very widely studied
class of models in the AI community, as well as in the verification community,
where MDPs are the main semantic object of probabilistic model checking [29].

Assume now we are facing a problem for which a NN decision entity has been
developed by a different party. If the problem statement can be formally cast as
a certain MDP, we may use this MDP as a context to study properties of the NN
delivered to us. Concretely, the NN will be put to use as a determinizer of the
otherwise non-deterministic choices in the MDP, so that altogether a Markov
chain results, which in turn can be evaluated by standard probabilistic model
checking techniques. This is the simple idea this paper proposes. The idea can be
further extended by making the technology available to a certification authority
responsible for NN system approval, or to the party designing the NN, as a
valuable feedback mechanism in the design process.

Deep Statistical Model Checking. However, this style of verification is challenged
by the complexity of analyzing the participating NN and that of analyzing the
induced system behaviors and interactions. Already the latter is a notorious
practical impediment to successful verification rooted in state space explosion
problems. Indeed, standard probabilistic model checking will suffer quickly from
this. However, for Markov chains there is a scalable alternative to standard model
checking at hand, nowadays referred to as statistical model checking [20,43].
The latter method employs efficient sampling techniques to statistically check
the validity of a certain formal property. If applicable, it does not suffer from
the state space explosion problem, in contrast to standard probabilistic model
checking.

The scalable verification method we propose is called deep statistical model
checking (DSMC) by us. At its core is a straightforward variation of statistical
model checking, applied to a MDP, together with a NN that has to take the

98 T. P. Gros et al.

decisions. For this, DSMC expects a NN that can be queried as a black-box
oracle to resolve the non-determinism in the MDP given: The NN receives the
state descriptor as input, and it returns as output a decision determining the
next step. The DSMC method integrates the pair of NN and MDP, and analyzes
the resulting Markov chain statistically. In this way, it is possible to statistically
verify properties of the NN itself, as we will discuss.

Racetrack. To study the potential of DSMC, we perform practical experiments
with a case study family that remotely resembles the autonomous driving chal-
lenge, albeit with some drastic restrictions relative to the grand vision. These
restrictions are: (i) We consider a single vehicle, there is no traffic otherwise. (ii)
No object or position sensing is in use, instead the vehicle is aware of its exact
position and speed. (iii) No speed limits or other traffic regulations are in place.
(iv) Fuel consumption is not optimized for. (vi) Weather and road conditions
are constant. (vii) The entire problem is discretized in a coarse manner. What
remains after all these restrictions (apart from inducing a roadmap of further
works beyond what we study) is the problem of navigating a vehicle from start
to goal on a discrete map, with actions allowing to accelerate/decelerate in dis-
crete directions, subject to a probabilistic risk of action failing to take effect in
each step. The objective is to reach the goal in a minimal number of steps with-
out bumping into a boundary wall. This problem is known as the Racetrack,
a benchmark originating in AI autonomous decision making [1,37]. In formal
terms, each map and parameter combination induces a MDP.

Racetrack is a simple problem, simple enough to put a neural network in the
driver seat: This NN is then the central authority in the vehicle control loop. It
needs to take action decisions with the objective to navigate the vehicle safely
towards the goal. There are a good number of scientific proposals on how to
construct and train a NN for mastering such tasks, and the present paper is not
trying at all to innovate in this respect. Instead, the central contribution of this
paper is a scalable method to verify the effectiveness of a NN trained externally
for its task. This technique, DSMC, is by no means bound to the Racetrack
problem domain, instead it is generally applicable. We evaluate it in the context
of Racetrack because we do think that this is a crisp formal model family, which
is of value in ongoing activities to systematize our understanding of NNs that
are supposed to take over important decisions from humans.

Our concrete modelling context are MDPs represented in Jani [6], a lan-
guage interfacing with the leading probabilistic model checkers out there. For
the sake of experimentation and for use by third parties, we have implemented
a generic connection between NNs and the state-of-the-art statistical model
checker modes [2,5], part of The Modest Toolset [18]. This extension gives
the possibility to use a NN oracle, and to analyze the resulting Markov chain by
SMC. We thus establish an initial DSMC tool infrastructure, which we apply on
Racetrack benchmarks.

It will become evident by our empirical evaluation that there are a variety
of use cases for DSMC, pertaining to end users and domain engineers alike:

Deep Statistical Model Checking 99

– Quality Assurance. DSMC can be a tool for end users, or engineers, in sys-
tem approval or certification, regarding safety, robustness, absence of dead-
locks, or performance metrics. The generic connection to model checking fur-
thermore enables the comparison of NN oracles to provably optimal choices,
on moderate-size models: taking out the NN, the original MDP results, and
can be submitted to standard probabilistic model checking. In our implemen-
tation, we use mcsta [18] for this purpose.

– Learning Pipeline Assessment. DSMC can serve as a tool for the NN engi-
neers designing the NN learning pipeline in the first place. This is because the
DSMC analysis can reveal specific deficiencies in that pipeline. For example,
we show that simple heat maps can highlight where the oracles are unsafe.
And we exhibit cases where NN oracles turn out highly unsafe despite this
phenomenon not being derivable from standard measures of learning perfor-
mance. Such problems would likely have remained undetected without DSMC.

In summary, our contributions are as follows:

1. We present deep statistical model checking, which statistically evaluated the
connection of a NN oracle and a MDP formalizing the problem context.

2. We establish tool infrastructure for DSMC within modes to connect to NN
oracles.

3. We establish infrastructure for Racetrack benchmarking, including parsing,
simulation, Jani model export, comparison with optimal behavior, and also
for NN learning.

4. We illustrate the use and feasibility of DSMC in Racetrack case studies.

The benchmark and all infrastructure including our modification of modes
as well as our Jani model is archived and publicly available at DOI
10.5281/zenodo.3760098 [14].

The paper is organized as follows. Section 2 briefly covers the necessary
background in model checking, neural networks, and the Racetrack benchmark.
Section 3 introduces the DSMC connection and discusses our implementation.
Section 4 briefly introduces our Racetrack infrastructure, specifically the Jani
model and the NN learning machinery. Section 5 describes the case studies, and
Sect. 6 closes the paper.

2 Background

Markov Decision Processes. The models we consider are discrete-state Markov
Decision Processes (MDP). For any nonempty set S we let D(S) denote the set
of probability distribution over S. We write δ(s) for the Dirac distribution that
assigns probability 1 to s ∈ S.

Definition 1 (Markov Decision Process). A Markov Decision Process
(MDP) is a tuple M = 〈S,A, T , s0〉 consisting of a finite set of states S, a finite
set of actions A, a partial transition probability function T : S × A � D(S),
and an initial state s0 ∈ S. We say that action a ∈ A is applicable in state

http://doi.org/10.5281/zenodo.3760098

100 T. P. Gros et al.

s ∈ S if T (s, a) is defined. We denote by A(s) ⊆ A the set of actions applicable
in s. We assume that A(s) is nonempty for each s (which is no restriction).

MDPs are often associated with a reward structure, specifying numerical
rewards to be accumulated when moving along states sequences. Here we are
interested instead in the probability of property satisfaction. Rewards, however,
appear in our case study as part of the NN training which aims at optimizing
reward expectations during reinforcement learning.

The behavior of a MDP is usually considered together with an entity resolv-
ing the otherwise non-deterministic choices in a state. This is effectuated by
an action policy (or scheduler, or adversary) that determines which applicable
action to apply when and where. In full generality this policy may use random-
ization (picking a distribution over applicable actions), and it may use the past
history when picking. The former is of no importance for the setting considered
here, while the latter is. Histories are represented as finite sequences of states
(i.e. words over S), thus they are drawn from S+. We use last(w) to denote the
last state in w ∈ S+.

Definition 2 (Action Policy). A (deterministic, history-dependent) action
policy is a function σ : S+ → A such that ∀w ∈ S+ : σ(w) ∈ A(last(w)). An
action policy is memoryless if it satisfies σ(w) = σ(w′) whenever last(w) =
last(w′).

Memoryless policies can equally be represented as σ : S → A such that ∀s ∈
S : σ(s) ∈ A(s).

Definition 3 (Markov Chain). A Markov Chain is a tuple C = 〈S, T , s0〉
consisting of a set of states S, a transition probability function T : S → D(S)
and an initial state s0 ∈ S.

An MDP 〈S,A, T , s0〉 together with an action policy σ : S+ → A induces a
countable-state Markov chain 〈S+, T ′, s0〉 over state histories in the obvious
way: For any w ∈ S+ with T (last(w), σ(w)) = μ, set T ′(w) = d where d(ws) =
μ(s). For memoryless σ the original state space S can be recovered by setting
T ′(last(w)) = μ in the above, since both are lumping equivalent [4].

Probabilistic and Statistical Model Checking. Model checking of probabilistic
models (such as MDPs) nowadays comes in two flavors. Probabilistic model check-
ing (PMC) [29] is an algorithmic technique to determine the extremal (maximal
or minimal) probability (or expectation) with which an MDP satisfies a certain
(temporal logic) property when ranging over all imaginable action policies. For
some types of properties (step-bounded reachability, expected number of steps
to reach) it does not suffice to restrict to memoryless policies, while for oth-
ers (inevitability, step-unbounded reachability) it does. At the core of PMC are
numerical algorithms that require the full state space to be available upfront (in
some way or another) [17,35].

Deep Statistical Model Checking 101

If fixing a particular policy, the MDP turns into a Markov chain. In this set-
ting, statistical model checking (SMC [20,43]) is a popular alternative to proba-
bilistic model checking. This is because PMC, requiring the full state space, is
limited by the state space explosion problem. SMC is not, even if the underlying
model is infinite in size. Furthermore, SMC can extend to non-Markovian for-
malisms or complex continuous dynamics effectively. At its core, SMC harvests
classical Monte Carlo simulation and hypothesis testing techniques. In a nutshell,
n finite samples of model executions are generated and evaluated to determine
the fraction of executions satisfying a property under study. This yields an esti-
mate q′ of the actual value q of the property, together with a statistical statement
on the potential error. A typical guarantee is that P(|q′ − q| < ε) > δ, where
1−δ is the confidence that the result is ε-correct. To decrease ε and δ, n must be
increased. SMC is attractive as it only requires constant memory independent
of the size of the state space. When facing rare events, however, the number of
samples needed to achieve sufficient confidence may explode.

In the MDP setting (or more complicated settings), SMC analysis is always
bound to a particular action policy turning an otherwise non-deterministic
model into a stochastic process. Nevertheless, many SMC tools support non-
deterministic models, e.g. Prism [28] and UPPAAL SMC [8]. They use an
implicitly defined uniform random action policy to resolve choices. The sta-
tistical model checker modes [5], which is part of The Modest Toolset [18]
instead lets the user choose out of a small set of predefined policies, or provides
light-weight support for iterating over policies [5,30] to statistically approximate
an optimal policy. In any case, results obtained by SMC are to be interpreted
relative to the implicitly or explicitly defined action policy.

Neural Networks. NNs consist of neurons: atomic computational units that typ-
ically apply a non-linear function, their activation function, to a weighted sum
of their inputs [39]. For example, rectified linear units (ReLu) use the activation
function f(x) = max(0, x). Here we consider feed-forward NNs, a classical archi-
tecture where neurons are arranged in a sequence of layers. Inputs are provided
to the first (input) layer, and the computation results are propagated through
the layers in sequence until reaching the final (output) layer. In every layer, every
neuron receives as inputs the outputs of all neurons in the previous layer. For a
given set of possible inputs I and (final layer) outputs O, a neural network can
be considered as an efficient-to-query total function π : I → O.

So-called “deep” neural networks consist of many layers. In tasks such as
image recognition, successful NN architectures have become quite sophisticated,
involving e.g. convolution and max-pooling layers [27]. Feed-forward NNs are
comparatively simple, yet they are in wide-spread use [12], and are in principle
able to approximate any function to any desired degree of accuracy [22].

Such NNs can be trained in a multitude of ways. Here we use deep Q-learning
[33], a successful and nowadays widespread form of reinforcement learning, where
the NN is trained by iterative execution and refinement steps. Each step executes
the current NN from some state, and updates the NN weights using gradient
descent. Deep Q-learning has been shown to learn high-quality NN action policies
in a variety of challenging decision-making problems [33].

102 T. P. Gros et al.

Racetrack. Originally Racetrack is a pen and paper game [11]. A track is drawn
with a start line and a goal line. A vehicle starts with velocity 0 from some
positions on the start line, with the objective to reach the goal as fast as possible
without crashing into a wall. Nine possible actions modify the current velocity
vector by one unit (up, down, left, right, four diagonals, keep current velocity).
This simple game lends itself naturally as a benchmark for sequential decision
making in risky scenarios. In particular, extending the problem with noise, we
obtain MDPs that do not necessarily allow the vehicle to reach the goal with
certainty. In a variety of such noisy forms, Racetrack was adopted as a benchmark
for MDP algorithms in the AI community [1,3,32,36,37].

Like in previous work, we consider the single-agent version of the game.
We use some of the benchmarks, i.e., track shapes, that are readily available.
Specifically, we use the three Racetrack maps illustrated in Fig. 1, originally
introduced by Barto et al. [1]. The track itself is defined as a two-dimensional
grid, where each cell of the grid can represent a possible starting position “s”
(indicated in green), a goal position “g” (red), or can contain a wall “x” (white,
crossed). Like Barto et al. [1], we consider a noisy version of Racetrack that
emulates slippery road conditions: actions may fail with a given probability,
in which case the action does not change the velocity and the vehicle instead
continues driving with unchanged velocity vector.

Fig. 1. The maps of our Racetrack benchmarks: Barto-small (left top), Barto-big (left
bottom), Ring (right). (Color figure online)

3 Neural Networks as MDP Action Policies

Connecting MDP and Action Oracle. Racetrack is a simple instance of many
further examples representing real-world phenomena that involve randomness
and decision making. This is the natural scenario where NNs are taking over
ever more duties. In essence, their role is very close to that of an action policy:
Decide in each situation what options to pick next. If we consider the “situations”
(the inputs I) as the states S of a given MDP, and the “options” (outputs O) as

Deep Statistical Model Checking 103

actions A, then the NN is a function π : S → A. We call such a function an action
oracle. Indeed this is what the reinforcement learning process in Q-learning and
other approaches delivers naturally.

Observe that an action oracle can be cast into an action policy except for a
subtle problem. Action policies only pick actions (from A(s), thus) applicable
at the current state s, while action oracles may not. A better fitting definition
would constrain oracles to always return an applicable action. Yet it is not clear
how to guarantee this for NNs – it is easy to see that, even for linear multi-
classification, the hard constraints required to guarantee action applicability lead
to non-convex optimization problems. An easy fix would use the highest-ranked
applicable action instead of the NN classifier output itself. For our purposes
however, where we want to analyze the quality of the NN oracle, it makes sense
to explicitly distinguish inapplicable actions as a form of low quality.

If an oracle returns an inapplicable action, then no valid behavior is pre-
scribed and in that sense the system can be considered stalled.

Definition 4 (Action Oracle Stalling). Let M = 〈S,A, T , s0〉 be an MDP,
and π : S �→ A be an action oracle. We say that s ∈ S is stalled under π if
π(s) /∈ A(s).

To accommodate for stalling, we augment the MDP upfront with a fresh action
† available at every state, this action is chosen upon stalling, leading to a fresh
state ‡ with only that action to continue. So M = 〈S,A, T , s0〉 is transformed
into M‡ = 〈S ∪ {‡},A ∪ {†}, T ′, s0〉 where for each state s, T ′(s, †) = δ(‡) and
otherwise T ′(s, a) = T (s, a) wherever the latter is defined.

Definition 5 (Oracle Induced Markov Chain). Let M = 〈S,A, T , s0〉
be an MDP, and let π be an action oracle for M. Then the Markov chain Cπ

induced by π is the one induced in M‡ by the memoryless action policy σ defined
by σ(w) = † whenever last(w) is ‡ or stalled under π, and otherwise by σ(w) =
π(last(w)).

In words, the oracle induced policy fixes the probability distribution over tran-
sitions in each state to that of the chosen action. If that action is inapplicable,
then the chain transitions to the fresh state ‡ which represents stalled situations.

Deep Statistical Model Checking. Overall, Cπ is a Markov chain that uses π as
an oracle to determinize the MDP M whenever possible, and stalls otherwise.
With π implemented by a neural network, we can use statistical model check-
ing on Cπ to analyze the NN behavior in the context of M. This analysis has
the potential to deliver deep insights into the effectiveness of the NN applied,
allowing for comparisons with other policies and also with optimal policies, the
latter obtained from exhaustive model checking. From a practical perspective,
an important remark is that in the definitions above and in our implementation
of DSMC described below, the inputs to the NN are assumed to be the MDP
states S. This captures the scenario where the NN takes the role of a classical
system controller, whose inputs are system state attributes, such as program vari-
ables. More generally, the connection from the MDP model to the NN input may

104 T. P. Gros et al.

require an intermediate function f mapping S to the input domain of the NN.
This is in particular the case for NNs processing image sequences, like in vision
systems in autonomous driving. In such a scenario, the MDP model states have
to represent the relevant aspects of the NN input (e.g. objects and their proper-
ties in an image). This advanced form of connection remains a topic for future
work. It lacks the crisp nature of the problem considered here.

DSMC Implementation. Deep statistical model checking is based on a pair of
NN and MDP operating on the same state space. The NN is assumed to be
trained externally prior to the analysis, in which it is combined with the MDP.
To experiment with this concept in a real environment, we have developed
a DSMC implementation inside The Modest Toolset [18], which includes
the explicit-state model checker mcsta, and in particular the statistical model
checker modes [5]. modes thus far offers the options Uniform and Strict to
resolve non-determinism. We implemented a novel option called Oracle, which
calls an external procedure to resolve non-determinism. With that option in
place, every time the next action has to be chosen, modes provides the current
model state s to the Oracle, which then calls the external procedure and returns
the chosen action to modes. In this way, the Oracle can connect to an external
NN serving as an action oracle from modes’s perspective.

At the implementation level, connecting to standard NN tools is non-trivial
due to the programming languages used. TheModest Toolset is implemented
in C#, whereas standard NN tools are bound to languages like Python or Java.
Our key observation to overcome this issue is that a seamless integration is not
actually required. Standard NN tools are primarily required for NN training,
which is computationally intensive and requires highly optimized code. In con-
trast, implementing our NN Oracle requires only NN evaluation (calling the NN
on a given input) which is easy – it merely requires to propagate the input val-
ues through the network. We thus implemented NN evaluation directly in The
Modest Toolset’s code base, as part of our extension. The NNs are learned
using standard NN tools. From there, we export a file containing the NN weights
and biases. Our extension of modes reads that file, and uses it to reconstruct
the same NN, for use with our evaluation procedure. When the Oracle is called,
it connects to that procedure.

modes contains simulation algorithms specifically tailored to MDP and more
advanced models. The tool is implemented in C#. It offers multiple statistical
methods including confidence intervals, Okamoto bound [34], and SPRT [41]. As
simulation is easily and efficiently parallelizable, modes can exploit multi-core
architectures.

4 Getting Concrete: The Racetrack Case Study

As previously outlined, we consider Racetrack as a simple and discrete, yet highly
extensible approximation of real-world phenomena that involve randomness and
decision making. In this section we spell out how these benchmarks are made
concrete use of.

Deep Statistical Model Checking 105

The Jani framework. Central to our practical work is the Jani-model for-
mat [6,24]. It can express models of distributed and concurrent systems in the
form of networks of automata, and supports property specification based on
probabilistic computation tree logic (PCTL) [16]. In full generality, Jani mod-
els are networks of stochastic timed automata, but we concentrate on MDPs
here. Automatic translations from and into other modeling languages are avail-
able, connecting among others to the planning language PPDDL [26] and to
the Prism language, and thus to the model checker Prism [28]. A large set
of quantitative verification benchmarks (QVBS) [19] is available in Jani, and
many tools offer direct support, among them ePMC, Storm and The Modest
Toolset [9,15,18].

Racetrack Model. For lack of space, the details of the Racetrack encoding in Jani
are part of the archive publicly available at [14]. The track itself is represented as
a (constant) two-dimensional array whose size equals that of the grid. The Jani
files of different Racetrack instances differ only in this array. Vehicle movements
and collision checks are represented by separate automata that synchronize using
shared actions.

The vehicle automaton keeps track of the current vehicle state via four
bounded integer variables (position and directional velocity), and two Boolean
variables (indicating whether the vehicle has crashed or reached a goal). The ini-
tial automaton location has edges for each of the 9 different acceleration vectors.
Each of them updates the velocity accordingly, and sends the current source and
next target coordinates to the collision check automaton. It then awaits that
automaton to respond with one of three answers: “valid”, “crash”, or “goal”.
For the latter two, the automaton moves to a terminal location. For “valid”, the
vehicle automaton sets the target coordinates as its new source coordinates and
moves back to its initial location.

The collision check automaton checks whether the vehicle’s next target coor-
dinates lie within the grid. If so, it iterates over the cells on the discretized trajec-
tory from current source to next target, and looks up for each such cell whether
it represents a wall or goal cell. Such a result is sent to the vehicle automaton as
soon as available. If the entire trajectory is found free of such events, the vehicle
automaton’s request is answered with “valid”, and the automaton location is
reset, waiting for the next trajectory to check.

Learning Neural Networks for Racetrack. For the sake of realistic empirical stud-
ies, we have drawn on established NN learning techniques to obtain NN oracles
for the Racetrack case studies. Here we briefly summarize the main design deci-
sions. Notably, DSMC is entirely independent of the concrete learning process,
depth, and shape of the NN employed.

– NNs are learnt for a specific map (cf. Fig. 1), with the inputs being 15 integer
values, encoding the two-dimensional position, the two-dimensional velocity,
the distance to the nearest wall in eight directions, the x and y differences
to the goal coordinates, and Manhattan goal distance (absolute x- and y-
difference, summed up). Actions are encoded as classification outputs.

106 T. P. Gros et al.

– A crucial design decision is the learning objective, i.e., the rewards used in
deep Q-learning. We set the reward for reaching the goal line to 100, and
for crashing into a wall to −50. We used a discount factor of 0.99 to encour-
age short trajectories to the goal. This arrangement was chosen because,
empirically, it resulted in an effective learning process. With higher negative
rewards for crashing, the policies learn to prefer not to move or to move
in circles. Similarly, smaller negative rewards make the learnt policies prefer
to crash quickly. Using a discount factor yields better learning performance,
but does not match the overall Racetrack setup. This exemplifies that the
choice of objectives for learning is governed by learning performance. Both
meta-parameters and numeric parameters such as rewards typically require
fine-tuning orthogonal to, or at least below the level of abstraction of, the
qualities of interest in the application.

– We experimented with a range of NN architectures and hyperparameter set-
tings, the objective being to keep the NNs simple while still able to learn
useful oracles in our Racetrack benchmarks. The NNs we settled on have the
above described input and output layers, and two hidden layers each of size
64. All neurons use the ReLU activation function.

– NNs are learnt in two variants: (a) starting on the starting line vs. (b) starting
from a random point anywhere on the map, each with initial velocity 0.
Variant (b) turned out to yield much more effective and robust learning.
Intuitively, with (a) it takes the policy a long time to reach the goal at all,
while with (b) this happens more quickly yielding earlier and more robust
learning also farther away from the goal.

Fig. 2. Heat maps of NN induced crash probabilities for all Racetrack benchmarks.
(Color figure online)

Deep Statistical Model Checking 107

5 Getting Practical: DSMC Case Studies in Racetrack

We now demonstrate the statistical model checking approach to NN policy ver-
ification through case studies in Racetrack. Section 5.1 illustrates the use of
DSMC for quality assurance by human analysts (end users, engineers) in sys-
tem approval. Section 5.2 illustrates the use of DSMC as a tool for the engineers
designing the NN learning pipeline. Section 5.3 evaluates the computational effort
incurred by DSMC compared to a conventional SMC setting where the MDP
policy is coded in the model itself.

Throughout, we use modes with an error bound P (error > ε) < κ, where
ε = 0.01 and κ = 0.05, i.e., a confidence of 95%. We set the maximal run
length to 10000 steps. Unless otherwise stated, we set the slippery-noise level
in Racetrack, i.e. the probability of action failure, to 20%. The NN oracles are
learnt by training runs starting anywhere on the map; we will illustrate how
DSMC can highlight the deficiencies of the alternate approach (starting on the
starting line only). All experiments were run on an Intel(R) Core(TM) i7-4790
CPU @ 3.60 GHz (4 cores, 8 threads) with 32 GB RAM and a 450 GB HDD.

5.1 Quality Assurance in System Approval

The variety in abstract property specification gives versatility to the quality
assurance process. This is important in particular because, as previously argued,
the relevant quality properties will typically not be identical to the objectives
used for NN learning. In the Racetrack example, NN learning optimizes expected
reward subject to fine-tuned reward and discount values. For the quality assur-
ance, we consider crash probability and goal probability, expressed as CTL path

Fig. 3. Goal probability of NN oracle on the Barto-big benchmark trained and executed
with 20% noise vs. stress-test executed with 50% noise using the same NN (middle)
vs. optimal policies obtained by probabilistic model checking with 50% noise (right).
(Color figure online)

108 T. P. Gros et al.

formulas in Jani, namely ♦ crashed (“eventually crashed”) for the former and
¬crashed U goal (“not crashed until reaching goal”) for the latter.1

We highlight that the DSMC analysis can not only point out that a NN ora-
cle has deficiencies, but also where: in which regions of the MDP state space
S. Namely, in cyber-physical systems, it is natural to use the spatial dimension
underlying S for systematizing the analysis and visualizing its result. This deliv-
ers not only a yes/no answer, but an actual quality report. We illustrate this
here through the use of simple heat maps over the Racetrack road map.

Figure 2 shows quality assurance results for crash probability in all the Race-
track benchmarks, using for each the best NN oracle from reinforcement learning
(i.e. those yielding highest rewards). The heat maps use a simple color scheme as
an illustration how the analysis results can be visualized for the human analysts.
Similar color schemes will be used in all plots below.

From the displayed DSMC results, quality assurance analysts can directly
conclude that the NN oracles are fairly safe in Barto-small (left top), with crash
probabilities mostly below 0.1; but not on Barto-large (left bottom) and Ring
(right) where crash probabilities are above 0.5 on significant parts of the map.
Generally, crash probability increases with distance to the goal line. Some inter-
esting subtleties are also visible, for example that crash probabilities are rela-
tively high in the left-turn before the goal in Barto-small.

Our next results, in Fig. 3, illustrate the quality-assurance versatility afforded
by DSMC, through an analysis quite different from the previous one. The human
analysts here decide to evaluate goal probability (a quality stronger than not
crashing because the latter may be achieved by idling). Apart from the origi-
nal setting, they consider a stress-test scenario where the road is significantly
more slippery than during NN training, namely 50% instead of 20%. They
finally decide to compare with optimal goal probabilities, computable via the

Fig. 4. Goal probabilities on the Barto-big benchmark (color coding as in Fig. 3), for
NN oracles learnt over n = 70000 (left) and n = 90000 (middle) training episodes,
together with Q-learning curve (right). (Color figure online)

1 Further properties of interest could be, e.g., bounded goal probability (how likely is
it that we will reach the goal within a given number of steps?), expected number of
steps to goal, or risk of stalling.

Deep Statistical Model Checking 109

probabilistic model checker mcsta, so that they can see whether any deficien-
cies are due to the NN, or are unavoidable given the high amount of noise.

The figure shows the outcome for Barto-large. One of the deficiencies is imme-
diately apparent, the NN policy does not pass the stress test. Its goal probability
matches the optimal values only near the goal line, and exhibits significant defi-
ciencies elsewhere. Based on these insights, the quality analysts can now decide
whether to relax the stress-test (after all, even optimal behavior here does not
reach the goal with certainty), or whether to reject these NN polices and request
re-training.

5.2 Learning Pipeline Analysis and Revision

More generally, DSMC can yield important insights not only for quality assur-
ance, but also for the engineers designing the NN learning pipeline in the first
place. There are two distinct scenarios:

(i) The engineers run the same success tests as in quality assurance, and re-train
if a test is not passed.

(ii) The engineers assess different properties of interest to the learning process
itself (e.g. expected length of policy runs), or assess the impact of different
hyperparameter settings.

In both scenarios, the DSMC analysis results point to specific state-space regions
that require improvement. This can be directly operationalized to revise the
learning pipeline, by starting more training runs from states in the critical
regions.

Figures 2 and 3 above have already demonstrated (i). Next we demonstrate
(ii) through two case studies analyzing different hyperparameter settings.

Our first case study, in Fig. 4, analyzes the number n of training episodes, as
a central hyperparameter of the learning pipeline. The only information available
in deep Q-learning for the choice of this hyperparameter is the learning curve,
i.e., the expected reward as a function of n, depicted on the right. Yet, as our
DSMC analysis here shows, this information is insufficient to obtain reliable
policies. In Barto-big, the highest reward is obtained after n = 90000 episodes.
From n = 70000 to n = 90000, the reward slightly increases. Yet we see in
Fig. 4 that the additional 20000 training episodes, while increasing overall goal
probability, lead to highly deficient behavior in an area near the start of the map,
where goal probability drops below 0.25. If provided with that information, the
engineers can focus additional training on that area, for instance.

In our next case study, we assume that the NN engineers decide to analyze
the impact of starting training runs on (a) the starting line vs. (b) random points
anywhere on the map. Figure 5 shows the results for the Ring map, where they
are most striking. In variant (a), the top part of the Racetrack was completely
ignored by the learning process. Looking into this issue, one finds that, during
training, the first solution happens to be found via the bottom route. From there
on, the reinforcement learning process has a strong bias to that route, preventing
any further exploration of other routes.

110 T. P. Gros et al.

> 0.998

> 0.99

> 0.97

> 0.9

> 0.75

> 0.5

> 0.25

≤ 0.25

Fig. 5. Goal probabilities in Ring for NN oracles where training was carried out with
reinforcing runs from the start line only (left) vs. from anywhere on the map (right).
(Color figure online)

Phenomena like this are highly detrimental if the learnt policy needs to be
broadly robust, across most of the environment. The deficiency is obvious given
the DSMC analysis results, and these results make it obvious how the problem
can be fixed. But neither can be seen in the learning curves.

5.3 Computational Effort for the Analysis

As discussed, it can be highly demanding or infeasible to verify the input/output
behavior of even a single NN decision episode, and that complexity is potentially
compounded by the state space explosion problem when endeavoring to verify
the behavior induced by an NN oracle. Deep statistical model checking carries
promise as a “light-weight” approach to this formidable problem, as no state
space needs to be stored and on the NN side it merely requires to call the NN on
sample inputs. In addition, it is efficiently parallelizable, just like SMC. Yet (1)
the approach might suffer from an excessive number of sample runs needed to
obtain sufficient confidence, and/or (2) the overhead of NN calls might severely
hamper its runtime feasibility.

Figure 6 shows data regarding (1). We compare the effort for analyzing our
NN policies to that required for analyzing a conventional hand-made policy that
we incorporated into our Jani models.2 As the heat maps show, the latter effort
is higher. This is due to a tendency to more risky behavior in the hand-made
policy, resulting in higher variance. Regarding (2), the runtime overhead for NN
calls is actually negligible in our study. Each call takes between 1 and 4 ms.
There is an added overhead for constructing the NN once at the beginning of
the analysis, but that takes at most 6 ms.
2 The policy implements a simple reactive controller that brakes if a wall is near and

otherwise accelerates towards the goal. Its goal probability is moderately worse than
that of the best NN policies.

Deep Statistical Model Checking 111

�log2(#runs)� = 14

�log2(#runs)� = 13

�log2(#runs)� = 12

�log2(#runs)� = 11

�log2(#runs)� = 10

�log2(#runs)� = 9

�log2(#runs)� < 9

NN-induced

Hand-coded

Fig. 6. Heat maps showing computational effort needed by DSMC, measured by the
number of sample runs performed by modes to analyze goal probability for each map
location. Results shown for the policies induced by our learnt NN in the top row, vs.
a simple hand-coded policy (see text) at the bottom. Each point on the map shows
�log2(#runs)�. (Color figure online)

These results should of course not be over-interpreted, given the limitations of
this initial study. But they do provide evidence that the computational overhead
may be manageable in practice at least for moderate-size neural networks.

6 Conclusion

This paper has described the cornerstones of an effective methodology to apply
statistical model checking as a light-weight approach to checking the behavior
of systems incorporating neural networks. The most important aspects of the
DSMC approach are its (i) genericity – in that it provides a generic and scalable
basis for analyzing learnt action policies; its (ii) openness – since the approach is
put into practice using the Jani format, supported by many tools for probabilis-
tic or statistical model checking; and its (iii) focus – on an abstract fragment
of the “autonomous driving” challenge. We consider these contributions as a
conceptual nucleus of broader activities to foster the scientific understanding of
neural network efficacy, by providing the formal and technological framework for
precise, yet scalable problem analysis.

We have contributed an initial case study suggesting that this may indeed
be useful and feasible. We hope that the study provides a compelling basis for

112 T. P. Gros et al.

further research on deep statistical model checking. Racetrack forms a viable
starting point for this endeavor in that can be made more realistic in a man-
ifold of dimensions: finer discretizations, different surface conditions, appear-
ing/disappearing obstacles, other traffic participants, speed limits and other
traffic regulations, different probabilistic perturbances, fuel efficiency, change
from map perspective to ego-perspective of an autonomous vehicle, mediated by
vision and other sensor systems. We are actually embarking on an exploration
of these dimensions, focussing first on speed limits and random obstacles.

From a general perspective, DSMC provides a refined form of SMC for MDPs
where thus far only implicitly defined random action policies have been available.
If those were applied to Racetrack, goal probabilities <0.1 would result – except
directly at the goal line. DSMC instead can harvest available data for a far better
suited action policy, in the form of a NN oracle trained on the data at hand. Of
course, other forms of oracles (based on, say, random forests) can be considered
with DSMC rightaway, too.

Acknowledgements. This work was partially supported by ERC Advanced Investi-
gators Grant 695614 (POWVER), and by DFG Grant 389792660 as part of TRR 248
(CPEC). The authors thank Felix Freiberger for technical support.

References

1. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic
programming. Artif. Intell. 72(1–2), 81–138 (1995)

2. Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial order meth-
ods for statistical model checking and simulation. In: Bruni, R., Dingel, J. (eds.)
FMOODS/FORTE -2011. LNCS, vol. 6722, pp. 59–74. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21461-5 4

3. Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence of real-time
dynamic programming, In: ICAPS, pp. 12–21 (2003)

4. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl.
Probab. 31(1), 59–75 (1994)

5. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89963-3 20

6. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

7. Croce, F., Andriushchenko, M., Hein, M.: Provable robustness of RELU networks
via maximization of linear regions, In: AISTATS. pp. 2057–2066. PMLR 89 (2019)

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 27

https://powver.org
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-642-21461-5_4
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1_27

Deep Statistical Model Checking 113

9. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is Coming: A Modern
Probabilistic Model Checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

10. Ehlers, R.: Formal Verification of Piece-Wise Linear Feed-Forward Neural Net-
works. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482,
pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-
2 19

11. Gardner, M.: Mathematical games. Sci. Am. 229, 118–121 (1973)
12. Gardner, M., Dorling, S.: Artificial neural networks (the multilayer perceptron)-a

review of applications in the atmospheric sciences. Atmospheric Environ. 32(14),
2627–2636 (1998)

13. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: Safety and robustness certification of neural networks with abstract
interpretation. IEEE Sympos. Secur. Privacy 2018, 3–18 (2018)

14. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Models and
Infrastructure used in “Deep Statistical Model Checking” (2020). https://doi.org/
10.5281/zenodo.3760098

15. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9 22

16. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Asp. Comput. 6(5), 512–535 (1994)

17. Hartmanns, A.: On the analysis of stochastic timed systems. Ph.D. thesis, Saarland
University, Germany (2015)

18. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

19. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 20

20. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

21. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

22. Hornik, K., Stinchcombe, M.B., White, H.: Multilayer feedforward networks are
universal approximators. Neural Netw. 2, 359–366 (1989)

23. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

24. The JANI specification. http://www.jani-spec.org/. Accessed 28 Feb 2020
25. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an

efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.5281/zenodo.3760098
https://doi.org/10.5281/zenodo.3760098
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-319-63387-9_1
http://www.jani-spec.org/
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

114 T. P. Gros et al.

26. Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Compiling probabilistic
model checking into probabilistic planning. In: ICAPS, pp. 150–154 (2018)

27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS, pp. 1097–1105 (2012)

28. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

29. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

30. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1 23

31. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural
networks with symbolic propagation: towards higher precision and faster verifica-
tion. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 296–319. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32304-2 15

32. McMahan, H.B., Gordon, G.J.: Fast exact planning in Markov decision processes.
In: ICAPS, pp. 151–160 (2005)

33. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518, 529–533 (2015)

34. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. inst. Stat. Math. 10(1), 29–35 (1959)

35. Parker, D.A.: Implementation of symbolic model checking for probabilistic systems.
Ph.D. thesis, University of Birmingham, UK (2003)

36. Pineda, L.E., Lu, Y., Zilberstein, S., Goldman, C.V.: Fault-tolerant planning under
uncertainty. In: IJCAI, pp. 2350–2356 (2013)

37. Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models:
revisiting determinization. In: ICAPS, 217–225 (2014)

38. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (1994)

39. Sarle, W.S.: Neural networks and statistical models (1994)
40. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,

shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)
41. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–

186 (1945)
42. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing

of deep neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 408–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2 22

43. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/978-3-030-32304-2_15
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

Trace Equivalence and Epistemic Logic
to Express Security Properties

Kiraku Minami(B)

Kyoto University, Kyoto 606-8502, Japan
kminami@kurims.kyoto-u.ac.jp

Abstract. In process algebra, we can express security properties using
an equivalence on processes. However, it is not clear which equivalence
is the most suitable for the purpose. Indeed, several definitions of some
properties are proposed. For example, the definition of privacy is not
unique. This situation means that we are not certain how to express an
intuitive security notion. Namely, there is a gap between an intuitive
security notion and the formulation. Proper formalization is essential for
verification, and our purpose is to bridge this gap.

In the case of the applied pi calculus, an outputted message is not
explicitly expressed. This feature suggests that trace equivalence appro-
priately expresses indistinguishability for attackers in the applied pi cal-
culus. By chasing interchanging bound names and scope extrusions, we
prove that trace equivalence is a congruence. Therefore, a security prop-
erty expressed using trace equivalence is preserved by application of
contexts.

Moreover, we construct an epistemic logic for the applied pi calcu-
lus. We show that its logical equivalence agrees with trace equivalence.
It means that trace equivalence is suitable in the presence of a non-
adaptive attacker. Besides, we define several security properties to use
our epistemic logic.

Keywords: Applied pi calculus · Trace equivalence · Epistemic logic

1 Introduction

1.1 Background

In modern society, information technology is indispensable to our daily lives,
and many communication protocols are developed to transmit data securely.
Verification of security properties of each protocol is essential, but it is not easy.

In the first place, how to formalize security notions is not clear. Various defini-
tions of the same security property have been proposed, we will show an example
later. One of our goals is to provide foundations to express these properties in

This work was partly supported by JST ERATO Grant Number JPMJER1603, Japan.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 115–132, 2020.
https://doi.org/10.1007/978-3-030-50086-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_7&domain=pdf
http://orcid.org/0000-0002-4434-4222
https://doi.org/10.1007/978-3-030-50086-3_7

116 K. Minami

a rigorous way. Besides, how to model communication and concurrency is also
not clear; many such models have also been developed. In this work, we focus
on process algebra because it allows us to handle parallel composition naturally.

In process calculi, common confidentiality properties such as secrecy are rep-
resented to use an equivalence on processes. Many equivalences exist (cf. [18]),
but which is the most suitable for expressing confidentiality is not clear. For
instance, Delaune et al. [13] defined privacy in electronic voting in terms of the
applied pi calculus [1] as follows.

Definition 1 ([13, Definition 9]). A voting protocol respects vote-privacy (or
just privacy) if

S[VA{a/v}|VB{b/v}] ≈l S[VA{b/v}|VB{a/v}]

for all possible votes a and b.

VA and VB denote the voters containing the free variable v. S is an evaluation
context. S denotes other voters and authorities. Intuitively, when the protocol
respects privacy, this definition states that an attacker cannot distinguish two
situations where votes are swapped. Note that indistinguishability is expressed to
use labeled bisimilarity ≈l in this definition. Is it the most suitable? This question
is nontrivial. Indeed, Chadha et al. [7] gave another definition and claimed that
trace equivalence is more suitable than bisimilarity to model privacy. We also
claim that trace equivalence is more suitable to express security properties in
the presence of non-adaptive attackers. Similar arguments are not abundant in
previous work.

In the applied pi calculus, a process can send not only names but also terms,
but we do not explicitly express sent messages. We indirectly represent them
to use alias variables. This feature enables us to handle cryptographic proto-
cols naturally and suggests that trace equivalence means indistinguishability for
attackers. This is because attackers whom we consider can observe only labeled
transitions. We recall the syntax and semantics of the applied pi calculus in
Sect. 2.

Both bisimilarity and trace equivalence on labeled transition systems (LTSs)
are well studied. However, trace equivalence in the applied pi calculus (and
other variants of the pi calculus [26,27]) has not drawn much attention. This is
perhaps because trace equivalence is the coarsest among commonly used equiv-
alences. However, security properties sometimes require that different processes
are regarded as the same. For example, consider secrecy. We want to make two
processes that send different messages indistinguishable. In the case, trace equiv-
alence is enough, but bisimilarity is not always optimal because it is too strong.
Bisimilarity requires that possible actions for each process are the same. How-
ever, a non-adaptive attacker cannot detect a difference in feasibility. Here, “non-
adaptive” means that the attacker cannot control participants. Thereby, a fine
equivalence such as bisimilarity is not always adequate. Bisimilarity is probably
suitable for more powerful attackers.

Trace Equivalence and Epistemic Logic to Express Security Properties 117

Epistemic logic is often used to express confidentiality directly (e.g. [7,25,
32]). For example, when a message M sent by an agent a is anonymous, we
might say that an adversary cannot know who sent M . In epistemic logic, we
can express it with a formula such as ¬KSend(a,M). This logical formulation
is close to our intuition. Nevertheless, research into an epistemic logic for the
applied pi calculus is not abundant.

In this paper, we assume that attackers can observe only labeled transitions.
Especially, they cannot observe what action participants’ can do. This assump-
tion is natural because attackers in this paper are non-adaptive. We also assume
that an attacker can send messages to participants.

1.2 Contributions

We prove that trace equivalence for the applied pi calculus is a congruence in
Sect. 3. Second, we give an epistemic logic that characterizes trace equivalence
in Sect. 4. Besides, we define security properties such as role-interchangeability,
secrecy [25,32], and openness, using our epistemic logic. Moreover, we show that
parallel composition does not generally preserve secrecy and openness.

Whereas, trace equivalence characterizes total secrecy, so application of con-
texts preserves it. We omit many proofs. See [28] for details.

Our results suggest that trace equivalence is more suitable to express (non-
probabilistic) security notions than bisimilarity.

2 The Applied Pi Calculus

The applied pi calculus [1] is an extension of the pi-calculus [26,27]. We can
handle cryptographic protocols naturally to use it.

2.1 Syntax

Let Σ be a signature equipped with an equational theory. Terms are made from
names, variables, and function symbols. A term is ground when it contains no
variables. We recall the syntax of the applied pi-calculus. Here, M,N... range
over terms, while n on names and x on variables.

P,Q ::= 0 | M〈N〉.P | M(x).P | νn.P |
if M = N then P else Q | P + Q | P |Q | !P

A,B ::= P | νn.A | νx.A | A|B | {M/x}
P,Q, ... are plain processes. ν is a binding operator. | is a parallel composition

operator. + is a nondeterministic choice operator. Plain processes are similar to
pi-calculus processes, but they are not the same. A pi-calculus process can send
only a name. On the other hand, an applied pi calculus process can send a term.
Besides, a channel consists of a term. An object of an input prefix is a variable,
so names do not change while the process runs.

118 K. Minami

A,B, ... are extended processes. We call {M/x} an active substitution. This
notion is peculiar to the applied pi calculus. An active substitution {M/x} sub-
stitutes M for x in a neighbor process.

fn(A) and bn(A) denote the sets of free names and bound names of a process
A, respectively. fv and bv are similar to them. If fn(A)∩bn(A) = ∅ and no bound
names are restricted twice, we say that A is name-distinct. Variable-distinctness
is defined similarly. n(M) denotes the set of names that appear in a term M .
v(M) is similar to it.

The domain dom(A) of an extended process A is inductively defined below. If
variables in neighbor concurrently running processes are in dom(A), the process
A affects those variables. If fv(A) = dom(A), we say that A is closed.

dom(P) = ∅, dom(νn.A) = dom(A), dom(νx.A) = dom(A) \ {x},

dom(A|B) = dom(A) ∪ dom(B), dom({M/x}) = {x}

2.2 Semantics

A context is an expression containing one hole. An evaluation context is a con-
text whose hole is neither under a replication, a conditional branch, nor an
action prefix. Structural equivalence ≡ is the smallest equivalence relation on
extended processes that is closed under application of evaluation contexts and
α-conversion, such that:

A|0 ≡ A (A|B)|C ≡ A|(B|C) A|B ≡ B|A
(νu.A)|B ≡ νu.(A|B) if u /∈ fn(B) ∪ fv(B) νu.νv.A ≡ νv.νu.A !P ≡ P |!P

P + Q ≡ Q + P νx.{M/x} ≡ 0 A|{M/x} ≡ A[M/x]|{M/x}
{M/x} ≡ {N/x} if Σ
 M = N ;

The second from the last represents how an active substitution {M/x} acts.

Definition 2. Internal reduction → is the smallest relation on extended pro-
cesses closed under structural equivalence and application of evaluation contexts,
such that:

if M = N then P else Q → P when Σ
 M = N

if M = N then P else Q → Q when Σ �
 M = N

P + Q → P

M〈N〉.P | M(x).Q → P | Q[N/x],

where terms M and N in the second rule are ground.

The last line represents synchronous communication on a channel M . We
emphasize that an environment cannot observe what is interchanged.

Trace Equivalence and Epistemic Logic to Express Security Properties 119

Next, we recall labeled semantics and requisite equivalence relations.

M(x).P
M(N)−→ P [N/x]

x /∈ fv(M〈N〉.P)

M〈N〉.P νx.M〈x〉−→ P |{N/x}
A

α−→ A′ u does not appear in α.

νu.A
α−→ νu.A′

A
α−→ A′ bv(α) ∩ fv(B) = ∅

A|B α−→ A′|B
A ≡ A′ A′ α−→ B′ B′ ≡ B

A
α−→ B

The second rule represents an output. Note that an active substitution {N/x}
is generated. The term N does not appear in the action label νx.M〈x〉.

A frame is an extended process generated from 0 and active substitutions
to use restriction and parallel composition. fr(A) denotes a process obtained
by replacing plain processes in A with 0, and we call it a frame of A. We can
consider that fr(A) is a list of outputted messages.

μ is an action. We define =⇒ as the transitive reflexive closure of −→, and
α=⇒ as =⇒ α−→=⇒.

μ
=⇒ is the former when μ is silent and is the latter otherwise.

Definition 3. (M = N)ϕ def⇔ v(M) ∪ v(N) ⊆ dom(ϕ) and Mσ = Nσ where
ϕ ≡ νñ.σ and ñ ∩ n(M,N) = ∅ for some names ñ and active substitutions σ.

(M = N)ϕ means that an attacker cannot distinguish M and N to use ϕ.

Definition 4. The static equivalence on closed frames is given by

ϕ ≈s ψ
def⇔ dom(ϕ) = dom(ψ) and ∀M,N ; (M = N)ϕ ⇔ (M = N)ψ

for closed frames ϕ and ψ. The static equivalence on closed processes is given by

A ≈s B
def⇔ fr(A) ≈s fr(B)

for closed processes A and B.

Static equivalence means that an attacker has the same information about
which terms are equal.

Definition 5. A trace tr is a finite derivation tr = A0
μ1=⇒ ...

μn=⇒ An such
that every Ai is closed and fv(μi) ⊆ dom(Ai−1) for all i. If An can perform
no actions, the trace tr is said to be complete or maximal. Given a trace tr,
let tr[i] be its i-th process Ai, and tr[i, j] be the trace Ai

μi+1=⇒ ...
μj=⇒ Aj where

0 ≤ i ≤ j ≤ n. The length of the trace tr is denoted by |tr| = n.

Definition 6. Let tr be a trace A0
μ1=⇒ ...

μn=⇒ An and tr′ be a trace B0
μ′
1=⇒

...
μ′

m=⇒ Bm. Static equivalence between tr and tr′ is defined as below:
tr ∼t tr′ def⇔ n = m and μi = μ′

i and Ai ≈s Bi for all i.

An attacker cannot distinguish statically equivalent traces. tr(A) is a set of
traces of A. trmax(A) is a set of maximal traces of A.

120 K. Minami

Definition 7. Let A and B be closed processes.

A ⊆t B
def⇔ ∀tr ∈ tr(A) ∃tr′ ∈ tr(B) s.t. tr ∼t tr′,

A ≈t B
def⇔ A ⊆t B and B ⊆t A.

Let A and B be two processes. Let σ be a map that maps variables in (fv(A) \
dom(A)) ∪ (fv(B) \ dom(B)) to ground terms. When Aσ ≈t Bσ holds for every
such σ, we also denote it as A ≈t B.

A ⊆t B means that each trace of A is imitated by some trace of B.
We later show that non-adaptive active attackers cannot distinguish trace

equivalent processes.
Trace equivalence is undecidable. However, if processes contain no replica-

tions and the equational theory on Σ is a subterm convergent destructor rewriting
system, trace equivalence is coNEXP complete [9].

3 Congruency of Trace Equivalence

The theorem below is our main result. It holds that trace equivalence is a congru-
ence even though trace equivalence for the pi-calculus is not a congruence. This
is ascribed to the difference between the pi-calculus and the applied pi calculus,
namely, to the fact that names and variables are distinguished in the applied
pi calculus. This is why adding an input prefix does not break trace equiva-
lence. Besides, a scheme of late instantiation for an input transition is used in
pi-calculus [26,27], so parallel composition may break trace equivalence. On the
other hand, a scheme of early instantiation is used in the applied pi calculus.
This scheme enables us to decompose a trace of a parallel composed process into
traces of component processes.

Example 1. We consider pi-calculus. We put

P = z(z′)|yy′.ww′, Q = z(z′).yy′.ww′ + yy′.z(z′).ww′ + yy′.ww′.z(z′).

Then, x(z).P and x(z).Q are trace equivalent, but xy|x(z).P and xy|x(z).Q
are not trace equivalent. On the other hand, x(z).P and x(z).Q are not trace
equivalent in the applied pi calculus because instantiation is early.

Abadi et al. [1] defined partial normal forms to prove that labeled bisimilarity
is closed by application of closing evaluation contexts. They gave an operational
semantics on partial normal forms. They classified transitions between ordinal
processes into six cases to use partial normal forms.

To prove the next theorem, we use partial normal forms and define concurrent
normal forms of traces. Transitions in a concurrent normal trace have to be
particular forms.

Abadi et al. [1] studied decomposition and composition of reductions on
partial normal forms. We study decomposition and composition of concurrent
normal traces.

Trace Equivalence and Epistemic Logic to Express Security Properties 121

Theorem 1. ≈t is a congruence.

The proof is very long and complicated, so we only present an outline of our
proof for the proposition below. Other cases are easy. The proof is given in [28].

Proposition 1. A ≈t B ⇒ A|C ≈t B|C.

Proof Outline. First, we define concurrent normal forms. A concurrent normal
form is a particular form of a trace of a parallel composed process. A concurrent
normal trace captures changes of scopes of bound names. Each process in a
concurrent normal trace is of the form νr̃s̃.(νx̃.(σ|P)ρ | νỹ.(ρ|Q)σ), where σ and
ρ are (active) substitutions. Terms sent by the left process are accumulated in σ.
Bound names sent by the left process P are accumulated in s̃. Symmetric cases
are similar.

Second, for any trace t of A|C, we prove that there exists a concurrent normal
trace t′ of A|C such that t ∼t t′.

Third, given a concurrent normal trace tr of A|C, we prove that we can
construct traces of A and C which each process in them is of the form νs̃.(σ|P)ρ
or νr̃.(ρ|Q)σ.

Finally, we take a trace tr′ of B which is statically equivalent to the extracted
trace of A as the above, combine it with tr′, and prove that the result is statically
equivalent to the given trace tr. �

Example 2. Let h be a unary function symbol which cannot be inverted.
νm.a(x).x〈m〉 ≈t νm.a(x).x〈h(m)〉 holds. Then,

νm.a(x).x〈m〉 | νn.a〈n〉.n(y).b〈y〉 ≈t νm.a(x).x〈h(m)〉 | νn.a〈n〉.n(y).b〈y〉

is shown as follows.
We arbitrarily take a trace tr of the left hand side. We consider

tr :νm.a(x).x〈m〉 | νn.a〈n〉.n(y).b〈y〉
νz.a〈z〉−→ νm.a(x).x〈m〉 | νn.(n(y).b〈y〉 | {n/z})

a(z)−→νmn.(n〈m〉 | n(y).b〈y〉 | {n/z})

−→νmn.(b〈m〉 | {n/z})
νw.b〈w〉−→ νmn.{n/z, m/w}

as an example. We transform it into a concurrent normal form.

tr′ :νm.a(x).x〈m〉 | νn.a〈n〉.n(y).b〈y〉
νz.a〈z〉−→ νn.((νm.a(x).x〈m〉)[n/z] | n(y).b〈y〉 | {n/z})

a(z)−→νn.((νm.z〈m〉)[n/z] | n(y).b〈y〉 | {n/z})

−→νnm.((νv.{m/v})[n/z] | (b〈v〉 | {n/z})[m/v])
νw.b〈w〉−→ νnm.((νv.{m/v})[n/z, v/w] | {n/z, v/w}[m/v])

122 K. Minami

Next, we decompose it into traces of component processes.

tr1 :νm.a(x).x〈m〉 tr2 :νn.a〈n〉.n(y).b〈y〉
a(n)−→(νm.z〈m〉)[n/z]

νz.a〈z〉−→ νn.(n(y).b〈y〉 | {n/z})
νv.n〈v〉−→ (νm.{m/v})[n/z]

z(m)−→νn.(b〈v〉 | {n/z})[m/v]
νw.b〈w〉−→ νn.{n/z, v/w}[m/v]

Since νm.a(x).x〈m〉 ≈t νm.a(x).x〈h(m)〉 holds, we can take a trace of
νm.a(x).x〈h(m)〉 which is statically equivalent to the former.

tr3 :νm.a(x).x〈h(m)〉
a(n)−→(νm.z〈h(m)〉)[n/z]

νv.n〈v〉−→ (νm.{h(m)/v})[n/z]

Finally, we compose tr2 and tr3 and obtain a desired trace tr4.

tr4 :νm.a(x).x〈h(m)〉 | νn.a〈n〉.n(y).b〈y〉
νz.a〈z〉−→ νn.((νm.a(x).x〈h(m)〉)[n/z] | n(y).b〈y〉 | {n/z})

a(z)−→νn.((νm.z〈h(m)〉)[n/z] | n(y).b〈y〉 | {n/z})

−→νnm.((νv.{h(m)/v})[n/z] | (b〈v〉 | {n/z})[h(m)/v])
νw.b〈w〉−→ νnm.((νv.{h(m)/v})[n/z, v/w] | {n/z, v/w}[h(m)/v])

Cheval et al. [10] established congruence property of trace equivalence for
image-finite processes. They proved that trace equivalence is equivalent to may-
testing equivalence for image-finite processes. On the other hand, taking all
processes into account, may-testing equivalence does not imply trace equivalence.
They gave a concrete counterexample. Thus, we cannot use the same technique.

4 An Epistemic Logic for the Applied Pi Calculus

4.1 Syntax

We propose an epistemic logic for the applied pi calculus. It was inspired by [7],
but our logic is a bit different. We give syntax of formulas.

δ ::=�|M1 = M2|M ∈ dom|δ1 ∨ δ2|¬δ

ϕ ::=δ|ϕ1 ∨ ϕ2|¬ϕ|〈μ〉−ϕ|Fϕ|Kϕ

where M1,M2 and M are terms, and μ is an action. We call δ a static formula
and ϕ a modal formula. A static formula δ mentions equality of terms. A modal
formula ϕ mentions traces.

〈μ〉−ϕ states that the previous action is μ, and ϕ holds just before observing
μ. Fϕ states that ϕ holds some time or other. The operator K expresses an
attacker’s knowledge, i.e., Kϕ means an attacker knows that ϕ holds.

Trace Equivalence and Epistemic Logic to Express Security Properties 123

4.2 Semantics

Our logic is an LTL-like logic with an epistemic operator. Let A be a name-
variable-distinct process that fv(A) \ dom(A) = x̃, ρ be an assignment which
maps x̃ to ground terms, tr ∈ tr(Aρ), 0 ≤ i ≤ |tr|, and M1 and M2 be terms.
Please remember that fr(A) is a frame of A.

We suppose that δ and ϕ contain no variables other than x̃ ∪ dom(tr[i]). We
omit semantics of logical operators. They are defined as expected.

A, ρ, tr, i |= M1 = M2 iff (M1ρ = M2ρ)fr(tr[i])

A, ρ, tr, i |= M ∈ dom iff M is a variable x, and x ∈ dom(tr[i])

A, ρ, tr, i |= 〈μ〉−ϕ iff tr[i − 1]
µ

=⇒ tr[i] in tr and A, ρ, tr, i − 1 |= ϕ

A, ρ, tr, i |= Fϕ iff ∃j ≥ i s.t. A, ρ, tr, j |= ϕ

A, ρ, tr, i |= Kϕ iff ∀ρ′∀tr′ ∈ tr(Aρ′); tr[0, i] ∼t tr
′[0, i] ⇒ A, ρ′, tr′, i |= ϕ

We suppose that an attacker does not know what terms are assigned to
free variables before the process runs. Hence, the definition of K contains a
quantifier over assignments ∀ρ′. Recall that an attacker can observe only labeled
transitions, so accessibility is defined based on static equivalence on traces.

We also define satisfiability of formulas containing free variables. We put
ỹ = dom(tr[i]). We suppose that ϕ contains no variables other than x̃, ỹ, and z̃.

A, ρ, tr, i |= ϕ(x̃, ỹ, z̃) iff ∀˜M ;A, ρ, tr, i |= ϕ(x̃, ỹ, ˜M),

where ˜M is a sequence of ground terms.
From now, we suppose that all processes are name-variable-distinct. We often

omit restriction of a domain of definition. D(ρ) is a domain of definition of ρ.
When a formula ϕ is satisfied over all possible runs of a process A, we say

that A satisfies ϕ.

Definition 8. A |= ϕ
def⇔ ∀ρ ∀tr ∈ tr(Aρ);A, ρ, tr, 0 |= ϕ, where D(ρ) =

fv(A) \ dom(A).

Definition 9. A �L B
def⇔ ∀ρ ∀tr ∈ tr(Aρ) ∃tr′ ∈ tr(Bρ)

s.t. ∀i ∀ϕ; [A, ρ, tr, i |= ϕ ⇔ B, ρ, tr′, i |= ϕ],
where D(ρ) = (fv(A) \ dom(A)) ∪ (fv(B) \ dom(B)).
A ≡L B

def⇔ A �L B and B �L A.

4.3 Correspondence with Trace Equivalence

We prove that trace equivalent processes satisfy the same formulas.

Theorem 2. 1. A ≈t B ⇒ A �L B; 2. A �L B ⇒ A ⊆t B

Proof. Let x̃ = (fv(A) \ dom(A)) ∪ (fv(B) \ dom(B)).

124 K. Minami

1) We prove

∀ρ ∀tr ∈ tr(Aρ), tr′ ∈ tr(Bρ);
tr ∼t tr′ ⇒ ∀i ∀ϕ; [A, ρ, tr, i |= ϕ ⇔ B, ρ, tr′, i |= ϕ]

where D(ρ) = x̃, by induction on the syntax of formulas.
2) We arbitrarily take an assignment ρ and tr ∈ tr(Aρ).

By A �L B,∃tr′ ∈ tr(Bρ) s.t.∀i ∀ϕ; [A, ρ, tr, i |= ϕ ⇔ B, ρ, tr′, i |= ϕ].
Then, we can prove tr ∼t tr′.
By arbitrariness of tr, it immediately follows that A �L B ⇒ A ⊆t B. ��

Theorem 3. A ≈t B ⇔ A ≡L B.

This theorem suggests that trace equivalence is suitable to define security prop-
erties. We give Proposition 2 as an example in the next subsection.

4.4 Applications

In this subsection, we often use abbreviations. Notably, P expresses ¬K¬, and
G expresses ¬F¬. Pϕ means that an attacker does not know ϕ does not hold.
In other words, the attacker thinks that the possibility that ϕ holds remains.

We define minimal secrecy. We regard it as generalized minimal anonymity [25].

Definition 10. A variable x is minimally secret with respect to δ in A iff A |=
G(δ(x) → P (¬δ(x))).

This definition means that attackers cannot know that δ(x) holds.
This property is very weak. For instance, although x is minimally secret with

respect to a nontrivial formula δ, x is not always minimally secret with respect
to ¬δ. Hereafter, we often omit objects.

Example 3. We put δ(z) : z �= a ∧ z �= b.
We consider a process if x = a then c else d. Then x is minimally secret with

respect to δ, but not secret with respect to ¬δ.

Moreover, ∨ does not preserve minimally secret. However, ∧ preserves it.
Although x is minimally secret in A, x is not always secret in A|A. Besides,

restriction does not always preserve minimal secrecy.

Example 4. We put δ(z) : z = a. We put

P = if x = a then (a〈s〉 + b〈s〉) else a〈s〉, Q = if x = b then b〈s〉 else c〈s〉.

Then x is minimally secret with respect to δ in P + Q, but not secret in (P +
Q)|(P + Q).

Example 5. We put δ(z) : z = a. Then, x is minimally secret with respect to δ
in x + a, but not secret in νa.(x + a). Here, we omitted objects.

Trace Equivalence and Epistemic Logic to Express Security Properties 125

We define total secrecy. We can also regard it as generalized total anonymity
[25]. Total secrecy states attackers can obtain no information about x.

Definition 11. x is totally secret in A(x, ỹ) iff

∀δ(z, z̃, w̃);A(x, ỹ) |= G(δ(x, ỹ, w̃) → P (¬δ(x, ỹ, w̃)))

where δ contains no variables other than ones in {z} ∪ z̃ ∪ w̃ and satisfies that
∀ ˜N∀ψ∃M : ground s.t. ψ |= ¬δ(M, ˜N, w̃). Besides, |ỹ| = |z̃| and w̃∩({x}∪ỹ) = ∅.

Proposition 2. x is totally secret in A(x, ỹ) iff A(x, ỹ) ≈t A(x′, ỹ).

Proof. ⇒) We suppose for the sake of contradiction that A(x, ỹ) �≈t A(x′, ỹ).
There exist M1,M2 and ˜N that are ground such that A(M1, ˜N) �≈t A(M2, ˜N).
We suppose that A(M1, ˜N) �⊆t A(M2, ˜N). Then, there exists tr ∈

tr(A(M1, ˜N)) such that any trace of A(M2, ˜N) is not statically equivalent to tr.
We put δ(z, z̃) : z �= M2 ∨ z̃ �= ˜N . Then

A(x, ỹ), (x �→ M1, ỹ �→ ˜N), tr, |tr| |= Kδ(x, ỹ).

This contradicts total secrecy.
⇐) We arbitrarily take δ, ρ, tr and i, where δ meets the demand of Definition 11

and D(ρ) = {x} ∪ ỹ.
We suppose that A(x, ỹ), ρ, tr, i |= δ(x, ỹ, w̃).
We take M such that fr(tr[i]) |= ¬δ(M,ρ(ỹ), w̃). Let ρ′ be

ρ′(y) =

{

M (y = x)
ρ(y) (otherwise).

By assumption, A(ρ(x), ρ(ỹ)) ≈t A(M,ρ(ỹ)).
Hence, there exists tr′ ∈ tr(A(M,ρ(ỹ))) such that tr ∼t tr′.
Then, A(x, ỹ), ρ′, tr′, i |= ¬δ(M,ρ(ỹ), w̃).
Therefore, A(x, ỹ), ρ, tr, i |= P (¬δ(x, ρ(ỹ), w̃)).
Then, A(x, ỹ) |= G(δ(x, ỹ, w̃) → P (¬δ(x, ρ(ỹ), w̃))). ��

Theorem 4. If x is totally secret in A(x, ỹ), then x is also totally secret in
E[A(x, ỹ)] for every context E[] which does not contain x.

Our framework can handle role interchangeability [25]. When xi satisfies a
property δk and xl satisfies a property δj , an attacker thinks that it is possible
that xl satisfies a property δk and xi satisfies a property δj .

Definition 12. We put fv(A) \ dom(A) = {x1, ..., xp}, J = {1, ..., q}, and I =
{1, ..., p}. (xi, δk) is role interchangeable regarding {δj(zj , ỹj)}j∈J in A iff

A(x1, ..., xp) |= G(δk(xi, ỹk) →
∧

l∈I

∧

j∈J

(δj(xl, ỹj) → P (δk(xl, ỹk) ∧ δj(xi, ỹj))))

where ỹj ∩ {x1, ..., xp} = ∅ for all j ∈ J .

126 K. Minami

Proposition 3
∀˜M ∀i ∀tr ∈ tr(A(M1, ...,Mp))
∃ ˜N ∃tr′ ∈ tr(A(Mi, N2, ..., Ni−1,M1, Ni+1, ..., Np)) s.t. tr ∼t tr′

⇔ (x1, δk) is role interchangeable with respect to {δj} in A for all {δj}
and k.

Corollary 1. ∀l ∈ I \ {i};A(x1, ..., xi, ..., xl, ..., xp) ≈t A(x1, ..., xl, ..., xi, ..., xp)
⇒ (xi, δk) is role interchangeable with respect to {δj} in A for all {δj} and k.

The converse holds only when p = 2. We give a counterexample for p = 3.

Example 6. We put A(x, y, z) = if x = y then x + z else if x = z then x +
y else y + z.

Then, (x, δk) is role interchangeable regarding {δj} in A for all {δj}j∈J and
k, but A(a, b, a) �≈t A(b, a, a). Thus, A(x, y, z) �≈t A(y, x, z).

We can also consider role permutativity. Mano [24] showed that it is strictly
stronger than role interchangeability. Role permutativity states that even if p
values are swapped, an attacker cannot notice it.

Definition 13. We put fv(A) \ dom(A) = {x1, ..., xp}, J = {1, ..., q}, and I =
{1, ..., p}. {δj}j∈J is role permutable in A iff

∀n ≤ p ∀ψ ∈ Sp;A(x1, ..., xp) |= G(
∧

k≤n

δik
(xik

, ỹk) → P (
∧

k≤n

δik
(xiψ(k) , ỹk)))

where ỹj ∩ {x1, ..., xp} = ∅ for all j and each ik differs.

Proposition 4. ∀ψ ∈ Sp;A(x1, ..., xp) ≈t A(xψ(1), ..., xψ(p))
⇔ {δj}j∈J is role permutable in A for all {δj}j∈J .

We define openness. We regard it as generalized identity [32]. Parallel com-
position does not preserve openness.

Definition 14. x is open in A under Δ(x) iff

∀ρ ∀tr ∈ trmax(Aρ);A, ρ, tr, |tr| |= Δ(x) → K(Δ(x) → (x = xρ)).

Example 7. We put Δ(z) : z = r ∨ z = s. We put

P = if x = r then a〈n〉 else b〈n〉, Q = if x = r then b〈n〉 else a〈n〉.

Then x is open in P and Q under Δ(x), but x is not open in P |Q under Δ(x).

Problem 1
Input: An extended process A, an assignment ρ, a trace tr ∈ tr(A), an

integer 0 ≤ i ≤ |tr|, and a formula ϕ.
Question: Does A, ρ, tr, i |= ϕ hold?

Proposition 5. Even if the word problem in Σ is decidable, Problem1 can be
undecidable.

Trace Equivalence and Epistemic Logic to Express Security Properties 127

Abadi and Cortier [2] proved that static equivalence can be undecidable even
if the word problem in Σ is decidable. Proposition 5 follows from it.

We change semantics. We repeat the definition of satisfaction.

A |= ϕ iff ∀ρ ∀tr ∈ tr(Aρ);A, ρ, tr, 0 |= ϕ

Now, we restrict ρ to be an assignment which maps free variables to only names
and restrict inputted messages in tr to be only variables. That is, we assume
that an attacker cannot tamper with a message. In other words, the attacker can
only transfer messages without any change. Notably, the attacker cannot make
a tuple of messages.

Problem 2
Input: An extended process A and a formula ϕ.
Question: Does A |= ϕ hold?

A convergent subterm theory is an equational theory defined by finite equa-
tions whose each right-hand side is a proper subterm of the left-hand side.

Proposition 6. If the equational theory on Σ is a convergent subterm theory
and A contains no replications, Problem2 is decidable.

4.5 Comparison with the Work of Chadha et al.

Chadha et al. developed the definition of privacy in e-voting as follows. They
considered protocol instances in which two voters Alice and Bob participate, and
voting options are 0 and 1.

Definition 15 ([7, Definition 9]). The voting process V respects privacy if
V |= Aprivacy ∧ Bprivacy where

– Aprivacy def= ∧v∈{0,1}�(K(Avote(v)) → Bvote(v)), and

– Bprivacy def= ∧v∈{0,1}�(K(Bvote(v)) → Avote(v)).

Avote(v) means that Alice voted v, and Bvote(v) is similar.
Minimal secrecy of a vote never holds because an attacker trivially knows

votes when all votes agree. We consider protocol instances in which m voters
participate and n voting options exist. Let vi be a vote of i. We consider the
property below:

∨j,kvj �= vk → ∧i∧vG(K(vi = v) → v1 = v∧...∧vi−1 = v∧vi+1 = v∧...∧vm = v)

The consequence in G(...) implies that vi �= v due to the antecedent condition,
so we can rewrite the property.

∨j,kvj �= vk → ∧i ∧v G(K(vi = v) → vi �= v)

Moreover, we take the contraposition in G.

∨j,kvj �= vk → ∧i ∧v G(vi = v → P (vi �= v))

128 K. Minami

This consequence is exactly minimal secrecy. Besides, minimal secrecy of vot-
ing implies privacy, so privacy and minimal secrecy of voting agree under the
disagreement condition ∨j,kvj �= vk.

It was shown that V (0,1) ≈t V (1,0) implies that V respects privacy, and the
partial converse was given in [7]. We give several properties of minimal secrecy.

Proposition 7. We assume that a voting process V is equivalent for aborts,
and minimal secrecy of each vote in V (v1, ..., vm) holds under the disagreement
condition ∨j,kvj �= vk.

1. m = 2 ⇒ V (v1, v2) ≈t V (v2, v1).
2. m = 3 and n = 2 ⇒ V (v1, v2, v3) ≈t V (v2, v1, v3).
3. Otherwise, V (v1, ..., vi, ..., vj , ..., vm) ≈t V (v1, ..., vj , ..., vi, ..., vm) does not

always hold.

5 Related Work

Logics about behavior of labeled transition systems originate from Hennessy-
Milner logic [20] that is a modal logic characterizing observational congruence.
That is, observational equivalent systems satisfy the same modal formulas when
these systems are image-finite.

Process algebra is a special LTS. The spi calculus [3] is an extension of the
pi-calculus. It enables us to handle symmetric key encryption based on the Dolev-
Yao model [14]. In the spi calculus, two ciphertexts obtained by encrypting two
different plaintexts are indistinguishable unless an observer gets a secret key.
Abadi and Gordon formalized security properties to use testing equivalence.

We focused on the applied pi calculus [1] because it is more powerful than the
spi calculus. That is, we intend to handle more various security notions. In the
calculus, a process can send not only names but also terms via alias variables.
Due to this feature, we can handle not only secrecy but also stricter proper-
ties. The authors proved that observational equivalence and labeled bisimilarity
correspond.

Chadha et al. [7] already developed an epistemic logic for the applied pi
calculus. They defined formulas Has and ̂evt. Has directly represents attack-
ers’ knowledge, and ̂evt means that a particular event had occurred. Tempo-
ral modalities were also used, but they do neither mention the just previous
nor next action. The epistemic operator K was defined based on static equiva-
lence on traces. Authors suggested that trace equivalence is more suitable than
labeled bisimilarity when we consider privacy. However, a correspondent relation
between logic and behavior of processes was not provided. As a matter of fact,
α-equivalent processes do not always satisfy the same formulas in their frame-
work because secret values are expressed as bound names or through events. In
our framework, trace equivalent processes satisfy the same formulas.

Horne [21] introduced quasi-open bisimilarity, and he proved that it coin-
cides open bisimilarity. Moreover, intuitionistic modal logic FM characterizes

Trace Equivalence and Epistemic Logic to Express Security Properties 129

quasi-open bisimilarity. The law of excluded middle does not hold in the logic
because processes containing a free variable are also considered.

Knight et al. [22] defined an epistemic logic for an LTS. This framework is
based on Hennessy-Milner logic, and it handles multiple agents’ knowledge. They
also proved weak completeness. However, compositionality was not discussed.

Process algebra is one of nominal transition systems. Parrow et al. [29] devel-
oped modal logic characterizing bisimilarity for a nominal transition system.

Toninho and Caires [31] proposed a dynamic spatial epistemic logic, which
reasons what information a process can obtain. The epistemic operator means
not only an attacker’s knowledge but also a participant’s knowledge, so, for
example, the logic can reason a correspondence assertion.

Tsukada et al. [32] studied sequential and parallel compositionality of security
notions to use an epistemic logic for a multiagent system. They proved that
neither anonymity nor privacy is generally preserved by composition. They also
gave a sufficient condition for preservation. However, this word “parallel” merely
means that the same agent acts two actions in the paper. That is, concurrency
was not considered.

Fiore and Abadi [16] developed symbolic models of processes. They gave a
procedure to decide whether an environment can derive a message M . Their
technique can be used for verification. However, equivalences on processes were
not studied in the paper.

Clarkson and Schneider [12] generalized trace properties to hyperproperties,
and Clarkson et al. [11] developed hyperLTL and hyperCTL* for hyperproper-
ties. Hyperproperties can express security properties which cannot be expressed
by trace properties. The authors regarded systems as sets of traces, so hyper-
properties are properties about systems. Our security properties are also proper
hyperproperties. The advantage of our work over these works is to relate trace
equivalence to attackers’ knowledge. In [11,12], the relation between the equiv-
alence and knowledge is not clear.

Goubault-Larrecq et al. [19] proposed the probabilistic applied pi calculus. In
this case, Theorem 1 no longer holds. It is known that trace distribution preorder
[30] is not a congruence. On the other hand, it is shown in [5] that probabilistic
trace equivalence for nondeterministic and probabilistic LTS is a congruence
with respect to parallel composition. Probabilistic trace equivalence is coarser
than trace distribution equivalence.

Canetti et al. [6] defined implementation for task-PIOAs. According to their
definition, T1 implements T2 iff the set of behaviors of T1 composed with E is
included in the set of behaviors of T2 composed with E for every environment E .
Here, behavior is the set of trace distributions. The implementation relation is
preserved by parallel composition.

Giro and D’Argenio [17] pointed out that ordinary schedulers may give rise to
unnatural behavior. A scheduler may leak information if it can look at the whole
of the system. To solve this problem, they provided several reasonable subclasses
of schedulers. The problem of the scheduler in the formalization of security prop-
erties was also pointed out in [4,8], which proposed other approaches.

130 K. Minami

Eisentraut et al. [15] also studied subclasses of schedulers for probabilistic
automata. They defined late distribution bisimulation and proved that late dis-
tribution bisimulation with respect to distributed schedulers is compositional.
We may need to specify subclasses of schedulers to state a probabilistic variant
of Theorem 1.

Knight et al. [23] developed spatial and epistemic process calculus. Their
study is for concurrent constraint programming, so their processes can add
constraints. They proved that observational equivalence is a congruence. Their
processes do not have labeled actions, so observational equivalence means that
equivalent processes provide the same results. On the other hand, in the applied
pi calculus, trace equivalent processes provide equivalent traces and indistin-
guishable information.

In this paper, we characterized trace equivalence in terms of our epistemic
logic. That is, we showed that a non-adaptive active intruder cannot distinguish
trace equivalent processes. We also focused on how composition of systems affects
security properties. We proved that any composition preserves total secrecy and
role permutativity. This is because trace equivalence is a congruence.

6 Conclusion

6.1 Summary

In this paper, we provided an epistemic logic for the applied pi calculus. This logic
is an LTL-like logic, so we can describe security notions. We formulated secrecy,
role-interchangeability, and openness. These are generalized security properties
regarding multiagent systems.

Moreover, we associated trace equivalence with total secrecy. Application
of context does not preserve minimal secrecy, but total secrecy is preserved
because trace equivalence is a congruence. We also give a necessary and sufficient
condition for role-interchangeability.

We conclude that trace equivalence is suitable to express non-probabilistic
indistinguishability in the view of security in the presence of a non-adaptive
active adversary.

6.2 Future Work

First, our epistemic logic states an adversary’s knowledge. We intend to construct
a logic for a process’s knowledge. It will bridge a gap between multiagent systems
and process calculi.

Second, formalizations of other security properties such as non-malleability
are also the next topics.

Finally, what logic is suitable for security in the presence of an adaptive
attacker is still open.

Acknowledgments. The author thanks Prof. M. Hasegawa and Prof. N. Yoshida
for discussions. He also thanks the anonymous reviewers for helpful comments and
suggestions.

Trace Equivalence and Epistemic Logic to Express Security Properties 131

References

1. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: mobile values, new
names, and secure communication. J. ACM 65(1), 1–41 (2017). https://doi.org/
10.1145/3127586

2. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theor. Comput. Sci. 367(1–2), 2–32 (2006). https://doi.org/10.1016/j.
tcs.2006.08.032

3. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus.
Inf. Comput. 148(1), 1–70 (1999). https://doi.org/10.1006/inco.1998.2740

4. Alvim, M.S., Andrés, M.E., Palamidessi, C., van Rossum, P.: Safe equivalences for
securityproperties. In:Calude,C.S.,Sassone,V. (eds.)TCS2010. IAICT,vol. 323,pp.
55–70. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15240-5 5

5. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting trace and testing equivalences
for nondeterministic and probabilistic processes. Log. Methods Comput. Sci. 10(1)
(2014). https://doi.org/10.2168/LMCS-10(1:16)2014

6. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala,
R.: Task-structured probabilistic i/o automata. J. Comput. Syst. Sci. 94, 63–97
(2018). https://doi.org/10.1016/j.jcss.2017.09.007

7. Chadha, R., Delaune, S., Kremer, S.: Epistemic logic for the applied pi calculus. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE -2009. LNCS,
vol. 5522, pp. 182–197. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02138-1 12

8. Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the sched-
uler. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp.
42–58. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 4

9. Cheval, V., Kremer, S., Rakotonirina, I.: DEEPSEC: deciding equivalence prop-
erties in security protocols theory and practice. In: SP 2018, pp. 529–546 (2018).
https://doi.org/10.1109/SP.2018.00033

10. Cheval, V., Cortier, V., Delaune, S.: Deciding equivalence-based properties using
constraint solving. Theor. Comput. Sci. 492, 1–39 (2013). https://doi.org/10.1016/
j.tcs.2013.04.016

11. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

12. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). https://doi.org/10.3233/JCS-2009-0393

13. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009). https://doi.org/10.
3233/JCS-2009-0340

14. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–208 (1983). https://doi.org/10.1109/TIT.1983.1056650

15. Eisentraut, C., Godskesen, J.C., Hermanns, H., Song, L., Zhang, L.: Probabilistic
bisimulation for realistic schedulers. In: Bjørner, N., de Boer, F. (eds.) FM 2015.
LNCS, vol. 9109, pp. 248–264. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19249-9 16

16. Fiore, M., Abadi, M.: Computing symbolic models for verifying cryptographic pro-
tocols. In: CSFW-14, pp. 160–173 (2001). https://doi.org/10.1109/CSFW.2001.
930144

https://doi.org/10.1145/3127586
https://doi.org/10.1145/3127586
https://doi.org/10.1016/j.tcs.2006.08.032
https://doi.org/10.1016/j.tcs.2006.08.032
https://doi.org/10.1006/inco.1998.2740
https://doi.org/10.1007/978-3-642-15240-5_5
https://doi.org/10.2168/LMCS-10(1:16)2014
https://doi.org/10.1016/j.jcss.2017.09.007
https://doi.org/10.1007/978-3-642-02138-1_12
https://doi.org/10.1007/978-3-642-02138-1_12
https://doi.org/10.1007/978-3-540-74407-8_4
https://doi.org/10.1109/SP.2018.00033
https://doi.org/10.1016/j.tcs.2013.04.016
https://doi.org/10.1016/j.tcs.2013.04.016
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0340
https://doi.org/10.3233/JCS-2009-0340
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1007/978-3-319-19249-9_16
https://doi.org/10.1007/978-3-319-19249-9_16
https://doi.org/10.1109/CSFW.2001.930144
https://doi.org/10.1109/CSFW.2001.930144

132 K. Minami

17. Giro, S., D’Argenio, P.: On the expressive power of schedulers in distributed
probabilistic systems. Electron. Notes Theor. Comput. Sci. 253(3), 45–71 (2009).
https://doi.org/10.1016/j.entcs.2009.10.005

18. Glabbeek, R.J.: The linear time - branching time spectrum. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidel-
berg (1990). https://doi.org/10.1007/BFb0039066

19. Goubault-Larrecq, J., Palamidessi, C., Troina, A.: A probabilistic applied pi–
calculus. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 175–190. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76637-7 12

20. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de
Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 79

21. Horne, R.: A bisimilarity congruence for the applied pi-calculus sufficiently coarse
to verify privacy properties. arXiv:1811.02536 (2018)

22. Knight, S., Mardare, R., Panangaden, P.: Combining epistemic logic and hennessy-
milner logic. In: Constable, R.L., Silva, A. (eds.) Logic and Program Semantics.
LNCS, vol. 7230, pp. 219–243. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29485-3 14

23. Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epis-
temic modalities in constraint-based process calculi. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 317–332. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32940-1 23

24. Mano, K.: Formal specification and verification of anonymity and privacy. Ph.D.
thesis, Nagoya University (2013)

25. Mano, K., Kawabe, Y., Sakurada, H., Tsukada, Y.: Role interchange for anonymity
and privacy of voting. J. Logic Comput. 20(6), 1251–1288 (2010). https://doi.org/
10.1093/logcom/exq013

26. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

27. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, II. Inf. Comput.
100(1), 41–77 (1992). https://doi.org/10.1016/0890-5401(92)90009-5

28. Minami, K.: Trace equivalence and epistemic logic to express security properties.
arXiv:1903.03719 (2019)

29. Parrow, J., Borgström, J., Eriksson, L.H., Gutkovas, R., Weber, T.: Modal log-
ics for nominal transition systems. In: CONCUR 2015. LIPIcs, vol. 42, pp. 198–
211. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015). https://doi.org/10.
4230/LIPIcs.CONCUR.2015.198

30. Segala, R.: A compositional trace-based semantics for probabilistic automata. In:
Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60218-6 17

31. Toninho, B., Caires, L.: A spatial-epistemic logic for reasoning about security pro-
tocols. In: SecCo 2010. EPTCS, vol. 51, pp. 1–15. Open Publishing Association
(2011). https://doi.org/10.4204/EPTCS.51.1

32. Tsukada, Y., Sakurada, H., Mano, K., Manabe, Y.: On compositional reasoning
about anonymity and privacy in epistemic logic. Ann. Math. Artif. Intell. 78(2),
101–129 (2016). https://doi.org/10.1007/s10472-016-9516-8

https://doi.org/10.1016/j.entcs.2009.10.005
https://doi.org/10.1007/BFb0039066
https://doi.org/10.1007/978-3-540-76637-7_12
https://doi.org/10.1007/3-540-10003-2_79
http://arxiv.org/abs/1811.02536
https://doi.org/10.1007/978-3-642-29485-3_14
https://doi.org/10.1007/978-3-642-29485-3_14
https://doi.org/10.1007/978-3-642-32940-1_23
https://doi.org/10.1093/logcom/exq013
https://doi.org/10.1093/logcom/exq013
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
http://arxiv.org/abs/1903.03719
https://doi.org/10.4230/LIPIcs.CONCUR.2015.198
https://doi.org/10.4230/LIPIcs.CONCUR.2015.198
https://doi.org/10.1007/3-540-60218-6_17
https://doi.org/10.4204/EPTCS.51.1
https://doi.org/10.1007/s10472-016-9516-8

Derivation of Heard-of Predicates
from Elementary Behavioral Patterns

Adam Shimi, Aurélie Hurault, and Philippe Queinnec(B)

IRIT – Université de Toulouse, 2 rue Camichel, 31000 Toulouse, France
{adam.shimi,aurelie.hurault,philippe.queinnec}@irit.fr

Abstract. There are many models of distributed computing, and no
unifying mathematical framework for considering them all. One way to
sidestep this issue is to start with simple communication and fault mod-
els, and use them as building blocks to derive the complex models studied
in the field. We thus define operations like union, succession or repeti-
tion, which makes it easier to build complex models from simple ones
while retaining expressivity.

To formalize this approach, we abstract away the complex models
and operations in the Heard-Of model. This model relies on (possibly
asynchronous) rounds; sequence of digraphs, one for each round, capture
which messages sent at a given round are received before the receiver
goes to the next round. A set of sequences, called a heard-of predicate,
defines the legal communication behaviors – that is to say, a model of
communication. Because the proposed operations behave well with this
transformation of operational models into heard-of predicates, we can
derive bounds, characterizations, and implementations of the heard-of
predicates for the constructions.

Keywords: Message-passing · Asynchronous rounds · Failures ·
Heard-of model

1 Introduction

1.1 Motivation

Let us start with a round-based distributed algorithm; such an algorithm is
quite common in the literature, especially in fault-tolerant settings. We want to
formally verify this algorithm using the methods of our choice: proof-assistant,
model-checking, inductive invariants, abstract interpretation. . . But how are we
supposed to model the context in which the algorithm will run? Even a passing
glance at the distributed computing literature shows a plethora of models defined
in the mixture of english and mathematics.

Thankfully, there are formalisms for abstracting round-based models of dis-
tributed computing. One of these is the Heard-Of model of Charron-Bost and
Schiper [4]; it boils down the communication model to a description of all
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 133–149, 2020.
https://doi.org/10.1007/978-3-030-50086-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-50086-3_8

134 A. Shimi et al.

accepted combinations of received messages. Formally, this is done by consider-
ing communications graphs, one for each round, and taking the sets of infinite
sequences of graphs that are allowed by the model. Such a set is called a heard-of
predicate, and captures a communication model.

An angle of attack for verification is therefore to find the heard-of predicate
corresponding to a real-world environment, and use the techniques from the
literature to verify an algorithm for this heard-of predicate. But which heard-of
predicate should be used? What is the “right” predicate for a given environment?
For some cases, the predicates are given in Charron-Bost and Schiper [4]; but
this does not solve the general case.

Actually, the answer is quite subtle. This follows from a fundamental part of
the Heard-Of model: communication-closedness [7]. This means that for p to use
a message from q at round r, p must receive it before or during its own round r.
And thus, knowing whether p receives the message from q at the right round or
not depends on how p waits for messages. That is, it depends on the specifics of
how rounds are implemented on top of it.

Once again, the literature offers a solution: Shimi et al. [12] propose to first
find a delivered predicate – a description of which messages will eventually be
delivered, without caring about rounds –, and then to derive the heard-of pred-
icate from it. This derivation explicitly studies strategies, the aforementioned
rules for how processes waits for messages before changing round.

But this brings us back to square one: now we are looking for the delivered
predicate corresponding to a real-world model, instead of the heard-of predicate.
Basic delivered predicates for elementary failures are easy to find, but delivered
predicates corresponding to combinations of failures are often not intuitive.

In this paper, we propose a solution to this problem: building a complex
delivered predicate from simpler ones we already know. For example, consider a
system where one process can crash and may recover later, and another process
can definitively crash. The delivered predicate for at most one crash is PDelcrash

1 ,
and the predicate where all the messages are delivered is PDeltotal. Intuitively,
a process that can crash and necessarily recover is described by the behavior
of PDelcrash

1 followed by the behavior of PDeltotal. We call this the succes-
sion of these predicates, and write it PDelrecover

1 � PDelcrash
1 � PDeltotal.

In our system, the crashed process may never recover: hence we have either
the behavior of PDelrecover

1 or the behavior of PDelcrash
1 . This amounts to a

union (or a disjunction); we write it PDelcanrecover
1 � PDelrecover

1 ∪ PDelcrash
1 .

Finally, we consider a potential irremediable crash, additionally to the previ-
ous predicate. Thus we want the behavior of PDelcrash

1 and the behavior of
PDelcanrecover

1 . We call it the combination (or conjunction) of these predicates,
and write it PDelcrash

1

⊗
PDelcanrecover

1 The complete system is thus described
by PDelcrash

1

⊗
((PDelcrash

1 � PDeltotal) ∪ PDelcrash
1). In the following, we

will also introduce an operator ω to express repetition. For example, a system
where, repeatedly, a process can crash and recover is (PDelcrash

1 � PDeltotal)ω.

Derivation of Heard-of Predicates from Elementary Behavioral Patterns 135

Lastly, the analysis of the resulting delivered predicate can be bypassed: its
heard-of predicate arises from our operations applied to the heard-of predicates
of the elementary building blocks.

1.2 Related Work

The heard-of model was proposed by Charron-Bost and Schiper [4] as a combina-
tion of the ideas of two previous work. First, the concept of a fault model where
the only information is which message arrives, from Santoro and Widmayer [11];
and second, the idea of abstracting failures in a round per round fashion, from
Gafni [8]. Replacing the operational fault detectors of Gafni with the fault model
of Santoro and Widmayer gives the heard-of model.

This model was put to use in many ways. Obviously computability and com-
plexity results were proven: new algorithms for consensus in the original paper
by Charron-Bost and Schiper [4]; characterizations for consensus solvability by
Coulouma et al. [5] and Nowak et al. [10]; a characterization for approximate
consensus solvability by Charron-Bost et al. [3]; a study of k set-agreement by
Biely et al. [1]; and more.

The clean mathematical abstraction of the heard-of model also works well
with formal verification. The rounds provide structure, and the reasoning can
be less operational than in many distributed computing abstractions. We thus
have a proof assistant verification of consensus algorithms in Charron-Bost et
al. [2]; cutoff bounds for the model checking of consensus algorithms by Marić
et al. [9]; a DSL to write code following the structure of the heard-of model and
verify it with inductive invariants by Drăgoi et al. [6]; and more.

1.3 Contributions

The contributions of the paper are:

– A definition of operations on delivered predicates and strategies, as well as
examples using them in Sect. 2.

– The study of oblivious strategies, the strategies only looking at messages for
the current round, in Sect. 3. We provide a technique to extract a strategy
dominating the oblivious strategies of the built predicate from the strate-
gies of the initial predicates; exact computations of the generated heard-of
predicates; and a sufficient condition on the building blocks for the result of
operations to be dominated by an oblivious strategy.

– The study of conservative strategies, the strategies looking at everything but
messages from future rounds, in Sect. 4. We provide a technique to extract a
strategy dominating the conservative strategies of the build predicate from
the strategies of the initial predicates; upper bounds on the generated heard-
of predicates; and a sufficient condition on the building blocks for the result
of operations to be dominated by a conservative strategy.

Due to size constraints, many of the complete proofs are not in the paper
itself, and can be found in the full paper [13].

136 A. Shimi et al.

2 Operations and Examples

2.1 Basic Concepts

We start by providing basic definitions and intuitions. The model we consider
proceed by rounds, where processes send messages tagged with a round number,
wait for some messages with this round number, and then compute the next
state and increment the round number. N∗ denotes the non-zero naturals.

Definition 1 (Collections and Predicates). Let Π a set of processes. An
element of (N∗ × Π) �→ P(Π) is either a Delivered collection c or a Heard-
Of collection h for Π, depending on the context. ctot is the total collection such
that ∀r > 0,∀p ∈ Π : ctot(r, p) = Π.

An element of P((N∗ ×Π) �→ P(Π)) is either a Delivered predicate PDel
or a Heard-Of predicate PHO for Π. Ptot = {ctot} is the total delivered
predicate.

For a heard-of collection h, h(r, p) are the senders of messages for round r
that p has received at or before its round r, and thus has known while at round
r. For a delivered collection c, c(r, p) are the senders of messages for round r
that p has received, at any point in time. Some of these messages may have
arrived early, before p was at r, or too late, after p has left round r. c gives an
operational point of view (which messages arrive), and h gives a logical point of
view (which messages are used).

Remark 1. We also regularly use the “graph-sequence” notation for a collec-
tion c. Let GraphsΠ be the set of graphs whose nodes are the elements of Π.
A collection gr is an element of (GraphsΠ)ω. We say that c and gr represent
the same collection when ∀r > 0,∀p ∈ Π : c(r, p) = Ingr[r](p), where In(p) is
the incoming vertices of p. We will usually not define two collections but use
one collection as both kind of objects; the actual type being used in a particular
expression can be deduced from the operations on the collection. For example
c[r] makes sense for a sequence of graphs, while c(r, p) makes sense for a function.

In an execution, the local state of a process is the pair of its current round
and all the received messages up to this point. We disregard any local variable,
since our focus is on which messages to wait for. A message is represented by a
pair 〈round, sender〉. For a state q, and a round r > 0, q(r) is the set of peers
from which the process has received a message for round r.

Definition 2 (Local State). Let Q = N
∗ × P(N∗ × Π). Then q ∈ Q is a local

state.
For q = 〈r,mes〉, we write q.round for r, q.mes for mes and ∀i > 0 : q(i) �

{k ∈ Π | 〈i, k〉 ∈ q.mes}.
We then define strategies, which constrain the behavior of processes. A strat-

egy is a set of states from which a process is allowed to change round. It captures
rules like “wait for at least F messages from the current round”, or “wait for
these specific messages”. Strategies give a mean to constrain executions.

Definition 3 (Strategy). f ∈ P(Q) is a strategy.

Derivation of Heard-of Predicates from Elementary Behavioral Patterns 137

2.2 Definition of Operations

We can now define operations on predicates and their corresponding strategies.
The intuition behind these operations is the following:

– The union of two delivered predicates is equivalent to an OR on the two
communication behaviors. For example, the union of the delivered predicate
for one crash at round r and of the one for one crash at round r + 1 gives a
predicate where there is either a crash at round r or a crash at round r + 1.

– The combination of two behaviors takes every pair of collections, one from
each predicate, and computes the intersection of the graphs at each round.
Meaning, it adds the loss of messages from both, to get both behaviors at once.
For example, combining PDelcrash

1 with itself gives PDelcrash
2 , the predicate

with at most two crashes. Although combination intersects graphs round by
round in a local fashion, it actually combines two collections globally, and
thus can combine several global predicates like hearing from a given number
of process during the whole execution.

– For succession, the system starts with one behavior, then switch to another.
The definition is such that the first behavior might never happen, but the
second one must appear.

– Repetition is the next logical step after succession: instead of following one
behavior with another, the same behavior is repeated again and again. For
example, taking the repetition of at most one crash results in a potential
infinite number of crash-and-restart, with the constraint of having at most
one crashed process at any time.

Definition 4 (Operations on predicates). Let P1, P2 be two delivered or
heard-of predicates.

– The union of P1 and P2 is P1 ∪ P2.
– The combination P1

⊗
P2 � {c1

⊗
c2 | c1 ∈ P1, c2 ∈ P2}, where for c1 and

c2 two collections, ∀r > 0,∀p ∈ Π : (c1
⊗

c2)(r, p) = c1(r, p) ∩ c2(r, p).
– The succession P1 � P2 �

⋃

c1∈P1,c2∈P2

c1 � c2,

with c1 � c2 � {c | ∃r ≥ 0 : c = c1[1, r].c2}.
– The repetition of P1, (P1)ω � {c | ∃(ci)i∈N∗ ,∃(ri)i∈N∗ : r1 = 0 ∧ ∀i ∈ N

∗ :
(ci ∈ P1 ∧ ri < ri+1 ∧ c[ri + 1, ri+1] = ci[1, ri+1 − ri])}.
For all operations on predicates, we provide an analogous one for strategies.

We show later that strategies for the delivered predicates, when combined by the
analogous operation, retain important properties on the result of the operation
on the predicates.

Definition 5 (Operations on strategies). Let f1, f2 be two strategies.

– Their union f1 ∪ f2 � the strategy such that ∀q a local state: (f1 ∪ f2)(q) �
f1(q) ∨ f2(q).

138 A. Shimi et al.

– Their combination f1
⊗

f2 � {q1
⊗

q2 | q1 ∈ f1 ∧ q2 ∈ f2 ∧ q1.round =
q2.round}, where for q1 and q2 at the same round r, q1

⊗
q2 � 〈r{〈r′, k〉 |

r′ > 0 ∧ k ∈ q1(r′) ∩ q2(r′)}〉
– Their succession f1 � f2 � f1 ∪ f2 ∪ {q1 � q2 | q1 ∈ f1 ∧ q2 ∈ f2} where

q1 � q2 �
〈

q1.round + q2.round,{

〈r, k〉 | r > 0 ∧
(

k ∈ q1(r) if r ≤ q1.round
k ∈ q2(r − q1.round) if r > q1.round

)}
〉

– The repetition of f1, fω
1 � {q1 � q2 � ... � qk | k ≥ 1 ∧ q1, q2, ..., qk ∈ f1}.

The goal is to derive new strategies for the resulting model by applying
operations on strategies for the starting models. This allows, in some cases,
to bypass strategies, and deduce the Heard-Of predicate for a given Delivered
predicate from the Heard-Of predicates of its building blocks.

2.3 Executions and Domination

Before manipulating predicates and strategies, we need to define what is an
execution: a specific ordering of events corresponding to a delivered collection. An
execution is an infinite sequence of either delivery of messages (deliver(r, p, q)),
change to the next round (nextj), or a deadlock (stop). Message sending is
implicit after every change of round. An execution must satisfy three rules: no
message is delivered before it is sent, no message is delivered twice, and once
there is a stop, the rest of the sequence can only be stop.

Definition 6 (Execution). Let Π be a set of n processes. Let the set of tran-
sitions T = {nextj | j ∈ Π} ∪ {deliver(r, k, j) | r ∈ N

∗ ∧ k, j ∈ Π} ∪ {stop}.
nextj is the transition for j changing round, deliver(r, k, j) is the transition for
the delivery to j of the message sent by k in round r, stop models a deadlock.
Then, t ∈ Tω is an execution �

– (Delivery after sending)
∀i ∈ N : t[i] = deliver(r, k, j) =⇒ card({l ∈ [0, i[| t[l] = nextk}) ≥ r − 1

– (Unique delivery)
∀〈r, k, j〉 ∈ (N∗ × Π × Π) : card({i ∈ N | t[i] = deliver(r, k, j)}) ≤ 1

– (Once stopped, forever stopped)
∀i ∈ N : t[i] = stop =⇒ ∀j ≥ i : t[j] = stop

Let c be a delivered collection. Then, execs(c), the executions of c �⎧
⎪⎪⎨

⎪⎪⎩
t an execution

∣
∣
∣
∣
∣
∣
∣
∣

∀〈r, k, j〉 ∈ N
∗ × Π × Π :

(k ∈ c(r, j) ∧ card({i ∈ N | t[i] = nextk}) ≥ r − 1)
⇐⇒
(∃i ∈ N : t[i] = deliver(r, k, j))

⎫
⎪⎪⎬

⎪⎪⎭

For a delivered predicate PDel, execs(PDel) � {execs(c) | c ∈ PDel}.
Let t be an execution, p ∈ Π and i ∈ N. The state of p in t after i transitions is

qt
p[i] � 〈card({l < i | t[l] = nextp}) + 1, {〈r, k〉 | ∃l < i : t[l] = deliver(r, k, p)}〉)

Derivation of Heard-of Predicates from Elementary Behavioral Patterns 139

Notice that such executions do not allow process to “jump” from say round
5 to round 9 without passing by the rounds in-between. The reason is that the
Heard-Of model does not give processes access to the decision to change rounds:
processes specify only which messages to send depending on the state, and what
is the next state depending on the current state and the received messages.

Also, the only information considered here is the round number and the
received messages. This definition of execution disregards the message contents
and the internal states of processes, as they are irrelevant to the implementation
of Heard-Of predicates.

Recall that strategies constrain when processes can change round. Thus, the
executions that conform to a strategy change rounds only when allowed by it,
and do it infinitely often if possible.

Definition 7 (Executions of a Strategy). Let f be a strategy and t an
execution. t is an execution of f � t satisfies:

– (All nexts allowed) ∀i ∈ N,∀p ∈ Π : (t[i] = nextp =⇒ qt
p[i] ∈ f)

– (Fairness) ∀p ∈ Π : card({i ∈ N | t[i] = nextp}) < ℵ0 =⇒ card({i ∈ N |
qt
p[i] /∈ f}) = ℵ0

For a delivered predicate PDel, execsf (PDel) � {t ∈ execs(PDel) | t is an
execution of f }.

The fairness property can approximately be expressed in LTL as ∀p ∈ Π :
♦�(qt

p ∈ f) ⇒ �♦nextp. Note however that executions are here defined as
sequences of transitions, whereas LTL models are sequences of states.

An important part of this definition considers executions where processes can-
not necessarily change round after each delivery. That is, in the case of “waiting
for at most F messages”, an execution where more messages are delivered than
F at some round is still an execution of the strategy. This hypothesis captures
the asynchrony of processes, which are not always scheduled right after deliver-
ies. It is compensated by a weak fairness assumption: if a strategy forever allows
the change of round, it must eventually happen.

Going back to strategies, not all of them are equally valuable. In general,
strategies that block forever at some round are less useful than strategies that
don’t – they forbid termination in some cases. The validity of a strategy captures
the absence of such an infinite wait.

Definition 8 (Validity).
An execution t is valid � ∀p ∈ Π : card({i ∈ N | t[i] = nextp}) = ℵ0.

Let PDel a delivered predicate and f a strategy. f is a valid strategy for
PDel � ∀t ∈ execsf (PDel) : t is a valid execution.

Because in a valid execution no process is ever blocked at a given round, there
are infinitely many rounds. Hence, the messages delivered before the changes of
round uniquely define a heard-of collection.

140 A. Shimi et al.

Definition 9 (Heard-Of Collection of Executions and Heard-Of Pred-
icate of Strategies). Let t be a valid execution. ht is the heard-of collection
of t �

∀r ∈ N
∗,∀p ∈ Π : ht(r, p) =

⎧
⎨

⎩
k ∈ Π

∣
∣
∣
∣
∣
∣

∃i ∈ N :

⎛

⎝
qt
p[i].round = r

∧ t[i] = nextp
∧ 〈r, k〉 ∈ qt

p[i].mes

⎞

⎠

⎫
⎬

⎭

Let PDel be a delivered predicate, and f be a valid strategy for PDel. We
write PHOf (PDel) for the heard-of predicate composed of the collections of the
executions of f on PDel: PHOf (PDel) � {ht | t ∈ execsf (PDel)}.

Lastly, the heard-of predicate of most interest is the strongest one that can be
generated by a valid strategy on the delivered predicate. Here strongest means
the one that implies all the other heard-of predicates that can be generated on
the same delivered predicate. The intuition boils down to two ideas:

– The strongest predicate implies all the heard-of predicates generated on the
same PDel, and thus it characterizes them completely.

– When seeing predicates as sets, implication is the reverse inclusion. Hence the
strongest predicate is the one included in all the others. Less collections means
more constrained communication, which means a more powerful model.

This notion of strongest predicate is formalized through an order on strategies
and their heard-of predicates.

Definition 10 (Domination). Let PDel be a delivered predicate and let f and
f ′ be two valid strategies for PDel. f dominates f ′ for PDel, written f ′ ≺PDel f ,
� PHOf ′(PDel) ⊇ PHOf (PDel).

A greatest element for ≺PDel is called a dominating strategy for PDel.
Given such a strategy f , the dominating predicate for PDel is PHOf (PDel).

2.4 Examples

We now show the variety of models that can be constructed from basic building
blocks. Our basic blocks are the model PDeltotal with only the collection ctotal

where all the messages are delivered, and the model PDelcrash
1,r with at most one

crash that can happen at round r.

Definition 11 (At most 1 crash at round r). Pcrash
1,r �⎧

⎪⎪⎨

⎪⎪⎩
c a delivered collection

∣
∣
∣
∣
∣
∣
∣
∣

∃Σ ⊆ Π :

|Σ| ≥ n − 1

∧ ∀j ∈ Π

⎛

⎝
∀r′ ∈ [1, r[: c(r′, j) = Π

∧ c(r, j) ⊇ Σ
∧ ∀r′ ≥ r : c(r′, j) = Σ

⎞

⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

From this family of predicates, various predicates can be built. Table 1 show
some of them, as well as the Heard-Of predicates computed for these predicates
based on the results from Sect. 3.3 and Sect. 3.4. For example the predicate with
at most one crash Pcrash

1 If a crash happens, it happens at one specific round r.
We can thus build Pcrash

1 from a disjunction for all values of r of the predicate
with at most one crash at round r; that is, by the union of Pcrash

1,r for all r.

Derivation of Heard-of Predicates from Elementary Behavioral Patterns 141

Table 1. A list of delivered predicate built using our operations, and their correspond-
ing heard-of predicate. The HOProduct operator is defined in Definition 16.

Description Expression HO Proof

At most 1 crash Pcrash
1 =

∞⋃
i=1

Pcrash
1,i HOProd({T ⊆ Π | |T | ≥ n − 1}) [12]

At most F crashes Pcrash
F =

F⊗

j=1
Pcrash

1 HOProd({T ⊆ Π | |T | ≥ n − F}) [12]

At most 1 crash,

which will restart

Precover
1 = Pcrash

1 �
Ptotal

HOProd({T ⊆ Π | |T | ≥ n − 1}) Theorem4

At most F

crashes, which will

restart

Precover
F =

F⊗

j=1
Precover

1 HOProd({T ⊆ Π | |T | ≥ n − F}) Theorem4

At most 1 crash,

which can restart

Pcanrecover
1

= Precover
1 ∪ Pcrash

1

HOProd({T ⊆ Π | |T | ≥ n − 1}) Theorem4

At most F

crashes, which can

restart

Pcanrecover
F

=
F⊗

j=1
Pcanrecover

1

HOProd({T ⊆ Π | |T | ≥ n − F}) Theorem4

No bound on

crashes and

restart, with only

1 crash at a time

Precovery
1 = (Pcrash

1)ω HOProd({T ⊆ Π | |T | ≥ n − 1}) Theorem4

No bound on

crashes and

restart, with max

F crashes at a

time

Precovery
F

=
F⊗

j=1
Precovery

1 HOProd({T ⊆ Π | |T | ≥ n − F}) Theorem4

At most 1 crash,

after round r

Pcrash
1,≥r =

∞⋃
i=r

Pcrash
1,i ⊆ HOProd({T ⊆ Π | |T | ≥ n − 1}) Theorem10

At most F

crashes, after

round r

Pcrash
F,≥r =

∞⋃
i=r

Pcrash
F,i ⊆ HOProd({T ⊆ Π | |T | ≥ n − F}) Theorem10

At most F crashes

with no more than

one per round

Pcrash �=
F

=
⋃

i1 �=i2...�=iF

F⊗

j=1
Pcrash

1,ij

⊆ HOProd({T ⊆ Π | |T | ≥ n − F}) Theorem10

2.5 Families of Strategies

Strategies as defined above are predicates on states. This makes them incredibly
expressive; on the other hand, this expressivity creates difficulty in reasoning
about them. To address this problem, we define families of strategies. Intuitively,
strategies in a same family depend on a specific part of the state – for example
the messages of the current round. Equality of these parts of the state defines an
equivalence relation; the strategies of a family are strategies on the equivalence
classes of this relation.

Definition 12 (Families of strategies). Let ≈: Q × Q → bool. The family of
strategies defined by ≈, family(≈) � {f a strategy | ∀q1, q2 ∈ Π : q1 ≈ q2 =⇒
(q1 ∈ f ⇐⇒ q2 ∈ f)}.

3 Oblivious Strategies

The simplest non-trivial strategies use only information from the messages of the
current round. These strategies that do not remember messages from previous

142 A. Shimi et al.

rounds, do not use messages in advance from future rounds, and do not use
the round number itself. These strategies are called oblivious. They are simple,
the Heard-Of predicates they implement are relatively easy to compute, and
they require little computing power and memory to implement. Moreover, many
examples above are dominated by such a strategy. Of course, there is a price to
pay: oblivious strategies tend to be coarser than general ones.

3.1 Minimal Oblivious Strategy

An oblivious strategy is defined by the different subsets of Π from which it has
to receive a message before allowing a change of round.

Definition 13 (Oblivious Strategy). Let obliv be the function such that ∀q ∈
Q : obliv(q) = {k ∈ Π | 〈q.round, k〉 ∈ q.mes}. Let ≈obliv the equivalence
relation defined by q1 ≈obliv q2 � obliv(q1) = obliv(q2). The family of oblivious
strategies is family(≈obliv). For f an oblivious strategy, let Nextsf � {obliv(q) |
q ∈ f}. It uniquely defines f .

We will focus on a specific strategy, that dominates the oblivious strategies
for a predicate. This follows from the fact that it waits less than any other valid
oblivious strategy for this predicate.

Definition 14 (Minimal Oblivious Strategy). Let PDel be a delivered
predicate. The minimal oblivious strategy for PDel is fmin � {q | ∃c ∈
PDel,∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p)}.
Lemma 1 (Domination of Minimal Oblivious Strategy). Let PDel be
a PDel and fmin be its minimal oblivious strategy. Then fmin is a dominating
oblivious strategy for PDel.

Proof (Proof idea). fmin is valid, because for every possible set of received mes-
sages in a collection of PDel, it accepts the corresponding oblivious state by def-
inition of minimal oblivious strategy. It is dominating among oblivious strategies
because any other valid oblivious strategy must allow the change of round when
fmin does it: it contains fmin. If an oblivious strategy does not contain fmin,
then there is a collection of PDel in which at a given round, a certain process
might receive exactly the messages for the oblivious state accepted by fmin and
not by f . This entails that f is not valid.

3.2 Operations Maintain Minimal Oblivious Strategy

As teased above, minimal oblivious strategies behave nicely under the proposed
operations. That is, they give minimal oblivious strategies of resulting delivered
predicates. One specificity of minimal oblivious strategies is that there is no need
for the succession operation on strategies, nor for the repetition. An oblivious
strategy has no knowledge about anything but the messages of the current round,
and not even its round number, so it is impossible to distinguish a union from a
succession, or a repetition from the initial predicate itself.

Derivation of Heard-of Predicates from Elementary Behavioral Patterns 143

Theorem 1 (Minimal Oblivious Strategy for Union and Succession).
Let PDel1, PDel2 be two delivered predicates, f1 and f2 the minimal oblivious
strategies for, respectively, PDel1 and PDel2. Then f1 ∪f2 is the minimal obliv-
ious strategy for PDel1 ∪ PDel2 and PDel1 � PDel2.

Proof (Proof idea). Structurally, all proofs in this section consist in showing
equality between the strategies resulting from the operations and the minimal
oblivious strategy for the delivered predicate.

For a union, the messages that can be received at each round are the messages
that can be received at each round in the first predicate or in the second. This is
also true for succession. Given that f1 and f2 are the minimal oblivious strategies
of PDel1 and PDel2, they accept exactly the states with one of these sets of
current messages. And thus f1∪f2 is the minimal oblivious strategy for PDel1∪
PDel2 and PDel1 � PDel2.

Theorem 2 (Minimal Oblivious Strategy for Repetition). Let PDel be
a delivered predicate, and f be its minimal oblivious strategy. Then f is the
minimal oblivious strategy for PDelω.

Proof (Proof idea). The intuition is the same as for union and succession. Since
repetition involves only one PDel, the sets of received messages do not change
and f is the minimal oblivious strategy.

For combination, a special symmetry hypothesis is needed.

Definition 15 (Totally Symmetric PDel). Let PDel be a delivered predi-
cate. PDel is totally symmetric � ∀c ∈ PDel,∀r > 0,∀p ∈ Π,∀r′ > 0,∀q ∈
Π,∃c′ ∈ PDel : c(r, p) = c′(r′, q)

Combination is different because combining collections is done round by
round. As oblivious strategies do not depend on the round, the combination
of oblivious strategies creates the same combination of received messages for
each round. We thus need these combinations to be independent of the round –
to be possible at each round – to reconcile those two elements.

Theorem 3 (Minimal Oblivious Strategy for Combination). Let PDel1,
PDel2 be two totally symmetric delivered predicates, f1 and f2 the minimal
oblivious strategies for, respectively, PDel1 and PDel2. Then f1

⊗
f2 is the

minimal oblivious strategy for PDel1
⊗

PDel2.

Proof (Proof idea). The oblivious states of PDel1
⊗

PDel2 are the combination
of an oblivious state of PDel1 and of one of PDel2 at the same round, for the
same process. Thanks to total symmetry, this translates into the intersection of
any oblivious state of PDel1 with any oblivious state of PDel2. Since f1 and
f2 are the minimal oblivious strategy, they both accept exactly the oblivious
states of PDel1 and PDel2 respectively. Thus, f1

⊗
f2 accept all combinations of

oblivious states of PDel1 and PDel2, and thus is the minimal oblivious strategy
of PDel1

⊗
PDel2.

144 A. Shimi et al.

3.3 Computing Heard-of Predicates

The computation of the heard-of predicate generated by an oblivious strategy
is easy thanks to a characteristic of this HO: it is a product of sets of possible
messages.

Definition 16 (Heard-Of Product). Let S ⊆ P(Π). The heard-of product
generated by S, HOProd(S) � {h | ∀p ∈ Π,∀r > 0 : h(r, p) ∈ S}.
Lemma 2 (Heard-Of Predicate of an Oblivious Strategy). Let PDel be
a delivered predicate containing ctot and let f be a valid oblivious strategy for
PDel. Then PHOf (PDel) = HOProd(Nextsf).

Proof. Proved in [12, Theorem 20, Section 4.1].

Thanks to this characterization, the heard-of predicate generated by the min-
imal strategies for the operations is computed in terms of the heard-of predicate
generated by the original minimal strategies.

Theorem 4 (Heard-Of Predicate of Minimal Oblivious Strategies).
Let PDel, PDel1, PDel2 be delivered predicates containing ctot. Let f, f1, f2 be
their respective minimal oblivious strategies. Then:

– PHOf1∪f2(PDel1 ∪ PDel2) = PHOf1∪f2(PDel1 � PDel2) = HOProd
(Nextsf1 ∪ Nextsf2).

– If PDel1 or PDel2 are totally symmetric, PHOf1
⊗

f2(PDel1
⊗

PDel2) =
HOProd({n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}).

– PHOf (PDelω) = PHOf (PDel).

Proof (Proof idea). We apply Lemma 2. The containment of ctot was shown in
the proof of Theorem5. As for the equality of the oblivious states, it follows
from the intuition in the proofs of the minimal oblivious strategy in the previous
section.

3.4 Domination by an Oblivious Strategy

From the previous sections, we can compute the Heard-Of predicate of the dom-
inating oblivious strategies for our examples. We first need to give the minimal
oblivious strategy for our building blocks PDelcrash

1 and PDeltotal.

Definition 17 (Waiting for n−F messages). The strategy to wait for n−F
messages is: fn,F � {q ∈ Q | |obliv(q)| ≥ n − F}

For all F < n, fn,F is the minimal oblivious strategy for PDelcrash
F (shown

by Shimi et al. [12, Thm. 17]). For PDeltotal, since every process receives all the
messages all the time, the strategy waits for all the messages (fn,0).

Using these strategies, we deduce the heard-of predicates of dominating obliv-
ious strategies for our examples.

Derivation of Heard-of Predicates from Elementary Behavioral Patterns 145

– For PDelrecover
1 � PDelcrash

1 � PDeltotal, the minimal oblivious strategy
frecover
1 = fn,1 ∪ fn,0 = fn,1. This entails that

PHOfrecover
1

= HOProd({T ⊆ Π | |T | ≥ n − 1}).
– For PDelcanrecover

1 � PDelrecover
1 ∪PDelcrash

1 , the minimal oblivious strategy
fcanrecover
1 = frecover

1 ∪ fn,1 = fn,1. This entails that
PHOfcanrecover

1
= HOProd({T ⊆ Π | |T | ≥ n − 1}).

– For PDelcrash
1

⊗
PDelcanrecover

1 the minimal oblivious strategy
f = fn,1

⊗
fcanrecover
1 = fn,1

⊗
fn,1 = fn,2. This entails that

PHOf = HOProd({T ⊆ Π | |T | ≥ n − 2}).

The computed predicate is the predicate of the dominating oblivious strategy.
But the dominating strategy might not be oblivious, and this predicate might
be too weak. The following result shows that PDelcrash

1 and PDeltotal satisfy
conditions that imply their domination by an oblivious strategy. Since these con-
ditions are invariant by our operations, all PDel constructed with these building
blocks are dominated by an oblivious strategy.

Theorem 5 (Domination by Oblivious for Operations). Let PDel,
PDel1, PDel2 be delivered predicates that satisfy:

– (Total collection) They contains the total collection ctot,
– (Symmetry up to a round) ∀c a collection in the predicate, ∀p ∈ Π,∀r >

0,∀r′ > 0,∃c′ a collection in the predicate: c′[1, r′ − 1] = ctot[1, r′ − 1] ∧ ∀q ∈
Π : c′(r′, q) = c(r, p)

Then PDel1 ∪ PDel2, PDel1
⊗

PDel2, PDel1 � PDel2, PDelω satisfy the
same two conditions and are dominated by oblivious strategies.

Both Pcrash
1 from Table 1 and Ptotal = {ctot} satisfy this condition. So do all

the first 8 examples from Table 1, since they are built from these two.

4 Conservative Strategies

We now broaden our family of considered strategies, by allowing them to con-
sider past and present rounds, as well as the round number itself. This is a
generalization of oblivious strategies, that tradeoff simplicity for expressivity,
while retaining a nice structure. Even better, we show that both our building
blocks and all the predicates built from them are dominated by such a strategy.
For the examples then, no expressivity is lost.

4.1 Minimal Conservative Strategy

Definition 18 (Conservative Strategy). Let cons be the function such that
∀q ∈ Q, cons(q) � 〈q.round, {〈r, k〉 ∈ q.mes | r ≤ q.round}〉. Let ≈cons the
equivalence relation defined by q1 ≈cons q2 � cons(q1) = cons(q2). The family of
conservative strategies is family(≈cons). We write NextsRf � {cons(q) | q ∈ f}
for the set of conservative states in f . This uniquely defines f .

146 A. Shimi et al.

In analogy with the case of oblivious strategies, we can define a minimal
conservative strategy of PDel, and it is a strategy dominating all conservative
strategies for this delivered predicate.

Definition 19 (Minimal Conservative Strategy). Let PDel be a delivered
predicate. The minimal conservative strategy for PDel is fmin � the con-
servative strategy such that f = {q ∈ Q | ∃c ∈ PDel,∃p ∈ Π,∀r ≤ q.round :
q(r) = c(r, p)}.
Lemma 3 (Domination of Minimal Conservative Strategy). Let PDel
be a delivered predicate and fmin be its minimal conservative strategy. Then fmin

dominates the conservative strategies for PDel.

Proof (Proof idea). Analogous to the case of minimal oblivious strategies: it
is valid because it allows to change round for each possible conservative state
(the round and the messages received for this round and before) of collections
in PDel. And since any other valid conservative strategy f must accept these
states (or it would block forever in some execution of a collection of PDel), we
have that f contains fmin and thus that fmin dominates f .

4.2 Operations Maintain Minimal Conservative Strategies

Like oblivious strategies, minimal conservative strategies give minimal conserva-
tive strategies of resulting delivered predicates.

Theorem 6 (Minimal Conservative Strategy for Union). Let
PDel1, PDel2 be two delivered predicates, f1 and f2 the minimal conservative
strategies for, respectively, PDel1 and PDel2. Then f1 ∪ f2 is the minimal con-
servative strategy for PDel1 ∪ PDel2.

Proof (Proof idea). A prefix of a collection in PDel1 ∪PDel2 comes from either
PDel1 or PDel2, and thus is accepted by f1 or f2. And any state accepted by
f1 ∪ f2 corresponds to some prefix of PDel1 or PDel2.

For the other three operations, slightly more structure is needed on the pred-
icates. More precisely, they have to be independent of the processes. Any prefix
of a process p in a collection of the predicate is also the prefix of any other pro-
cess q in a possibly different collection of the same PDel. Hence, the behaviors
(fault, crashes, loss) are not targeting specific processes. This restriction fits the
intuition behind many common fault models.

Definition 20 (Symmetric PDel). Let PDel be a delivered predicate. PDel
is symmetric � ∀c ∈ PDel,∀p ∈ Π,∀r > 0,∀q ∈ Π,∃c′ ∈ PDel,∀r′ ≤ r :
c′(r′, q) = c(r′, p)

Theorem 7 (Minimal Conservative Strategy for Combination). Let
PDel1, PDel2 be two symmetric delivered predicates, f1 and f2 the minimal
conservative strategies for, respectively, PDel1 and PDel2. Then f1

⊗
f2 is the

minimal conservative strategy for PDel1
⊗

PDel2.

Derivation of Heard-of Predicates from Elementary Behavioral Patterns 147

Proof (Proof idea). Since f1 and f2 are the minimal conservative strategies of
PDel1 and PDel2, NextsRf1 is the set of the conservative states of prefixes of
PDel1 and NextsR

f2
is the set of the conservative states of prefixes of PDel2.

Also, the states accepted by f1
⊗

f2 are the combination of the states accepted
by f1 and the states accepted by f2. And the prefixes of PDel1

⊗
PDel2 are

the prefixes of PDel1 combined with the prefixes of PDel2 for the same pro-
cess. Thanks to symmetry, we can take a prefix of PDel2 and any process, and
find a collection such that the process has that prefix. Therefore the combined
prefixes for the same process are the same as the combined prefixes of PDel1
and PDel2. Thus, NextsR

f1
⊗

f2
is the set of conservative states of prefixes of

PDel1
⊗

PDel2, and f1
⊗

f2 is its minimal conservative strategy.

Theorem 8 (Minimal Conservative Strategy for Succession). Let
PDel1, PDel2 be two symmetric delivered predicates, f1 and f2 the minimal
conservative strategies for, respectively, PDel1 and PDel2. Then f1 � f2 is the
minimal conservative strategy for PDel1 � PDel2.

Proof (Proof idea). Since f1 and f2 are the minimal conservative strategies of
PDel1 and PDel2, NextsRf1 is the set of the conservative states of prefixes of
PDel1 and NextsR

f2
is the set of the conservative states of prefixes of PDel2.

Also, the states accepted by f1 � f2 are the succession of the states accepted by
f1 and the states accepted by f2. And the prefixes of PDel1 � PDel2 are the
successions of prefixes of PDel1 and prefixes of PDel2 for the same process.
But thanks to symmetry, we can take a prefix of PDel2 and any process, and
find a collection such that the process has that prefix.

Therefore the succession of prefixes for the same process are the same as
the succession of prefixes of PDel1 and PDel2. Thus, NextsR

f1�f2
is the set of

conservative states of prefixes of PDel1 � PDel2, and is therefore its minimal
conservative strategy.

Theorem 9 (Minimal Conservative Strategy for Repetition). Let PDel
be a symmetric delivered predicate, and f be its minimal conservative strategy.
Then fω is the minimal conservative strategy for PDelω.

Proof (Proof idea). The idea is the same as in the succession.

4.3 Computing Heard-Of Predicates

Here we split from the analogy with oblivious strategies: the heard-of predicate
of conservative strategies is hard to compute, as it depends in intricate ways on
the delivered predicate itself.

Yet it is still possible to compute interesting information on this HO: upper
bounds. These are overapproximations of the actual HO, but they can serve for
formal verification of LTL properties. Indeed, the executions of an algorithm
for the actual HO are contained in the executions of the algorithm for any
overapproximation of the HO, and LTL properties must be true for all executions
of the algorithm. So proving the property on an overapproximation also proves
it on the actual HO.

148 A. Shimi et al.

Theorem 10 (Upper Bounds on HO of Minimal Conservative Strate-
gies). Let PDel, PDel1, PDel2 be delivered predicates containing ctot. Let
fcons, fcons

1 , fcons
2 be their respective minimal conservative strategies, and

fobliv, fobliv
1 , fobliv

2 be their respective minimal oblivious strategies. Then:

– PHOfcons
1 ∪fcons

2
(PDel1 ∪ PDel2) ⊆ HOProd(Nextsfobliv

1
∪ Nextsfobliv

2
).

– PHOfcons
1 �fcons

2
(PDel1 � PDel2) ⊆ HOProd(Nextsfobliv

1
∪ Nextsfobliv

2
).

– PHOfcons
1

⊗
fcons
2

(PDel1
⊗

PDel2) ⊆ HOProd({n1 ∩ n2 | n1 ∈ Nextsfobliv
1

∧
n2 ∈ Nextsfobliv

2
}).

– PHO(fcons)ω (PDelω) ⊆ HOProd(Nextsfobliv).

Proof (Proof idea). These bounds follow from the fact that an oblivious strategy,
is a conservative strategy, and thus the minimal conservative strategy dominates
the minimal oblivious strategy.

5 Conclusion

To summarize, we propose operations on delivered predicates that allow the con-
struction of complex predicates from simpler ones. The corresponding operations
on strategies behave nicely regarding dominating strategies, for the conservative
and oblivious strategies. This entails bounds and characterizations of the domi-
nating heard-of predicate for the constructions.

What needs to be done next comes in two kinds: first, the logical continuation
is to look for constraints on delivered predicates for which we can compute
the dominating heard-of predicate of conservative strategies. More ambitiously,
we will study strategies looking in the future, i.e. strategies that can take into
account messages from processes that have already reached a strictly higher
round than the recipient. These strategies are useful for inherently asymmetric
delivered predicates. For example, message loss is asymmetric, in the sense that
we cannot force processes to receive the same set of messages.

Funding. This work was supported by project PARDI ANR-16-CE25-0006.

References

1. Biely, M., Robinson, P., Schmid, M., Schwarz, U., Winkler, K.: Gracefully degrad-
ing consensus and k-set agreement in directed dynamic networks. Theor. Comput.
Sci. 726, 41–77 (2018). https://doi.org/10.1016/j.tcs.2018.02.019

2. Charron-Bost, B., Debrat, H., Merz, S.: Formal verification of consensus algorithms
tolerating malicious faults. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011.
LNCS, vol. 6976, pp. 120–134. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24550-3 11

3. Charron-Bost, B., Függer, M., Nowak, T.: Approximate consensus in highly
dynamic networks: the role of averaging algorithms. In: Halldórsson, M.M., Iwama,
K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 528–
539. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6 42

https://doi.org/10.1016/j.tcs.2018.02.019
https://doi.org/10.1007/978-3-642-24550-3_11
https://doi.org/10.1007/978-3-642-24550-3_11
https://doi.org/10.1007/978-3-662-47666-6_42

Derivation of Heard-of Predicates from Elementary Behavioral Patterns 149

4. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distrib. Comput. 22(1), 49–71 (2009). https://doi.org/
10.1007/s00446-009-0084-6

5. Coulouma, É., Godard, E., Peters, J.: A characterization of oblivious message
adversaries for which consensus is solvable. Theor. Comput. Sci. 584, 80–90 (2015).
https://doi.org/10.1016/j.tcs.2015.01.024

6. Drăgoi, C., Henzinger, T.A., Zufferey, D.: PSync: a partially synchronous language
for fault-tolerant distributed algorithms. SIGPLAN Not. 51(1), 400–415 (2016).
https://doi.org/10.1145/2914770.2837650

7. Elrad, T., Francez, N.: Decomposition of distributed programs into communication-
closedlayers. Sci. Comput. Program. 2(3), 155–173 (1982). https://doi.org/10.
1016/0167-6423(83)90013-8

8. Gafni, E.: Round-by-round fault detectors (extended abstract): unifying synchrony
and asynchrony. In: 17th ACM Symposium on Principles of Distributed Comput-
ing, PODC 1998, pp. 143–152 (1998). https://doi.org/10.1145/277697.277724

9. Marić, O., Sprenger, C., Basin, D.: Cutoff bounds for consensus algorithms. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 217–237.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 12

10. Nowak, T., Schmid, U., Winkler, K.: Topological characterization of consen-
sus under general message adversaries. In: 2019 ACM Symposium on Principles
of Distributed Computing, PODC 2019 (2019). https://doi.org/10.1145/3293611.
3331624

11. Santoro, N., Widmayer, P.: Time is not a healer. In: Monien, B., Cori, R. (eds.)
STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989). https://
doi.org/10.1007/BFb0028994

12. Shimi, A., Hurault, A., Quéinnec, P.: Characterizing asynchronous message-passing
models through rounds. In: 22nd International Conference on Principles of Dis-
tributed Systems (OPODIS 2018), pp. 18:1–18:17 (2018). https://doi.org/10.4230/
LIPIcs.OPODIS.2018.18

13. Shimi, A., Hurault, A., Queinnec, P.: Derivation of heard-of predicates from ele-
mentary behavioral patterns (2020). arXiv:2004.10619

https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1016/j.tcs.2015.01.024
https://doi.org/10.1145/2914770.2837650
https://doi.org/10.1016/0167-6423(83)90013-8
https://doi.org/10.1016/0167-6423(83)90013-8
https://doi.org/10.1145/277697.277724
https://doi.org/10.1007/978-3-319-63390-9_12
https://doi.org/10.1145/3293611.3331624
https://doi.org/10.1145/3293611.3331624
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/BFb0028994
https://doi.org/10.4230/LIPIcs.OPODIS.2018.18
https://doi.org/10.4230/LIPIcs.OPODIS.2018.18
http://arxiv.org/abs/2004.10619

Probabilistic Timed Automata with One
Clock and Initialised Clock-Dependent

Probabilities

Jeremy Sproston(B)

Dipartimento di Informatica, University of Turin, Turin, Italy
Sproston@di.unito.it

Abstract. Clock-dependent probabilistic timed automata extend clas-
sical timed automata with discrete probabilistic choice, where the proba-
bilities are allowed to depend on the exact values of the clocks. Previous
work has shown that the quantitative reachability problem for clock-
dependent probabilistic timed automata with at least three clocks is
undecidable. In this paper, we consider the subclass of clock-dependent
probabilistic timed automata that have one clock, that have clock depen-
dencies described by affine functions, and that satisfy an initialisa-
tion condition requiring that, at some point between taking edges with
non-trivial clock dependencies, the clock must have an integer value.
We present an approach for solving in polynomial time quantitative
and qualitative reachability problems of such one-clock initialised clock-
dependent probabilistic timed automata. Our results are obtained by a
transformation to interval Markov decision processes.

1 Introduction

The diffusion of complex systems with timing requirements that operate in unpre-
dictable environments has led to interest in formal modelling and verification tech-
niques for timed and probabilistic systems. One such formal verification tech-
nique is model checking [3,12], in which a system model is verified automati-
cally against formally-specified properties. A well-established modelling formal-
ism for timed systems is timed automata [2]. A timed automaton consists of a finite
graph equipped with a set of real-valued variables called clocks, which increase at
the same rate as real-time and which can be used to constrain the relative time
of events. To model formally probabilistic systems, frameworks such as Markov
chains or Markov decision processes are used typically. Model-checking algorithms
for these formalisms have been presented in the literature: for overviews of these
techniques see, for example, [7] for timed automata, and [3,14] for Markov chains
and Markov decision processes. Furthermore, timed automata and Markov deci-
sion processes have been combined to obtain the formalism of probabilistic timed
automata [16,25,28], which can be viewed as timed automata with probabili-
ties associated with their edges (or, equivalently, as Markov decision processes
equipped with clocks and their associated constraints).
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 150–168, 2020.
https://doi.org/10.1007/978-3-030-50086-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-50086-3_9

Probabilistic Timed Automata with One Clock 151

Fig. 1. An example of one-clock clock-dependent probabilistic automaton P.

For the modelling of certain systems, it may be advantageous to model the
fact that the probability of some events, in particular those concerning the envi-
ronment in which the system is operating, vary as time passes. For example,
in automotive and aeronautic contexts, the probability of certain reactions of
human operators may depend on factors such as fatigue, which can increase
over time (see, for example, [13]); an increase in the amount of time that an
unmanned aerial vehicle spends performing a search and rescue operation in a
hazardous zone may increase the probability that the vehicle incurs damage from
the environment; an increase in the time elapsed before a metro train arrives at
a station can result in an increase in the number of passengers on the station’s
platform, which can in turn increase the probability of the doors failing to shut
at the station, due to overcrowding of the train (see [4]). A natural way of repre-
senting such a dependency of probability of events on time is using a continuous
function: for example, for the case in which a task can be completed between 1
and 3 time units in the future, we could represent the successful completion of
the task by probability x+1

4 , where the clock variable x (measuring the amount
of time elapsed) ranges over the interval [1, 3]. The standard probabilistic timed
automaton formalism cannot express such a continuous relationship between
probabilities and time, being limited to step functions (where the intervals along
which the function is constant have rational-numbered endpoints). This limi-
tation led to the development of an extension of probabilistic timed automata
called clock-dependent probabilistic timed automata [32], in which the proba-
bilities of crossing edges can depend on clock values according to piecewise con-
stant functions. Figure 1 gives an example of such a clock-dependent probabilistic
timed automaton, using the standard conventions for the graphical representa-
tion of (probabilistic) timed automata (the model has one clock denoted by x,
and black boxes denote probabilistic choices over outgoing edges). In location
W, the system is working on a task, which is completed after between 1 and 3
units of time. When the task is completed, it is either successful (edge to location
S), fails (edge to location F) or leads to system termination (edge to location
T). For the case in which the task completion fails, between 4 and 5 time units

152 J. Sproston

after work on the task started the system may either try again to work on the
task (edge to location W, resetting x to 0) or to terminate (edge to location T).
The edges corresponding to probabilistic choices are labelled with expressions
over the clock x, which describe how the probability of those edges changes in
accordance with changes in the value of x. For example, the longer the time
spent in location W, the higher the value of x when location W is left, and the
higher the probability of making a transition to location S, which corresponds
to the successful completion of the task.

Previous work on clock-dependent probabilistic timed automata showed that
a basic quantitative reachability problem (regarding whether there is a sched-
uler of nondeterministic choice such that the probability of reaching a set of
target locations exceeds some probability threshold) is undecidable, but that an
approach based on the region graph can be employed to approximate optimal
reachability probabilities [32]. The undecidability result relied on the presence
of at least three clocks: in this paper, following similar precedents in the context
of (non-probabilistic and probabilistic) variants of timed automata (for exam-
ple, [1,5,6,8,23,26]), we restrict our attention to clock-dependent probabilistic
timed automata with a single clock variable. As in [32], we consider the case
in which the dependencies of transition probabilities on the value of the clock
are described by affine functions. Furthermore, we assume that, between any
two edges with a non-constant dependence on the clock, the clock must have
a natural-numbered value, either through being reset to 0 or by increasing as
time passes. We call this condition initialisation, following the precedents of
[1] and [21], in which similar conditions are used to obtain decidability results
for stochastic timed systems with one clock, and hybrid automata, respectively;
intuitively, the value of the clock is “reinitialised” (either explicitly, through a
reset to 0, or implicitly, through the passage of time) to a known, natural value
between non-constant dependencies of probability on the value of the clock. Note
that the clock-dependent probabilistic timed automaton of Fig. 1 satisfies this
assumption (although clock x is not reset on the edge to location F, it must
take values 3 and 4 before location F can be left). We show that, for such clock-
dependent probabilistic timed automata, quantitative reachability problems can
be solved in polynomial time. Similarly, we can also solve in polynomial time
qualitative reachability problems, which ask whether there exists a scheduler of
nondeterminism such that a set of target locations can be reached with proba-
bility 1 (or 0), or whether all schedulers of nondeterminism result in the target
locations being reached with probability 1 (or 0).

These results rely on the construction of an interval Markov decision pro-
cess from the one-clock clock-dependent probabilistic timed automaton. Interval
Markov decision processes have been well-studied in the verification context (for
example, in [17,20,30]), and also in other contexts, such as planning [15] and con-
trol [27,36]. They comprise a finite state space where transitions between states
are achieved in the following manner: for each state, there is a nondeterministic
choice between a set of actions, where each action is associated with a decoration
of the set of edges from the state with intervals in [0, 1]; then a nondeterministic

Probabilistic Timed Automata with One Clock 153

choice as to the exact probabilties associated with each outgoing edge is chosen
from the intervals associated with the action chosen in the first step; finally, a
probabilistic choice is made over the edges according to the probabilities chosen
in the second step, thus determining the next state. In contrast to the standard
formulation of interval Markov decision processes, we allow edges corresponding
to probabilistic choices to be labelled not only with closed intervals, but also with
open and half-open intervals. While (half-)open intervals have been considered
previously in the context of interval Markov chains in [9,33], we are unaware of
any work considering them in the context of interval Markov decision processes.
The presence of open intervals is vital to obtain a precise representation of the
one-clock clock-dependent probabilistic timed automaton.

We proceed by giving some preliminary concepts in Sect. 2: this includes a
reduction from interval Markov decision processes to interval Markov chains [22,
24,31] with the standard Markov decision process-based semantics, which may
be of independent interest. The reduction takes open and half-open intervals into
account; while [9] has shown that open interval Markov chains can be reduced to
closed Markov chains for the purposes of quantitative properties, [33] shows that
the open/closed distinction is critical for the evaluation of qualitative properties.
In Sect. 3, we present the definition of one-clock clock-dependent probabilistic
timed automata, and present the transformation to interval Markov decision
processes in Sect. 4. Proofs of the results can be found in [34].

2 Interval Markov Decision Processes

Preliminaries. We use R≥0 to denote the set of non-negative real numbers,
Q to denote the set of rational numbers, and N to denote the set of natural
numbers. A (discrete) probability distribution over a countable set Q is a function
μ : Q → [0, 1] such that

∑
q∈Q μ(q) = 1. Let Dist(Q) be the set of distributions

over Q. For a (possibly uncountable) set Q and a function μ : Q → [0, 1], we
define support(μ) = {q ∈ Q | μ(q) > 0}. Then, for an uncountable set Q, we
define Dist(Q) to be the set of functions μ : Q → [0, 1] such that support(μ) is
a countable set and μ restricted to support(μ) is a distribution. Given a binary
function f : Q × Q → [0, 1] and element q ∈ Q, we denote by f(q, ·) : Q → [0, 1]
the unary function such that f(q, ·)(q′) = f(q, q′) for each q′ ∈ Q.

A Markov chain (MC) C is a pair (S,P) where S is a set of states and
P : S × S → [0, 1] is a transition probability function, such that P(s, ·) ∈ Dist(S)
for each state s ∈ S. A path of MC C is a sequence s0s1 · · · of states such that
P(si, si+1) > 0 for all i ≥ 0. Given a path r = s0s1 · · · and i ≥ 0, we let r(i) = si

be the (i + 1)-th state along r. The set of paths of C starting in state s ∈ S is
denoted by PathsC(s). In the standard manner (see, for example, [3,14]), given
a state s ∈ S, we can define a probability measure PrC

s over PathsC(s).
A Markov decision process (MDP) M = (S,A,Δ) comprises a set S of states,

a set A of actions, and a probabilistic transition function Δ : S × A → Dist(S) ∪
{⊥}. The symbol ⊥ is used to represent the unavailability of an action in a
state, i.e., Δ(s, a) = ⊥ signifies that action a ∈ A is not available in state s ∈ S.

154 J. Sproston

For each state s ∈ S, let A(s) = {a ∈ A | Δ(s, a) �= ⊥}, and assume that A(s) �=
∅, i.e., there is at least one available action in each state. Transitions from state
to state of an MDP are performed in two steps: if the current state is s, the first
step concerns a nondeterministic selection of an action a ∈ A(s); the second step
comprises a probabilistic choice, made according to the distribution Δ(s, a), as
to which state to make the transition (that is, a transition to a state s′ ∈ S is
made with probability Δ(s, a)(s′)). In general, the sets of states and actions can
be uncountable. We say that an MDP is finite if S and A are finite sets.

A(n infinite) path of an MDP M is a sequence s0a0s1a1 · · · such that
ai ∈ A(si) and Δ(si, μi)(si+1) > 0 for all i ≥ 0. Given an infinite path
r = s0a0s1a1 · · · and i ≥ 0, we let r(i) = si be the (i + 1)-th state along
r. Let PathsM be the set of infinite paths of M. A finite path is a sequence
r = s0a0s1a1 · · · an−1sn such that ai ∈ A(si) and Δ(si, μi)(si+1) > 0 for all
0 ≤ i < n. Let last(r) = sn denote the final state of r. We use ras to denote the
finite path s0a0s1a1 · · · an−1snas. Let PathsM

∗ be the set of finite paths of the
MDP M. Let PathsM(s) and PathsM

∗ (s) be the sets of infinite paths and finite
paths, respectively, of M starting in state s ∈ S.

A scheduler is a function σ : PathsM
∗ → ⋃

s∈S Dist(A(s)) such that σ(r) ∈
Dist(A(last(r))) for all r ∈ PathsM

∗ .1 Let ΣM be the set of schedulers of the
MDP M. We say that infinite path r = s0a0s1a1 · · · is generated by σ if
σ(s0a0s1a1 · · · ai−1si)(ai) > 0 for all i ∈ N. Let Pathsσ be the set of paths gen-
erated by σ. The set Pathsσ

∗ of finite paths generated by σ is defined similarly.
Let Pathsσ(s) = Pathsσ ∩ PathsM(s) and Pathsσ

∗ (s) = Pathsσ
∗ ∩ PathsM

∗ (s).
Given a scheduler σ ∈ ΣM, we can define a countably infinite-state MC Cσ

that corresponds to the behaviour of the scheduler σ: we let Cσ = (Pathsσ
∗ ,P),

where, for r, r′ ∈ Pathsσ
∗ , we have P(r, r′) = σ(r)(a) · Δ(last(r), a)(s) if r′ = ras

and a ∈ A(last(r)), and P(r, r′) = 0 otherwise. For r = s0a0s1a1 · · · an−1sn, we
denote the (i + 1)-th prefix of r by ri, i.e., ri = s0a0s1a1 · · · ai−1si, for i ≤ n.
Then, given s ∈ S and r ∈ Pathsσ

∗ , we let Prσ
∗,s(r) = P(r0, r1) · . . . · P(rn−1, rn).

Let Cyl(r) ⊆ PathsM(s) be the set of infinite paths starting in s that have the
finite path r as a prefix. Then we let Prσ

s be the unique probability measure over
Pathsσ(s) such that Prσ

s (Cyl(r)) = Prσ
∗,s(r) (for more details, see [3,14]).

Given a set T ⊆ S, we define �T = {r ∈ PathsM | ∃i ∈ N . r(i) ∈ T}
as the set of infinite runs of M such that some state of T is visited along the
run. Let s ∈ S. We define the maximum probability of reaching T from s as
P
max
M,s(�T) = supσ∈ΣM Prσ

s (�T). Similarly, the minimum probability of reaching
T from s is defined as Pmin

M,s(�T) = infσ∈ΣM Prσ
s (�T). The maximal reachability

problem for M, T ⊆ S, s ∈ S, � ∈ {≥, >} and λ ∈ [0, 1] is to decide whether
P
max
M,s(�T)� λ. Similarly, the minimal reachability problem for M, T ⊆ S, s ∈ S,

� ∈ {≤, <} and λ ∈ [0, 1] is to decide whether Pmin
M,s(�T)� λ. The maximal and

minimal reachability problems are called quantitative problems. We also consider

1 From [18, Lemma 4.10], without loss of generality we can assume henceforth that
schedulers map to distributions assigning positive probability to finite sets of actions,
i.e., schedulers σ for which |support(σ(r))| is finite for all r ∈ PathsM

∗ .

Probabilistic Timed Automata with One Clock 155

the following qualitative problems: (∀0) decide whether Prσ
s (�T) = 0 for all

σ ∈ ΣM; (∃0) decide whether there exists σ ∈ ΣM such that Prσ
s (�T) = 0;

(∃1) decide whether there exists σ ∈ ΣM such that Prσ
s (�T) = 1; (∀1) decide

whether Prσ
s (�T) = 1 for all σ ∈ ΣM.

Interval Markov Chains. We let I denote the set of (open, half-open or
closed) intervals that are subsets of [0, 1] and that have rational-numbered end-
points. Given an interval I ∈ I, we let left(I) (respectively, right(I)) be the left
(respectively, right) endpoint of I. Note that left(I), right(I) ∈ [0, 1] ∩ Q.

An interval distribution over a finite set Q is a function d : Q → I such that
(1)

∑
q∈Q left(d(q)) ≤ 1 ≤ ∑

q∈Q right(d(q)), (2a)
∑

q∈Q left(d(q)) = 1 implies
that d(q) is left-closed for all q ∈ Q, and (2b)

∑
q∈Q right(d(q)) = 1 implies

that d(q) is right-closed for all q ∈ Q. We define Dist(Q) as the set of interval
distributions over Q. An assignment for interval distribution d is a distribution
α ∈ Dist(Q) such that α(q) ∈ d(q) for each q ∈ Q. Note that conditions (1), (2a)
and (2b) in the definition of interval distributions guarantee that there exists
at least one assignment for each interval distribution. Let G(d) be the set of
assignments for d.

An (open) interval Markov chain (IMC) C is a pair (S,P), where S is a finite
set of states, and P : S ×S → I is a interval-based transition function such that
P(s, ·) is an interval distribution for each s ∈ S (formally, P(s, ·) ∈ Dist(S)). An
IMC makes a transition from a state s ∈ S in two steps: first an assignment α
is chosen from the set G(P(s, ·)) of assignments for P(s, ·), then a probabilistic
choice over target states is made according to α. The semantics of an IMC
corresponds to an MDP that has the same state space as the IMC, and for
which each state is associated with a set of distributions, the precise transition
probabilities of which are chosen from the interval distribution of the state.
Formally, the semantics of an IMC C = (S,P) is the MDP [[C]] = (S,G(P),Δ),
where G(P) =

⋃
s∈S G(P(s, ·)), and for which Δ(s, α) = α for all states s ∈ S

and assignments α ∈ G(P(s, ·)) for P(s, ·). In previous literature (for example,
[10,11,31]), this semantics is called the “IMDP semantics”.

Computing P
max
[[C]],s(�T) and P

min
[[C]],s(�T) can be done for an IMC C simply by

transforming the IMC by closing all of its (half-)open intervals, then employing a
standard maximum/minimum reachability probability computation on the new,
“closed” IMC (for example, the algorithms of [11,31]): the correctness of this
approach is shown in [9]. Algorithms for qualitative problems of IMCs (with
open, half-open and closed intervals) are given in [33]. All of the aforementioned
algorithms run in polynomial time in the size of the IMC, which is obtained as
the sum over all states s, s′ ∈ S of the binary representation of the endpoints of
P(s, s′), where rational numbers are encoded as the quotient of integers written
in binary.

Interval Markov Decision Processes. An (open) interval Markov decision
process (IMDP) M = (S,A,D) comprises a finite set S of states, a finite set A
of actions, and an interval-based transition function D : S ×A → Dist(S)∪{⊥}.

156 J. Sproston

Let A(s) = {a ∈ A | D(s, a) �= ⊥}, and assume that A(s) �= ∅ for each state
s ∈ S. In contrast to IMCs, an IMDP makes a transition from a state s ∈ S
in three steps: (1) an action a ∈ A(s) is chosen, then (2) an assignment α
for D(s, a) is chosen, and finally (3) a probabilistic choice over target states
to make the transition to is performed according to α. Formally, the seman-
tics of an IMDP M = (S,A,D) is the MDP [[M]] = (S,A,Δ) where A(s) =
{(a, α) ∈ A × Dist(S) | a ∈ A(s) and α ∈ G(D(s, a))} for each state s ∈ S, and
Δ(s, (a, α)) = α for each state s ∈ S and action/assignment pair (a, α) ∈ A(s).
Note that (as in, for example, [17,20,30]) we adopt a cooperative resolution
of nondeterminism for IMDPs, in which the choice of action and assignment
(steps (1) and (2) above) is combined into a single nondeterministic choice in
the semantic MDP.

Given the cooperative nondeterminism for IMDPs, we can show that, given
an IMDP, an IMC can be constructed such that the maximal and minimal reach-
ability probabilities for the IMDP and IMC coincide, and furthermore qualita-
tive properties agree on the IMDP and the IMC. Formally, given the IMDP
M = (S,A,D), we construct an IMC C[M] = (S̃, P̃) in the following way:

– the set of states is defined as S̃ = S ∪ (S ⊗ A), where S ⊗ A =⋃
s∈S{(s, a) ∈ S × A | a ∈ A(s)};

– for s ∈ S and a ∈ A(s), let P̃(s, (s, a)) = [0, 1], and let P̃((s, a), ·) = D(s, a).

The following proposition states the correctness of this construction with respect
to quantitative and qualitative problems.

Proposition 1. Let M = (S,A,D) be an IMDP, and let s ∈ S, T ⊆ S and
λ ∈ {0, 1}. Then:

– P
max
[[M]],s(�T) = P

max
[[C[M]]],s(�T) and P

min
[[M]],s(�T) = P

min
[[C[M]]],s(�T);

– there exists σ ∈ Σ[[M]] such that Prσ
s (�T) = λ if and only if there exists

σ′ ∈ Σ[[C[M]]] such that Prσ′
s (�T) = λ;

– Prσ
s (�T) = λ for all σ ∈ Σ[[M]] if and only if Prσ′

s (�T) = λ for all σ′ ∈
Σ[[C[M]]].

3 Clock-Dependent Probabilistic Timed Automata with
One Clock

In this section, we introduce the formalism of clock-dependent probabilistic
timed automata. The definition of clock-dependent probabilistic timed automata
of [32] features an arbitrary number of clock variables. In contrast, we consider
models with only one clock variable, which will be denoted x for the remainder
of the paper.

A clock valuation is a value v ∈ R≥0, interpreted as the current value of
clock x. Following the usual notational conventions for modelling formalisms
based on timed automata, for clock valuation v ∈ R≥0 and X ∈ {{x}, ∅}, we
write v[X := 0] to denote the clock valuation in which clocks in X are reset

Probabilistic Timed Automata with One Clock 157

to 0; in the one-clock setting, we have v[{x} := 0] = 0 and v[∅ := 0] = v. In the
following, we write 2{x} rather than {{x}, ∅}.

The set Ψ of clock constraints over x is defined as the set of conjunctions
over atomic formulae of the form x ∼ c, where ∼∈ {<,≤,≥, >} and c ∈ N. A
clock valuation v satisfies a clock constraint ψ, denoted by v |= ψ, if ψ resolves
to true when substituting each occurrence of clock x with v.

For a set Q, a distribution template ℘ : R≥0 → Dist(Q) gives a distribution
over Q for each clock valuation. In the following, we use notation ℘[v], rather
than ℘(v), to denote the distribution corresponding to distribution template ℘
and clock valuation v. Let Temp(Q) be the set of distribution templates over Q.

A one-clock clock-dependent probabilistic timed automaton (1c-cdPTA) P =
(L, inv , prob) comprises the following components:

– a finite set L of locations;
– a function inv : L → Ψ associating an invariant condition with each location;
– a set prob ⊆ L × Ψ × Temp(2{x} × L) of probabilistic edges.

A probabilistic edge (l, g, ℘) ∈ prob comprises: (1) a source location l; (2) a clock
constraint g, called a guard ; and (3) a distribution template ℘ with respect to
pairs of the form (X, l′) ∈ 2{x} × L (i.e., pairs consisting of a first element indi-
cating whether x should be reset to 0 or not, and a second element corresponding
to a target location l′). We refer to pairs (X, l′) ∈ 2{x} × L as outcomes.

The behaviour of a 1c-cdPTA takes a similar form to that of a standard
(one-clock) probabilistic timed automaton [16,23,25]: in any location time can
advance as long as the invariant condition holds, and the choice as to how much
time elapses is made nondeterministically; a probabilistic edge can be taken if
its guard is satisfied by the current value of the clock, and the choice as to which
probabilistic edge to take is made nondeterministically; for a taken probabilistic
edge, the choice of whether to reset the clock and which target location to make
the transition to is probabilistic. In comparison with one-clock probabilistic timed
automata, the key novelty of 1c-cdPTAs is that the distribution used to make
this probabilistic choice depends on the probabilistic edge taken and on the
current clock valuation.

A state of a 1c-cdPTA is a pair comprising a location and a clock valuation
satisfying the location’s invariant condition, i.e., (l, v) ∈ L × R≥0 such that
v |= inv(l). In any state (l, v), a certain amount of time t ∈ R≥0 elapses, then a
probabilistic edge is traversed. The choice of t requires that the invariant inv(l)
remains continuously satisfied while time passes. The resulting state after the
elapse of time is (l, v+t). A probabilistic edge (l′, g, ℘) ∈ prob can then be chosen
from (l, v + t) if l = l′ and it is enabled, i.e., the clock constraint g is satisfied
by v + t. Once a probabilistic edge (l, g, ℘) is chosen, a successor location, and
whether to reset the clock to 0, is chosen at random, according to the distribution
℘[v + t].

We make the following assumptions on 1c-cdPTAs, in order to simplify the
definition of their semantics. Firstly, we consider 1c-cdPTAs featuring invariant
conditions that prevent the clock from exceeding some bound, and impose no
lower bound: formally, for each location l ∈ L, we have that inv(l) is a constraint

158 J. Sproston

x ≤ c for some c ∈ N, or a constraint x < c for some c ∈ N \ {0}. Secondly,
we restrict our attention to 1c-cdPTAs for which it is always possible to take a
probabilistic edge, either immediately or after letting time elapse. Formally, for
each location l ∈ L, if inv(l) = (x ≤ c) then (viewing c as a clock valuation)
c |= g for some (l, g, ℘) ∈ prob; instead, if inv(l) = (x < c) then c − ε |= g
for all ε ∈ (0, 1) and (l, g, ℘) ∈ prob. Thirdly, we assume that all possible target
states of probabilistic edges satisfy their invariants. Observe that, given the first
assumption, this may not be the case only when the clock is not reset. Formally,
for all probabilistic edges (l, g, ℘) ∈ prob, for all clock valuations v ∈ R≥0 such
that v |= g, and for all l′ ∈ L, we have that ℘[v](∅, l′) > 0 implies v[∅ :=
0] |= inv(l′), i.e., v |= inv(l′). Note that we relax some of these assumptions
when depicting 1c-cdPTAs graphically (for example, the 1c-cdPTA of Fig. 1 can
be made to satisfy these assumptions by adding invariant conditions and self-
looping probabilistic edges to locations S and T).

The semantics of the 1c-cdPTA P = (L, inv , prob) is the MDP [[P]] =
(S,A,Δ) where:

– S = {(l, v) ∈ L × R≥0 | v |= inv(l)};
– A = R≥0 × prob;
– for (l, v) ∈ S, ṽ ∈ R≥0 and (l, g, ℘) ∈ prob such that (1) ṽ ≥ v, (2) ṽ |= g

and (3) w |= inv(l) for all v ≤ w ≤ ṽ, then we let Δ((l, v), (ṽ, (l, g, ℘))) be
the distribution such that, for (l′, v′) ∈ S:

Δ((l, v), (ṽ, (l, g, ℘)))(l′, v′) =

⎧
⎪⎪⎨

⎪⎪⎩

℘[ṽ]({x}, l′) + ℘[ṽ](∅, l′) if v′ = ṽ = 0
℘[ṽ](∅, l′) if v′ = ṽ > 0
℘[ṽ]({x}, l′) if v′ = 0 and ṽ > 0
0 otherwise.

Let F ⊆ L be a set of locations, and let TF = {(l, v) ∈ S | l ∈ F} be the
set of states of [[P]] that have their location component in F . Then the maxi-
mum value of reaching F from state (l, v) ∈ S corresponds to P

max
[[P]],(l,v)(�TF).

Similarly, the minimum value of reaching F from state (l, v) ∈ S corresponds
to P

min
[[P]],(l,v)(�TF). As in Sect. 2, we can define a number of quantitative and

qualitative reachability problems on 1c-cdPTA, where the initial state is set as
(l, 0) for a particular l ∈ L. The maximal reachability problem for P, F ⊆ L,
l ∈ L, � ∈ {≥, >} and λ ∈ [0, 1] is to decide whether P

max
[[P]],(l,0)(�TF) � λ; sim-

ilarly, the minimal reachability problem for P, F ⊆ L, l ∈ L, � ∈ {≤, <} and
λ ∈ [0, 1] is to decide whether P

min
[[P]],(l,0)(�TF) � λ. Furthermore, we can define

analogues of the qualitative problems featured in Sect. 2: (∀0) decide whether
Prσ

(l,0)(�TF) = 0 for all σ ∈ Σ[[P]]; (∃0) decide whether there exists σ ∈ Σ[[P]]

such that Prσ
(l,0)(�TF) = 0; (∃1) decide whether there exists σ ∈ Σ[[P]] such that

Prσ
(l,0)(�TF) = 1; (∀1) decide whether Prσ

(l,0)(�TF) = 1 for all σ ∈ Σ[[P]].

Affine Clock Dependencies. In this paper, we consider distribution templates
that are defined in terms of sets of affine functions in the following way.

Probabilistic Timed Automata with One Clock 159

Given probabilistic edge p = (l, g, ℘) ∈ prob, let Ip be the set of clock val-
uations in which p is enabled, i.e., Ip = {v ∈ R≥0 | v |= g ∧ inv(l)}. Note that
Ip ⊆ R≥0 corresponds to an interval with natural-numbered endpoints. Let Ip

be the closure of Ip. We say that p is affine if, for each e ∈ 2{x} ×L, there exists
a pair (cp

e, d
p
e) ∈ Q

2 of rational constants, such that ℘[v](e) = cp
e + dp

e · v for all
v ∈ Ip. Note that, by the definition of distribution templates, for all v ∈ Ip,
we have cp

e + dp
e · v ≥ 0 for each e ∈ 2{x} × L, and

∑
e∈2{x}×L(cp

e + dp
e · v) = 1.

A 1c-cdPTA is affine if all of its probabilistic edges are affine. Henceforth we
assume that the 1c-cdPTAs we consider are affine. An affine probabilistic edge
p is constant if, for each e ∈ 2{x} ×L, we have dp

e = 0, i.e., ℘[v](e) = cp
e for some

cp
e ∈ Q, for all v ∈ Ip. Note that, for a probabilistic edge p ∈ prob, outcome

e ∈ 2{x} × L and open interval I ⊆ Ip, if dp
e �= 0, then ℘[v](e) > 0 for all v ∈ I

(because the existence of v=0 ∈ I such that ℘[v=0](e) = 0, together with dp
e �= 0,

would mean that there exists v′ ∈ I such that ℘[v′](e) < 0, which contradicts
the definition of distribution templates).

Initialisation. In this paper, we also introduce a specific requirement for
1c-cdPTAs that allows us to analyse faithfully 1c-cdPTA using IMDPs in
Sect. 4. A symbolic path fragment is a sequence (l0, g0, ℘0)(X0, l1)(l1, g1, ℘1)
(X1, l2) · · · (ln, gn, ℘n) ∈ (prob × (2{x} × L))+ × prob of probabilistic edges and
outcomes such that ℘i[v](Xi, li+1) > 0 for all v ∈ I(li,gi,℘i) for all i < n.
In this paper, we consider 1c-cdPTAs for which each symbolic path fragment
that begins and ends with a non-constant probabilistic edge requires that
the clock takes a natural numbered value, either from being reset or from
passing through guards that have at most one (natural numbered) value in
common. Formally, a 1c-cdPTA is initialised if, for any symbolic path frag-
ment (l0, g0, ℘0)(X0, l1)(l1, g1, ℘1)(X1, l2) · · · (ln, gn, ℘n) such that (l0, g0, ℘0) and
(ln, gn, ℘n) are non-constant, either (1) Xi = {x} or (2) I(li,gi,℘i)∩I(li+1,gi+1,℘i+1)

is empty or contains a single valuation, for some 0 < i < n. We henceforth assume
that all 1c-cdPTAs considered in this paper are initialised.

4 Translation from 1c-cdPTAs to IMDPs

In this section, we show that we can solve quantitative and qualitative problems
of (affine and initialised) 1c-cdPTAs. In contrast to the approach for quantitative
problems of multiple-clock cdPTAs presented in [32], which involves the con-
struction of an approximate MDP, we represent the 1c-cdPTA precisely using an
IMDP, by adapting the standard region-graph construction for one-clock (prob-
abilistic) timed automata of [23,26].

Let P = (L, inv , prob) be a 1c-cdPTA. Let Cst(P) be the set of constants
that are used in the guards of probabilistic edges and invariants of P, and let
B = Cst(P) ∪ {0}. We write B = {b0, b1, . . . , bk}, where 0 = b0 < b1 < . . . < bk.
The set B defines the set IB = {[b0, b0], (b0, b1), [b1, b1], · · · , [bk, bk]}. We define
a total order on IB in the following way: [b0, b0] < (b0, b1) < [b1, b1] < · · · <
[bk, bk]. Given an open interval B = (b, b′) ∈ IB, its closure is written as B, i.e.,

160 J. Sproston

B = [b, b′]. Furthermore, let lb(B) = b and rb(B) = b′ refer to the left- and
right-endpoints of B. For a closed interval [b, b] ∈ IB, we let lb(B) = rb(B) = b.

Let ψ be a guard of a probabilistic edge or an invariant of P. By
definition, we have that, for each B ∈ IB, either B ⊆ {v ∈ R≥0 | v |= ψ}
or B ∩ {v ∈ R≥0 | v |= ψ} = ∅. We write B |= ψ in the case of
B ⊆ {v ∈ R≥0 | v |= ψ} (to represent the fact that all valuations of B
satisfy ψ).

Example 1. Consider the 1c-cdPTA of Fig. 1. We have B = {0, 1, 3, 4, 5} and
IB = {[0, 0], (0, 1), [1, 1], (1, 3), [3, 3], (3, 4), [4, 4], (4, 5), [5, 5]}. Consider the clock
constraint x < 3: we have B |= (x < 3) for all B ∈ {[0, 0], (0, 1), [1, 1], (1, 3)}.
Similarly, for the clock constraint 4 < x < 5, we have (4, 5) |= (4 < x < 5).

B-Minimal Schedulers. The following technical lemma specifies that any
scheduler of the 1c-cdPTA can be made “more deterministic” in the follow-
ing way: for each interval B̃ ∈ IB and probabilistic edge p ∈ prob, if, after
executing a certain finite path, a scheduler chooses (assigns positive probability
to) multiple actions (ṽ1, p), · · · , (ṽn, p) that share the same probabilistic edge p
and for which ṽi ∈ B̃ for all 1 ≤ i ≤ n, then we can obtain another scheduler
for which the aforementioned actions are replaced by an action (ṽ, p) such that
ṽ ∈ B̃. Formally, we say that a scheduler σ ∈ Σ[[P]] of [[P]] is B-minimal if, for all
finite paths r ∈ Paths [[P]]

∗ , for all probabilistic edges p ∈ prob, and for all pairs
of actions (ṽ1, p1), (ṽ2, p2) ∈ support(σ(r)), either p1 �= p2 or v1 and v2 belong
to distinct intervals in IB, i.e., the intervals B̃1, B̃2 ∈ IB for which ṽ1 ∈ B̃1 and
ṽ2 ∈ B̃2 are such that B̃1 �= B̃2. Let Σ

[[P]]
B

be the set of schedulers of Σ[[P]] that
are B-minimal.

Lemma 1. Let (l, v) ∈ SP and F ⊆ L. Then, for each σ ∈ Σ[[P]], there exists
π ∈ Σ

[[P]]
B

such that Prσ
(l,v)(�TF) = Prπ

(l,v)(�TF).

The underlying idea of the proof of the lemma (which can be found in [34]) is
that every finite path of π corresponds to a set of finite paths of σ, where all of
these paths have the same length, visit the same locations in order, choose the
same probabilistic edges in order, and visit the same intervals of clock valuations
in order. Consider the choice of π after a finite path: to replicate the choices
made at the end of the corresponding set of finite paths of σ, the choice of π is
derived from a weighted average of the choices of σ, where the weights correspond
to the probabilities of the finite paths of σ under consideration. Another key
point for the construction of π is that, when a non-constant probabilistic edge
is chosen, the clock valuation used by π when taking the probabilistic edge
reflects the clock valuation used by σ when taking some probabilistic edge from
the finite paths of σ under consideration: the clock valuation chosen by π is
obtained as a weighted average of the clock valuations chosen by σ. Lemma 1
allows us to consider only B-minimal schedulers in the sequel, permitting us to
obtain a close correspondence between the schedulers of [[P]] and the schedulers
of the constructed IMDP, the definition of which we consider in the subsequent
subsection.

Probabilistic Timed Automata with One Clock 161

Example 2. Consider the 1c-cdPTA of Fig. 1. In the following, we denote the
outgoing probabilistic edges from W and F as pW and pF, respectively. Consider
a scheduler σ ∈ Σ[[P]], where σ(W, 0) (i.e., the choice of σ after the finite path
comprising the single state (W, 0)) assigns probability 1

2 to the action (54 , pW)
and probability 1

2 to the action (74 , pW) (where the two actions refer to either 5
4

or 7
4 time units elapsing, after which the probabilistic edge pW is taken). Then

we can construct a B-minimal scheduler π ∈ Σ
[[P]]
B

such that π(W, 0) assigns
probability 1 to the action (32 , pW) (i.e., where 3

2 = 1
2 · 5

4 + 1
2 · 7

4). Now consider
finite paths r = (W, 0)(54 , pW)(F, 5

4) and r′ = (W, 0)(74 , pW)(F, 7
4). Note that

Prσ
∗,(W,0)(r) = 1

2 · 11− 3·5
4

16 and Prσ
∗,(W,0)(r

′) = 1
2 · 11− 3·7

4
16 . Say that σ(r) assigns

probability 1 to 17
4 and probability 1 to 19

4 . Then π((W, 0)(32 , pW)(F, 3
2)) assigns

probability 1 to action (ṽ, pF), where ṽ = Prσ
∗,(W,0)(r) ·1 · 174 +Prσ

∗,(W,0)(r
′) ·1 · 194 ,

i.e., a weighted sum of the time delays chosen by σ after r and r′, where the
weights correspond to the probabilities of r and r′ under σ. Repeating this rea-
soning for all finite paths yields a B-minimal scheduler π such that the probability
of reaching a set of target states from (W, 0) is the same for both σ and π.

IMDP Construction. We now present the idea of the IMDP construction.
The states of the IMDP fall into two categories: (1) pairs comprising a location
and an interval from IB, with the intuition that the state (l, B) ∈ L × IB of the
IMDP represents all states (l, v) of [[P]] such that v ∈ B; (2) triples comprising
an interval from IB, a probabilistic edge and a bit that specifies whether the
state refers to the left- or right-endpoint of the interval. A single transition of
the semantics of the 1c-cdPTA, which we recall represents the elapse of time
(therefore increasing the value of the clock) followed by the traversal of a prob-
abilistic edge, is represented by a sequence of two transitions in the IMDP: the
first IMDP transition represents the choice of (i) the probabilistic edge, (ii) the
interval in IB which contains the valuation of the clock after letting time elapse
and immediately before the probabilistic edge is traversed, and (iii) in the case
in which the aforementioned interval is open, the position of the clock valua-
tion within the interval; the second IMDP transition represents the probabilistic
choice made from the extreme (left and right) endpoints of the aforementioned
interval with the chosen probabilistic edges.

Example 3. The IMDP construction, applied to the example of Fig. 1, is shown
in Fig. 2 (note that transitions corresponding to probability 0 are shown with
a dashed line). The location W, and the value of the clock being 0, is rep-
resented by the state (W, [0, 0]). Recall that the outgoing probabilistic edge
from W is enabled when the clock is between 1 and 3: hence the single action
((1, 3), pW) is available from (W, [0, 0]) (representing the set of actions (ṽ, pW)
of [[P]] with ṽ ∈ (1, 3)). The action ((1, 3), pW) is associated with two target
states, ((1, 3), pW, lb) and ((1, 3), pW, rb), each corresponding to the probabil-
ity interval (0, 1). The choice of probability within the interval can be done
in the IMDP to represent a choice of clock valuation in (1, 3): for exam-
ple, the valuation 3

2 would be represented by the assignment that associates

162 J. Sproston

Fig. 2. Interval Markov decision process M[P] obtained from P.

probability 3
4 with ((1, 3), pW, lb) and 1

4 with ((1, 3), pW, rb) (i.e., assigns a weight
of 3

4 to the lower bound of (1, 3), and a weight of 1
4 to the upper bound of

(1, 3), obtaining the weighted combination 3
4 · 1 + 1

4 · 3 = 3
2). Then, from both

((1, 3), pW, lb) and ((1, 3), pW, rb), there is a probabilistic choice made regarding
the target IMDP state to make the subsequent transition to, i.e., the transitions
from ((1, 3), pW, lb) and ((1, 3), pW, rb) do not involve nondeterminism, because
there is only one action available, and because the resulting interval distribu-
tion assigns singleton intervals to all possible target states.2 The probabilities
of the transitions from ((1, 3), pW, lb) and ((1, 3), pW, rb) are derived from the
clock dependencies associated with 1 (i.e., the left endpoint of (1, 3)) and 3
(i.e., the right endpoint of (1, 3)), respectively. Hence the multiplication of the
probabilities of the two aforementioned transitions (from (W, [0, 0]) to either
((1, 3), pW, lb) or ((1, 3), pW, rb), and then to (S, (1, 3)), (T, (1, 3)) or (F, (1, 3)))
represents exactly the probability of a single transition in the 1c-cdPTA: for
example, in the 1c-cdPTA, considering again the example of the clock valuation
associating 3

2 with x, the probability of making a transition to location S is
3x−3

8 = 3
16 ; in the IMDP, assigning 3

4 to the transition to ((1, 3), pW, lb) and 1
4 to

the transition to ((1, 3), pW, rb), we then obtain that the probability of making
a transition to (S, (1, 3)) from (W, [0, 0]) is 3

4 · 0 + 1
4 · 3

4 = 3
16 . Similar reasoning

applies to the transitions available from (F, (1, 3)).

We now describe formally the construction of the IMDP M[P] = (SM[P],

AM[P],DM[P]). The set of states of M[P] is defined as SM[P] = Sreg
M[P] ∪ Send

M[P],

where Sreg
M[P] = {(l, B) ∈ L × IB | B |= inv(l)} and Send

M[P] =
{
(B̃, (l, g, ℘),

dir) ∈ IB × prob × {lb, rb} | B̃ |=, g ∧ inv(l)
}
. In order to distinguish states

2 Given that there is only one action available from states such as ((1, 3), pW, lb) and
((1, 3), pW, rb), we omit both the action and the usual black box from the figure.

Probabilistic Timed Automata with One Clock 163

of [[P]] and states of M[P], we refer to elements of Sreg
M[P] as regions, and ele-

ments of Send
M[P] as endpoint indicators. The set of actions of M[P] is defined

as AM[P] = {(B̃, (l, g, ℘)) ∈ IB × prob | B̃ |= g ∧ inv(l)} ∪ {τ} (i.e., there is an
action for each combination of interval from IB and probabilistic edge such
that all valuations from the interval satisfy both the guard of the probabilis-
tic edge and the invariant condition of its source location). For each region
(l, B) ∈ Sreg

M[P], let AM[P](l, B) = {(B̃, (l′, g, ℘)) ∈ AM[P] | l = l′ and B̃ ≥ B}.3

For each (B̃, p, dir) ∈ Send
M[P], let AM[P](B̃, p, dir) = {τ}. The transition function

DM[P] : SM[P] × AM[P] → Dist(SM[P]) ∪ {⊥} is defined as follows4:

– For each (l, B) ∈ Sreg
M[P] and (B̃, p) ∈ AM[P](l, B), we let DM[P]((l, B), (B̃, p))

be the interval distribution such that DM[P]((l, B), (B̃, p))(B̃, p, lb) = (0, 1),
DM[P]((l, B), (B̃, p))(B̃, p, rb) = (0, 1), and DM[P]((l, B), (B̃, p))(s) = [0, 0]
for all s ∈ SM[P] \ {(B̃, p, lb), (B̃, p, rb)}.

– For each (B̃, (l, g, ℘), dir) ∈ Send
M[P] and (l′, B′) ∈ Sreg

M[P], let:

λ
(B̃,(l,g,℘),dir)
(l′,B′) =

⎧
⎪⎪⎨

⎪⎪⎩

℘[dir(B̃)]({x}, l′) + ℘[dir(B̃)](∅, l′) if B′ = B̃ = [0, 0]
℘[dir(B̃)](∅, l′) if B′ = B̃ > [0, 0]
℘[dir(B̃)]({x}, l′) if B′ = 0 and B̃ > 0
0 otherwise.

Then DM[P]((B̃, (l, g, ℘), dir), τ) is the interval distribution such that, for all
s ∈ SM[P]:

DM[P]((B̃, (l, g, ℘), dir), τ)(s) =

{
[λ(B̃,(l,g,℘),dir)

s , λ
(B̃,(l,g,℘),dir)
s] if s ∈ Sreg

M[P]

[0, 0] otherwise.

Next, we consider the correctness of the construction of M[P], i.e., that M[P]
can be used for solving quantitative and qualitative properties of the 1c-cdPTA
P. The proof relies on showing that transitions of the semantic MDP [[P]] of P
can be mimicked by a sequence of two transitions of the semantic MDP [[M[P]]]
of M[P], and vice versa. Let [[P]] = (SP , AP ,ΔP) be the semantic MDP of P.
Given state (l, v) ∈ SP , we let reg(l, v) = (l, B) ∈ Sreg

M[P] be the unique region
such that v ∈ B. In the following, we let [[M[P]]] = (SM[P], AM[P],ΔM[P]) be
the semantic MDP of M[P].

We now show that, for any scheduler of (the semantics of) the 1c-cdPTA
P, there exists a scheduler of (the semantics of) the IMDP M[P] such that
the schedulers assign the same probability to reaching a certain set of loca-
tions from a given location with the value of the clock equal to 0. Let TF =
{(l, B) ∈ Sreg

M[P] | l ∈ F} be the set of regions with location component in F .

3 Note that AM[P](l, B) �= ∅ for each (l, B) ∈ Sreg
M[P], by the assumptions that we made

on 1c-cdPTA in Sect. 3 (namely, that it is always possible to take a probabilistic
edge, either immediately or after letting time elapse).

4 We recall that DM[P](s, a) = ⊥ for s ∈ SM[P] and a ∈ AM[P] \ AM[P](s).

164 J. Sproston

Lemma 2. Let l ∈ L be a location and let F ⊆ L be a set of locations. Given
a B-minimal scheduler π ∈ Σ

[[P]]
B

, there exists scheduler π̂ ∈ Σ[[M[P]]] such that
Prπ

(l,0)(�TF) = Prπ̂
reg(l,0)(�TF).

The proof of Lemma 2 (see [34]) is simplified by the fact that, by Lemma1, it
suffices to consider B-minimal schedulers: for each finite path r of π, we can
identify a set of finite paths of π̂ of length twice that of r, that visit the same
locations in order, choose the same probabilistic edges in order, and visit the
same intervals in order, both regarding the clock valuations/intervals in states
and in actions. In fact, finite paths of π̂ that are associated with r differ only in
terms of the lb and rb components used in endpoint indicators. Furthermore, π̂
replicates exactly the choice of π made after r in terms of interval of IB chosen
and probabilistic edge in all of its finite paths associated with r. Finally, π̂ chooses
assignments (over edges labelled with (0, 1)) in order to represent exactly the
choices of clock valuations made by π, in the manner described in Example 3
above: more precisely, the choice of action (ṽ, p) by π, where B̃ is the unique
interval such that ṽ ∈ B̃, is mimicked by π̂ choosing the action ((B̃, p), α) for
which α(B̃, p, lb) = rb(B̃)−ṽ

rb(B̃)−lb(B̃)
, and α(B̃, p, rb) = 1 − α(B̃, p, lb) = ṽ−lb(B̃)

rb(B̃)−lb(B̃)
.

Example 4. Consider the 1c-cdPTA of Fig. 1. Let π ∈ Σ
[[P]]
B

be a scheduler such
that π(W, 0) assigns probability 1 to the action (32 , pW). Then π̂ ∈ Σ[[M[P]]] is
constructed such that π̂(W, [0, 0]) assigns probability 1 to (((1, 3), pW), α), where
α((1, 3), pW, lb) = 3

4 and α((1, 3), pW, rb) = 1
4 (observe that α((1, 3), pW, lb) =

3− 3
2

2). Furthermore, π̂((W, [0, 0])(((1, 3), pW), α)) assigns probability 1 to τ . Now
consider the finite path r = (W, 0)(32 , pW)(F, 3

2) of π: then the corresponding
set of finite paths of π̂ is r′ = (W, [0, 0])(((1, 3), pW), α)((1, 3), pW, lb)(F, (1, 3))
and r′′ = (W, [0, 0])(((1, 3), pW), α)((1, 3), pW, rb)(F, (1, 3)). Now say that π(r)
assigns probability 1 to the action (92 , pF): then both π̂(r′) and π̂(r′′) assign
probability 1 to the action (((4, 5), pF), α′), where α′((4, 5), pF, lb) = 1

2 and
α′((4, 5), pF, rb) = 1

2 (note that α′((4, 5), pF, lb) = 5 − 9
2). Hence, regardless

of whether ((1, 3), pW, lb) or ((1, 3), pW, rb) was visited, scheduler π̂ makes the
same choice to mimic π(r).

The following lemma considers the converse direction, namely that (starting
from a given location with the clock equal to 0) any scheduler of [[M[P]]] can be
mimicked by a B-minimal scheduler of [[P]] such that the schedulers assign the
same probability of reaching a certain set of locations.

Lemma 3. Let l ∈ L be a location and let F ⊆ L be a set of locations. Given a
scheduler π̂ ∈ Σ[[M[P]]], there exists a B-minimal scheduler π ∈ Σ

[[P]]
B

, such that
Prπ

(l,0)(�TF) = Prπ̂
reg(l,0)(�TF).

We characterise the size of a 1c-cdPTA as the sum of the number of its
locations, the size of the binary encoding of the clock constraints used in invariant
conditions and guards, and the size of the binary encoding of the constants used
in the distribution templates of the probabilistic edges (i.e., cp

e and dp
e for each

p ∈ prob and e ∈ 2{x} × L).

Probabilistic Timed Automata with One Clock 165

Theorem 1. Given a 1c-cdPTA P = (L, inv , prob), l ∈ L and F ⊆ L, the
quantitative and qualitative problems can be solved in polynomial time.

The theorem follows from Lemma 1, Lemma 2, Lemma 3, Proposition 1 and
the fact that quantitative and qualitative problems for IMDPs can be solved in
polynomial time, given that there exist polynomial-time algorithms for analo-
gous problems on IMCs with the semantics adopted in this paper [9,11,30,33],
and from the fact that the IMDP construction presented in this section gives
an IMDP that is of size polynomial in the size of the 1c-cdPTA. We add
that the quantitative problems for 1c-cdPTAs are PTIME-hard, following from
the PTIME-hardness of reachability for MDPs [29], thus establishing PTIME-
completeness for quantitative problems for 1c-cdPTAs.

5 Conclusion

We have presented a method for the transformation of a class of 1c-cdPTAs
to IMDPs such that there is a precise relationship between the schedulers of
the 1c-cdPTA and the IMDP, allowing us to use established polynomial-time
algorithms for IMDPs to decide quantitative and qualitative reachability prob-
lems on the 1c-cdPTA. Overall, the results establish that such problems are in
PTIME. The techniques rely on the initialisation requirement, which ensures
that optimal choices for non-constant probabilistic edges correspond to the left
or right endpoints of intervals that are derived from the syntactic description
of the 1c-cdPTA. The initialisation requirement restricts dependencies between
non-constant probabilistic edges: while this necessarily restricts the expressive-
ness of the formalism, the resulting model nevertheless retains the expressive
power to represent basic situations in which the probability of certain events
depends on the exact amount of time elapsed, such as those described in the
introduction.

The IMDP construction can be simplified in a number of cases: for example,
in the case in which at most two outcomes e1, e2 of every probabilistic edge p
are non-constant, i.e., for which dp

e1
�= 0 and dp

e2
�= 0, endpoint indicators are

unnecessary; instead, when a probabilistic edge is taken from an open interval B̃,
each of e1 and e2 are associated with (non-singleton) intervals (other outcomes
are associated with singleton intervals), and the choice of probability to assign
between the two intervals represents the choice of clock valuation in B̃. This
construction is also polynomial in the size of the 1c-cdPTA. Future work could
consider lifting the initialisation requirement: we conjecture that this is particu-
larly challenging for quantitative properties, in particular recalling that Fig. 2 of
[32] provides an example of a non-initialised 1c-cdPTA for which the maximum
probability of reaching a certain location is attained by choosing a time delay
corresponding to an irrational number. Solutions to the qualitative problem for
non-initialised 1c-cdPTAs could potentially utilise connections with parametric
MDPs [19,35]. Furthermore, time-bounded reachability properties could also be
considered in the context of 1c-cdPTAs.

166 J. Sproston

References

1. Akshay, S., Bouyer, P., Krishna, S.N., Manasa, L., Trivedi, A.: Stochastic timed
games revisited. In: Faliszewski, P., Muscholl, A., Niedermeier, R., (eds.) Proceed-
ings of MFCS 2016 LIPIcs, vol. 58, pp. 8:1–8:14. Leibniz-Zentrum für Informatik
(2016)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Bertrand, N., Bordais, B., Hélouët, L., Mari, T., Parreaux, J., Sankur, O.: Per-
formance evaluation of metro regulations using probabilistic model-checking. In:
Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS,
vol. 11495, pp. 59–76. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
18744-6 4

5. Bertrand, N., et al.: Stochastic timed automata. Log. Methods Comput. Sci. 10(4),
1–73 (2014)

6. Bertrand, N., Brihaye, T., Genest, B.: Deciding the value 1 problem for reachability
in 1-clock decision stochastic timed automata. In: Norman, G., Sanders, W. (eds.)
QEST 2014. LNCS, vol. 8657, pp. 313–328. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10696-0 25

7. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Ouaknine, J., Worrell, J.:
Model checking real-time systems. In: Clarke, E.M., Henzinger, T.A., Veith, H.,
Bloem, R. (eds.) Handbook of Model Checking, pp. 1001–1046. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-10575-8 29

8. Bouyer, P., Larsen, K.G., Markey, N.: Model checking one-clock priced timed
automata. Log. Methods Comput. Sci. 4(2), 1–28 (2008)

9. Chakraborty, S., Katoen, J.-P.: Model checking of open interval markov chains. In:
Gribaudo, M., Manini, D., Remke, A. (eds.) ASMTA 2015. LNCS, vol. 9081, pp.
30–42. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18579-8 3

10. Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking ω-regular properties of
interval Markov chains. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp.
302–317. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-
9 22

11. Chen, T., Han, T., Kwiatkowska, M.: On the complexity of model checking interval-
valued discrete time Markov chains. Inf. Process. Lett. 113(7), 210–216 (2013)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2001)

13. Feng, L., Wiltsche, C., Humphrey, L.R., Topcu, U.: Synthesis of human-in-the-loop
control protocols for autonomous systems. IEEE Trans. Autom. Sci. Eng. 13(2),
450–462 (2016)

14. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

15. Givan, R., Leach, S.M., Dean, T.L.: Bounded-parameter Markov decision processes.
Artif. Intell. 122(1–2), 71–109 (2000)

16. Gregersen, H., Jensen, H.E.: Formal design of reliable real time systems. Master’s
thesis, Department of Mathematics and Computer Science, Aalborg University
(1995)

https://doi.org/10.1007/978-3-030-18744-6_4
https://doi.org/10.1007/978-3-030-18744-6_4
https://doi.org/10.1007/978-3-319-10696-0_25
https://doi.org/10.1007/978-3-319-10696-0_25
https://doi.org/10.1007/978-3-319-10575-8_29
https://doi.org/10.1007/978-3-319-18579-8_3
https://doi.org/10.1007/978-3-540-78499-9_22
https://doi.org/10.1007/978-3-540-78499-9_22
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3

Probabilistic Timed Automata with One Clock 167

17. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018)

18. Hahn, E.M.: Model checking stochastic hybrid systems. Ph.D., thesis, Universität
des Saarlandes (2013)

19. Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision
processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-20398-5 12

20. Hashemi, V., Hatefi, H., Krcál, J.: Probabilistic bisimulations for PCTL model
checking of interval MDPs. In: André, É., Frehse, G., (eds.) Proceedings of SynCoP
2014 EPTCS, vol. 145, pp. 19–33 (2014)

21. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

22. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Proceedings of LICS 1991, pp. 266–277. IEEE Computer Society (1991)

23. Jurdziński, M., Laroussinie, F., Sproston, J.: Model checking probabilistic timed
automata with one or two clocks. Log. Methods Comput. Sci. 4(3), 1–28 (2008)

24. Kozine, I.O., Utkin, L.V.: Interval-valued finite Markov chains. Reliab. Comput.
8(2), 97–113 (2002)

25. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of
real-time systems with discrete probability distributions. Theor. Comput. Sci. 286,
101–150 (2002)

26. Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking timed automata with
one or two clocks. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS,
vol. 3170, pp. 387–401. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-28644-8 25

27. Nilim, A., El Ghaoui, L.: Robust control of Markov decision processes with uncer-
tain transition matrices. Oper. Res. 53(5), 780–798 (2005)

28. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Form. Methods Syst. Des. 43(2), 164–190 (2013)

29. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes.
Math. Oper. Res. 12(3), 441–450 (1987)

30. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 35

31. Sen, K., Viswanathan, M., Agha, G.: Model-checking markov chains in the pres-
ence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 394–410. Springer, Heidelberg (2006). https://doi.org/10.1007/
11691372 26

32. Sproston, J.: Probabilistic timed automata with clock-dependent probabilities. In:
Hague, M., Potapov, I. (eds.) RP 2017. LNCS, vol. 10506, pp. 144–159. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67089-8 11

33. Sproston, J.: Qualitative reachability for open interval Markov chains. In: Potapov,
I., Reynier, P.-A. (eds.) RP 2018. LNCS, vol. 11123, pp. 146–160. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00250-3 11

34. Sproston, J.: Probabilistic timed automata with one clock and initialised clock-
dependent probabilities. CoRR (2020)

https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/978-3-540-28644-8_25
https://doi.org/10.1007/978-3-540-28644-8_25
https://doi.org/10.1007/978-3-642-39799-8_35
https://doi.org/10.1007/11691372_26
https://doi.org/10.1007/11691372_26
https://doi.org/10.1007/978-3-319-67089-8_11
https://doi.org/10.1007/978-3-030-00250-3_11

168 J. Sproston

35. Winkler, T., Junges, S., Pérez, G.A., Katoen, J.: On the complexity of reachability
in parametric Markov decision processes. In: Fokkink, W., van Glabbeek, R. (eds.)
Proceedings of CONCUR 2019 LIPIcs, vol. 140, pp. 14:1–14:17. Leibniz-Zentrum
für Informatik (2019)

36. Wu, D., Koutsoukos, X.D.: Reachability analysis of uncertain systems using
bounded-parameter Markov decision processes. Artif. Intell. 172(8–9), 945–954
(2008)

A Formal Framework for Consent
Management

Shukun Tokas(B) and Olaf Owe(B)

Department of Informatics, University of Oslo, Oslo, Norway
{shukunt,olaf}@ifi.uio.no

Abstract. The aim of this work is to design a formal framework for
consent management in line with EU’s General Data Protection Reg-
ulation (GDPR). To make a general solution, we consider a high-level
modeling language for distributed service-oriented systems, building on
the paradigm of active objects. Our framework provides a general solu-
tion for data subjects to observe and change their privacy settings and
to be informed about all personal data stored about them. The solu-
tion consists of a set of predefined types for privacy related concepts,
a formalization of policy compliance, a set of interfaces that forms the
basis of interaction with external users for consent management, a set of
classes that is used in interaction with the runtime system, and a runtime
system enforcing the consented policies.

Keywords: GDPR · Data protection · Privacy policies · Policy
compliance · Tagging · Runtime enforcement · Consent management

1 Introduction

In response to the emerging privacy concerns, the European Union (EU) has
approved the General Data Protection Regulation (GDPR) [1] to strengthen and
impose data protection rules across the EU. This regulation requires controllers
that process personal data of individuals within EU and EEA, to process personal
information in a “lawful, fair, and transparent manner”. Article 6 and Article 9
of the regulation [1] provide the criteria for lawful processing, such as consent,
fulfillment of contractual obligation, compliance with a legal obligation etc. The
regulation (including several other data protection laws) recognises consent as
one of the lawful principles for legitimate processing, and Article 7 sets out the
conditions for the processing personal data when relying on consent.

A data subject’s consent reflects his/her agreements in terms of the process-
ing of personal data. The regulation indicates that the consent must specifically
be given for the particular purpose of processing. It is also indicated in Recital
43 that the data subject should be given a free choice to accept or deny consent
for specific purposes, rather than having one consent for several purposes. In
particular our focus is on processing of personal data when consent is the legal
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 169–186, 2020.
https://doi.org/10.1007/978-3-030-50086-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-50086-3_10

170 S. Tokas and O. Owe

ground, i.e., processing is valid only if a data subject has given consent for the
specific purpose, otherwise processing of the personal data should cease. More-
over, this can be extended to incorporate other applicable legal grounds, such
as vital interest, legitimate interest etc, but a discussion on this will be out of
scope of this work.

Furthermore, Article 15 of the regulation prescribes that the data subject
has Right of Access, which requires the data controllers to provide the data
subject with his/her personal data, the purposes of processing, the legal basis
for doing so, and other relevant information (see Article 15 [1]). WP29 rec-
ommends controllers to introduce tools, such as a privacy dashboards through
which the data subject can be informed and engaged regarding the processing
of their personal data [2]. The regulation also introduces an obligation for data
controllers to demonstrate compliance, i.e., accountability (see Article 5(2) [1]).
These requirements are likely to pose substantial administrative burden. This
work is an attempt to design a pragmatic solution to address these requirements,
using a formal approach. In particular, our framework covers certain aspects
of privacy principles (Article 5), lawfulness of processing (Article 6), privacy
by design (Article 25) and data subject access request (Article 15). Due to the
nature of these requirements and space constraints, we cover these requirements
partially.

The privacy requirements in the data protection regulations are defined infor-
mally, therefore, to avoid ambiguity the policy language equipped with a formal
semantics is essential [3]. It is essential that the policy terminology establishes
a clear link between the law and the program artifacts. For this, we let privacy
policies and consent specifications be expressed in terms of several predefined
names, reflecting standard terminology (allowing names to be added as needed).
It is necessary that the policy terminology used towards the data subject is sim-
ple but with a formal connection to the underlying programming elements. We
have previously studied static aspects of privacy policies and static checking of
policy compliance from a formal point of view, a brief overview is given in [4].

The aim of this work is to design a formal framework for consent manage-
ment where a data subject can change his/her privacy settings through prede-
fined interfaces, which could be part of a library system. The data subjects are
seen as external system users without knowledge of the underlying program.
Data subjects may interact with the system at runtime through a user-friendly
interface (e.g. a privacy dashboard), to view current privacy settings and update
these settings. To make a general solution, we consider a high-level modeling
language for distributed service-oriented systems, building on the paradigm of
active objects [5,6]. The method for protecting access to personal data in this
setting comprises of: tagging the data with (subject, purpose) pairs; associating
a purpose to each method accessing personal data; storing consented policies of
a subject in a subject object; deriving an effective policy for the access from the
executing method and data tags; and comparing the effective policy with the
current consented policies to determine if it is a valid operation.

A Formal Framework for Consent Management 171

The main contribution of this research is a framework that consists of: (i) a
policy and consent specification language; (ii) a formalization of runtime policy
compliance; (iii) predefined interfaces and classes for consent management; (iv)
a run-time system for dynamic checking of privacy compliance, with built-in
generation of runtime privacy tags when new personal data is created. We prove
a notion of runtime compliance with respect to the consented policies.

Fig. 1. BNF syntax definition of the policy language. I ranges over interface names,
R over purpose names, and P over principal names. A principal is given by an object
or an interface (representing all objects of that interface). Superscripts ∗ and + denote
general and non-empty repetition, respectively.

Paper Outline. The rest of the paper is structured as follows. Section 2 presents
the policy and consent specification language, a formalization of policy compli-
ance, and the core language. Section 3 introduces the functionality for consent
management. Section 4 presents tag generation, dynamic checking and an oper-
ational semantics. Section 5 discusses related work, and Sect. 6 concludes the
paper and discusses future work.

2 Language Setting

In order to formalize the management and processing of personal information,
we introduce basic notions for privacy policies and consent in Sect. 2.1, and
introduce a small language for interface and class definitions in Sect. 2.2.

2.1 Policy and Consent Specification

Privacy policies are often described in natural language statements. To verify
formally that the program satisfies the privacy specification, the desired notions
of privacy need to be expressed explicitly. To formalize such policies, we define a
policy specification language. In our setting, a privacy policy is a statement that
expresses permitted use of the personal information by the declared program
entities. In particular, a policy is given by triples that put restrictions on what
principals can access the personal data for specific purposes and access-rights.
That being the case, a policy p is given by a triple (P,R,A), where:

i) P describes a principle that can access personal information and is given
by an object representing a principal, or by an interface (representing all objects

172 S. Tokas and O. Owe

supporting that interface). Interfaces are organized in an open-ended inheritance
hierarchy, letting I < J denote that principal I is a subinterface of J and let-
ting o < I if object o supports I. We let ≤ denote the transitive and reflexive
extension of <. As an example,

Specialist < Doctor < HealthWorker

ii) The purpose name R describe the specific purpose for which personal
data can be used. Such purpose names are organized in an open-ended directed
acyclic graph, reflecting specialization. For instance, the declaration

purpose where

Fig. 2. Sample purpose and policy definitions. Here Dr.Hansen is a principal object.

purpose spl_treatm, treatm where spl_treatm < treatm

makes spl_treatm more specialized purpose than treatm. If data is collected for
the purpose of spl_treatm then it cannot be used for treatm. However, if it is
collected for the purpose of treatm then it can be used for spl_treatm. We let ≤
denote the transitive and reflexive extension of <, and let the predefined purpose
all be the least specialized purpose.

iii) Access rights A describe the permitted operations on personal data, and
are given by a lattice, with full and no as top and bottom and with a partial
ordering �A: read gives read access, write gives write access (without including
read access), incr allows addition of new information but neither read nor write
is included. The join of read and incr is abbreviated rincr, the join of write and
incr is abbreviated wincr, while the join of read and write is full .

The language syntax for policies is summarized in Fig. 1, where [] is used
as meta-parenthesis, and superscripts ∗ and + denote general and non-empty
repetition, respectively. Sample policies are given in Fig. 2.

Definition 1 (Policy Compliance). Policy compliance, �, is defined by

(P ′, R′, A′) � (P,R,A) � P ′ ≤ P ∧ R′ ≤ R ∧ A′ �A A

Thus, a policy p′ complies with p if it has the same or smaller interface, the same
or more specialized purpose, and the same or weaker access rights.

In order to deal with both addition and removal of policies, we organize the
policies in a list of negative and positive policies, such that the newest and most
significant policy is last in the list. A positive consent has the form pos(p), where
p is a policy triple, meaning that access to personal data requiring p is allowed.

A Formal Framework for Consent Management 173

A negative consent has the form neg(p), meaning that access to personal data
requiring p is forbidden. The disjoint union of these two forms is captured by
the type Consent. Consented policies are organized in a Consent list. We define
compliance of policies with respect to such a list L by:

p � ε = false
p � (L; pos(p′)) = if p � p′ then true else p � L
p � (L;neg(p′)) = if p � p′ then false else p � L

where _;_ denotes list append. Thus positive or negative policies later in the list
(capturing newer ones) override policies earlier in the list (capturing older ones)
with smaller policy triples. This gives a simple way to upgrade and downgrade
consent, and with a uniform treatment of negative as well as positive consent.

Fig. 3. BNF syntax of the core language, extended with purpose specifications (::R).
A field is denoted w , a local variable x , a method parameter y , a class parameter z ,
type names N , expressions e, and expression lists e. The brackets in [T] and [T] are
ground symbols. Function symbols f range over pre-/programmer-defined functions/-
constructors with prefix/mixfix notation.

Fig. 4. Interface declarations for subject’s privacy settings

174 S. Tokas and O. Owe

2.2 A High-Level Language for Active Objects

In the setting of active objects, the objects are autonomous and execute in
parallel, communicating by so-called asynchronous method invocations. Object-
local data structure is defined by data types. Classes are defined by an imperative
language while data types and associated functions are defined by a functional
language. We assume interface abstraction, i.e., remote field access is illegal and
an object can only be accessed though an interface. This allows us to focus on
major challenges of modern architectures, without the complications of low-level
language constructs related to the shared-variable concurrency model.

Fig. 5. Interface declarations for sensitive objects and data subjects.

A strongly typed language for active objects based on [6] is given in Fig. 3.
The programs we consider are defined by a sequence of declarations of interfaces
(containing method declarations), classes (containing class parameters, fields,
methods and class constructors), and data type definitions. Class parameters are
like fields, but with read-only access. A subclass inherits class parameters, fields,
and methods (and the class constructor) unless redefined. A method m may
have a cointerface Co given by the with clause, with Co, restricting callers to
objects supporting interface Co (this is checked statically and allows type-correct
call backs). Each method dealing with personal data must have an associated
purpose, given at the end of the method definition (:: R), if any, otherwise
the one declared for the method in the interface, if any, or otherwise the one
declared for the interface. Methods may declare local variables and end with
a return statement. We include standard statements such as skip, assignment
(:=), object creation (new), if- and while-statements, and we allow blocking
calls (v := o.m(e)) where o is the callee and e is the list of actual parameters,
and asynchronous calls o!m(e) and broadcasts I!m(e) to all objects of interface
I. The incremental update v :+ e extends a list v with one or more elements e.

We consider pure expressions, including products (e1, e2, . . .), lists, and func-
tion applications f(e) where f may be a defined function or a constructor

A Formal Framework for Consent Management 175

function (including “;” for lists and constants such as nil, void, 0, 1, 2, etc.).
A value is a variable-free expression with only constructor functions, such as the
list nil; 1; 2; 3.

3 Consent Management

The policy settings of each data subject may change dynamically during runtime
in interaction with the external users. In order to handle this, we define a runtime
system where personal data values are tagged with specification of data subjects
and processing purposes. The runtime system will check that every access to
personal data complies with the consented policies. Since there could be a huge
amount of personal information in a distributed system, it is essential that the
information in the tags is minimized. Our framework includes a general solution
for subjects to observe and change their privacy settings. We chose to let the
information about the consented policies be stored separately from the tags.
The tags are generated by the runtime system as explained in detail in Sect. 4.1.
The consented policy may change dynamically, in contrast to the information
in the tags, which do not change. By combining the core information in the
tags with the dynamically changing consent information, we are able to keep the
information in the tags relatively small.

We let interface Principal correspond to a system user, be it a person, an
organization, or other identifiable actor. Interface PrivacySettings (Fig. 4) defines
methods for accessing and resetting consented policies by the data subject, while
the subinterface Subject (Fig. 5) defines methods for consent management includ-
ing functionality for requesting and updating policy settings. For each data sub-
ject there is an associated object (i.e., the subject object) supporting Privacy-
Settings and Subject, and this object is used to manage the privacy settings and
policies in interaction with an external user (for instance through an app on a
mobile phone). The subject object will contain the consented policies and is used
when personal data about the data subject is accessed, in order to check com-
pliance with the consented policies as explained in the operational semantics.
In addition, it is used to manage the collection of personal data from sensi-
tive objects. Thus the class SUBJECT, supporting interface Subject, deals with
handling of consented policies and collection of personal data.

The interface PrivacySettings specifies the interface for updating consent
(Fig. 4). It includes methods for adding and removing consent by the user such
that after successful addition/removal of a policy p, that policy (or a smaller)
allows/denies access to personal data. There is also functionality for an user to
check her current policy settings, through method seeMyPolicies, which returns
all policies of that user.

Class PRIVACYSETTINGS in Fig. 6 implements PrivacySettings by storing
the consented policies in a field variable consented, which is a Consent list (i.e.,
list of consented policies). The add operation addPolicy(p) adds pos(p) at the
end of the consented list (unless p � consented holds already), and the remove
operation remPolicy(p) adds neg(p) at the end of the list (unless p � consented
gives false, in which case it is redundant). The consent list of a subject S can be
initialized with some initial policies, including (S, all, rincr) for self access.

176 S. Tokas and O. Owe

One may also remove redundant consented policies in the list when new
ones are added, using the following strategy: A positive policy pos(p) occurring
in a list L is redundant in the list if p � L′ holds where L′ is the list with
this occurrence removed. Similarly, a negative policy neg(p) occurring in L is
redundant if p � L′ gives false. In these cases L can replaced by L′ in order to
simplify future compliance tests by limiting the size of the consented list.

3.1 Data Collection from Sensitive Objects to Data Subjects

In order to restrict processing of personal information, we define an interface
Sensitive, which will be the superinterface of all objects handling personal data.
The interfaces Subject and Sensitive in Fig. 5 define the functionality for col-
lection of personal information for subjects and define consent management.
Class SUBJECT in Fig. 7 gives an implementation. A call to the method
collectMyData on a subject object from the corresponding user will start a
process to collect all personal information about the subject. The broadcast
Sensitive!requestMySensitiveData() sends a requestMySensitiveData message to
all objects implementing Sensitive. A sensitive object may receive a requestMy-
SensitiveData request from a subject object (caller) and will then react by col-
lecting the personal data tagged with the subject and send it back to the subject
object through the method receiveMySensitiveData. This data is then collected
incrementally and stored in a (tagged) list, mydata, which can be accessed by
the corresponding user using seeMyData or seeData. This class may be used as
superclass of objects supporting Subject. The method requestMySensitiveData is
provided by, and implemented in, the runtime system as explained in Sect. 4.2.

Fig. 6. The implementation of privacy settings and policy changes.

Interface Subject has all as declared purpose, and all methods in the interface
and class inherit this purpose. The access to personal information in SUBJECT
complies with the general policy (S, all, rincr) for a subject object S.

A Formal Framework for Consent Management 177

4 Runtime System

The operational semantics of the considered language is given in Fig. 9. Data
values are tagged with set of pairs of subject and purpose. A runtime configura-
tion of an active object system is captured by a multiset of objects and messages
(using blank-space as the binary multiset union constructor). Each object o is
responsible for executing all method calls to o as well as self-calls. An object has
at most one active process, reflecting the remaining part of a method execution.
Objects have the form

o : ob(δ, s)

where o is the object identity, δ is the current object state, and s is a sequence of
statements ending with a return, representing the remaining part of the active
process, or idle when there is no active process. The state of an object δ is
given by a twin mapping from variable names to tagged values, written (α|β),
where α is the state of the field variables w and class parameters z (including
this), and β is the state of the local variables x and formal parameters y of
the current process. Look-up in a twin mapping, (α|β)[v], is simply given by
if v in β then β[v] else α[v], where in is used for testing domain membership.
The notation α[v �→ e] denotes map update, and the notation (α|β)[v := e]
abbreviates if v in β then (α |β[v �→ (α|β)[e]]) else (α[v �→ (α|β)[e]] |β).

Fig. 7. The implementation of subject.

Fig. 8. Call chain. Here Alice is the principal of the method execution on objB.

178 S. Tokas and O. Owe

In addition, the operational semantics defines the system variables pcs and
nextFut, which appear in the state of each object (in α). The “program counter
stack” pcs is used for storing the stack of tags on the conditions corresponding to
the nesting of enclosing if/while statements, and nextFut is used for generating
unique identities for calls. Furthermore, the self reference this is handled as an
implicit class parameter, while myfuture and caller appear as implicit method
parameters, holding the identity of a call and its caller, respectively.

Example. Consider some personal health data with the tag {(Alice, treatm)},
and assume the consented policies (. . . ; pos(Doctor, treatm, full)) in object
Alice. A Doctor can then read the data since there is a matching positive
policy with at least read access where Doctor is the principal and the pur-
pose of the current method is treatm or less. However, for the consented list
(. . . ; pos(Doctor, treatm, full);neg(Bob, treatm, read)), where Bob is a doctor
object, read access will be denied due to the presence of negative policy.

4.1 Runtime Tagging of Values

The runtime checking uses two special notions: The current purpose, denoted
Rcurrent, is the purpose of the enclosing method, which we assume is statically
specified, as in [4]. (Alternatively one could take the purpose defined in some
other way, for instance by data-flow graphs as in [7].) Secondly, we define the
current principal, denoted Pcurrent, as the first principal object found by fol-
lowing the dynamic call chain from a method execution as illustrated in Fig. 8
(ignoring non-principals such as objA).

The runtime evaluation of an expression e gives a tagged value c of form dl
with a tag l. In a method execution the evaluation of an expression e in a state
δ and with policy context pcs is denoted Δ[e], where the data value is evaluated
(as explained in the next subsection) ignoring tags, resulting in a ground term,
i.e., a term d with only constructor functions (g), and where the tag is given by
the tag function defined below: For tagged data values, the tag function is given
by tag(dl) = l, and for untagged values it is given by:

tag() = flatten(δ[pcs]) tag(dl, c) = l ∪ tag(c)
tag(g(S)) = {(S,Rcurrent)}∪ tag() tag(S, c) = {(S,Rcurrent)} ∪ tag(c)
tag(g(c)) = tag(c),otherwise tag(d, c) = tag(d) ∪ tag(c),otherwise

Note that the tag includes flatten(δ[pcs]), defined as the union of all tags in the
stack pcs. An untagged product (..., S, ...) will also include the tag (S,Rcurrent).
A pair (S, S′) will be tagged with {(S,Rcurrent), (S′, Rcurrent), f latten(δ[pcs])}.
An untagged constructor value g(S, c) is tagged like the product (S, c). When
a subject S occurs as an argument to a constructor term or product, the pair
(S,Rcurrent) is added to the tag set. Note that g(S), (S, S′), (S, c), and (c, S)
include (S,Rcurrent) in the tag set, but S and (S) do not, as a product must
have at least two arguments. A tag (S,R) is redundant in a tag set l, and may
be removed, if there is another tag (S,R′) in l such that R < R′. Non-personal
data will have an empty tag set. Policies are considered non-personal.

A Formal Framework for Consent Management 179

4.2 Runtime Checking of Privacy Compliance

The runtime system keeps track of the current consented policy list for each sub-
ject, specifying the policies for accessing personal data concerning the subject.
In the runtime system there is a mapping from subjects to policy lists

M : Subject → PolicyList

given by M[S] == S.consented where each consented is maintained by the
runtime system. Note that even though remote field access is not possible within
the program syntax, this restriction does not apply to the runtime system.

The evaluation of expressions, Δ[e], is done depth-first, left-to-right. Thus
Δ[f(e)] is [f(Δe]), Δ[if b then e else e′] is Δ[e] if Δ[b] is true and Δ[e′] if
Δ[b] is false, and for a value c, Δ[c] is c. (Here b is a boolean expression.) For
a defined function f , Δ[f(c)] is obtained by the definition of f replacing the
formal parameters by the actual values c. We let the evaluation of a variable v
have a built-in compliance check of read access:

Δ[v] = δ[v], if ∀(S,R)∈ tag(δ[v]) : (Pcurrent, R, read) � M[S]
Δ[v] = error, otherwise

In the first line, the tag is defined by the tag function in Sect. 4.1. A policy
(S, all, rincr) is initially added to the consented list of each subject object S, to
allow the data subject to read and increment his/her own data.

For write access, we define a modified state update function Δ[v := c] so that
it includes the appropriate checks for assignments, and similarly for incremental
assignments. Note that there is no check on local variables since they form the
local work space, i.e., a method has always write access to the local variables.

Δ[x := c] = δ[x := c],
Δ[w := c] = δ[w := c], if ∀(S,R)∈ tag(c) : (Pcurrent, R,write) � M[S]
Δ[w := c] = δ[w := error], otherwise

This definition is lifted to expressions e, letting Δ[x := e] denote Δ[x := Δ[e]].
Similarly, Δ[v : + c] requires (Pcurrent, R, incr) � M[S] for (S,R) ∈ tag(c).
Non-personal data can be accessed without restrictions since the tag is empty.

Implementation of method requestMySensitiveData is provided by the run-
time system by making the call caller !receiveMySensitiveData(tl) where tl is
given by Δ[w]/caller , i.e., the tagged values of fields with caller in the tag.

Runtime Overhead. We have given a solution for compliance checking by a run-
time system formulated at a high-level of abstraction. We here discuss the over-
head in tagging and checking with this solution, and how it can be reduced. By
combining the core information in the tags with the dynamically changing con-
sent information, we are able to keep the information in the tags relatively small,
and moreover the tags are not changed when the consent is changed, which is a
crucial property. Thus the main overhead is in accessing the consented list for
the subjects in the tag. Note that the updates on each consent list is atomic,

180 S. Tokas and O. Owe

so there is no need for critical regions nor object synchronization at the runtime
level. Thus a compliance check made by one object will not slow down the other
objects. This processing can easily be made more efficient by letting each prin-
cipal pull a copy of a subject’s consent setting when needed. However, as this
could lead to outdated consent information, one could use a version number for
each subject’s consent list, and let a principal check that it has the latest version
before applying its local copy of a consent list. A further method of reducing
overhead, would be to re-represent each consent list by means of a mapping (from
principal and purpose of a given subject to access right) thereby the list traversal
is reduced to direct look-up. This method has a cost whenever a consent list is
updated. A further discussion is beyond the scope of this paper.

4.3 Operational Rules

Each rule in the operational semantics deals with only one object o, and pos-
sibly messages, reflecting the nature of concurrent distributed active objects,
communicating asynchronously. Remote calls and replies are handled by mes-
sage passing. When a subconfiguration C can be rewritten to a C′, this means
that the whole configuration . . . C . . . can be rewritten to . . . C′ . . ., reflecting
interleaving semantics. The operational rules reflect small-step semantics. For
instance, the rule for skip is given by

o : ob(δ, skip; s) −→ o : ob(δ, s)

saying that the execution of skip has no effect on the state δ of the object.
Each method call will have a unique identity u. A message has the form

msg o → o′.m(u, c)

representing a call to m with o as caller, o′ callee, and c actual parameters, or

msg o ← o′.(u, c)

representing a completion event where c is the returned value and u the identity
of the call. In addition, msg o → I.m(u, c) denotes a broadcast to all I objects.

The semantics in Fig. 9 formalizes the notion of idleness, and generation
of objects and messages, including a rule (no-query) for garbage collection of
unused reply messages. Generation of identities for objects and method calls is
handled by underlying semantic functions and implicit attributes.

The operational semantics uses an additional query statement, get u, for
dealing with the termination of call statements. A synchronous call is treated
as an asynchronous call followed by a get query. The query get u is blocking
while waiting for the method response with identity u.

Assignment is handled by updating the state, requiring that there is read
access to any personal data (using Δ). An if-statement requires read access to
personal data in the condition and the resulting tag set l is pushed on the policy
stack pcs, ensuring that all evaluations in the taken branch implicitly includes

A Formal Framework for Consent Management 181

Fig. 9.Operational rules defining small-step semantics with privacy tags. Unique future
identities are ensured by functions initialFut, parameterized with the parent, and next.

182 S. Tokas and O. Owe

l in the tag set. A while loop is handled by expanding while b do s od to
if b then s; while b do s od fi upon execution of the while-statement.
Void methods return the value void. We assume all methods end in a return
statement, including class constructors, which end in return void (although
omitted in the examples). An assignment of the form v : + e is treated as an
atomic operation at runtime. (When lists are implemented by linked lists, this
operation can be executed by a single pointer assignment, since the value of e is
not affected by other objects.) Semantically, v : + e is the same as v := v + e,
and we do not show a special rule for it. This means that a consent update can
also be considered atomic. Furthermore, we assume that initial values given to
fields or local variables are expanded to assignments, as described earlier.

For simplicity, rules for broadcasting (similar to that for asynchronous calls)
and local synchronous calls (i.e., queries on local calls) are omitted, since such
calls do not pose additional privacy challenges. In the current semantics, a query
on a local call will lead to deadlock. The handling of local queries would require
addition of a stack in the object state in order to be able to push and pop
unfinished local method frames, for instance as in [6].

The theorem below ensures that every access to a data subject’s personal
information will comply with the consented policy.

Theorem 1 (Runtime Compliance). After a policy is successfully removed,
all further variable accesses that need this policy will fail by giving a runtime
error until the policy, or a stronger one, is added again.

Proof. Consider an object state δ where (S,R) ∈ tag(δ[v]). Let policy p denote
(Pcurrent, R, read). We must prove that a runtime look-up of v in such a state
gives error after a policy p′ such that p � p′ is removed from the consented list
of S and before a policy p′′ such that p � p′′ is added to the consented list of S.

Every variable look-up is made through one of the operational rules, by means
of δ or Δ. By inspection of these rules, we observe that all program variables are
evaluated by Δ apart from caller and this in rule Return, but here the pcs stack
is empty (since a return statement occurs last in a body), so evaluation by δ in
this case is the same as by Δ. It remains to show the theorem for variable access
through Δ, and for an access to v we must show that p �� M[S].

By induction on the length of the execution we show that Δ[v] gives error
between the successful removal of p′ and addition of p′′ to M[S]. A successful
removal must perform the atomic operation consented : + neg(p′) in S. Right
afterwards, neg(p′) is the last element in M[S] and therefore Δ[v] gives error.
If a consent neg(p′′′) is added, p � M[S] remains false. If a consent pos(p′′′) is
added, we may assume that p �� p′′′ (otherwise p′′′ can be used as p′′ and there
is nothing to prove) and by the induction hypothesis p � M[S] remains false. �

5 Related Work

This paper focuses on the intersection between compliance formalization and
programming languages. This line of work is relatively recent, featuring several

A Formal Framework for Consent Management 183

threads of active research such as policy specification, policy enforcement, moni-
toring, privacy by design, language-based privacy, and role-based access control.

The work presented in [8] provides a privacy management framework for the
definition of privacy agents (such as subject, controller) acting as representa-
tives of individuals. These privacy agents play a specific role as “representative”
or “proxy” of the user in order to manage personal data and ensure privacy-
compliant interactions among agents. We share with [8] the objective of privacy
compliant interactions, but we use an integrated style, i.e., including compliance
checks within objects and actors accessing personal data. In addition, we use the
same policy language for different actors and consented policies are maintained
in subject objects. Cunche et al. [9] present a generic information and consent
framework for IoT that allows the data subject to express privacy requirements
as well as receive the information and associated privacy policy. The privacy
policies for subjects and controllers are based on the PILOT semantics [10].
Privacy policies in [10] are more expressive than ours as they also encapsulate
contextual information, but the semantics of policy compliance is not discussed
in particular. We define fewer privacy requirements and focus on compliance for-
malization. The approach followed in [9] makes use of dedicated privacy agents,
while we integrate the compliance checks in actor objects.

Sen et al. [11] demonstrate techniques for compliance checking in big data
systems. Privacy policies are specified using a policy specification language,
LEGALEASE, where policies can be expressed using allow and deny clauses
to permit and prohibit access. Policies can be expressed using nested allow-deny
rules. Policy clauses use data store, purpose, role, and data type attributes to
specify information flow restrictions. Then, a data inventory tool GROK maps
data types in code to high-level policy concepts, and the compliance check-
ing then reduces to a form of information flow analysis. This is similar to our
approach in [4] where we associate policy with the types carrying sensitive infor-
mation, but the difference is that the type-policy mapping is integrated in the
language. The policy specification language in [11] has some similarities with our
work: the semantics of policies is compositional and policies are expressed as lists
of positive and negative policies. However, for the sake of simplicity, we do not
consider nested-policies. All information flow restrictions (policy attributes) are
encoded as a lattice in [11], while in our setting that is not the case. However,
in [11] the concept lattice does not seem to distinguish with information about
other subjects, which we do and in addition we can generate tags at runtime
when new information (involving a subject or personal information) is created.

Yang et al. [12] propose a policy-agnostic programming model. Sensitive data
values are associated with policies and then the programmer may implement the
rest of the program in a policy agnostic manner. The language’s [13] runtime
system enforces these policies to ensure that only policy compliant values are
used in computations. In contrast, we use generalized polices for each subject
(including purpose) and minimize the information in the tags.

Other examples of language-based approaches relying on information-flow
control include the role-based approach in [14] and the purpose-based approach

184 S. Tokas and O. Owe

in [15]. Myers and Liskov present a model of decentralized information flow
labels, where principals and labels are the essentials of the model [14]. Principals
are the entities that own, update and release (to other principals) information.
A label is a set of owner: reader policy pairs, where owner is the data owner
(i.e., subject in our approach), and reader is the principal that has read access
to this data. Programs and data are annotated with such labels, and information
flow restrictions are enforced by type checking. For an access to be valid, all the
policy requirements of the label should be enforced, which holds in our approach
as all the tags must comply with the consented policies. There are no generalized
policies, and the tags will take more space than in our case. In [15], Hayati and
Abadi describe an approach to model and verify aspects of privacy policies in
the Jif (Java Information Flow) programming language. Data collected for a
specific purpose is annotated with Jif principals and then the methods needed
for a specific purpose are also annotated with Jif principals. Explicitly declaring
purposes for data and methods ensures that the labeled data will be used only by
the methods with connected purposes. However, this representation of purpose
is not sufficient to guarantee that principals will perform actions compliant with
the declared purpose. In contrast, this can be checked at runtime in our approach.

Basin et al. [7] propose an approach that relates a purpose with a busi-
ness process and use formal models of inter-process communication to demon-
strate GDPR compliance. Process collection is modeled as data-flow graphs
which depict the data collected and the data used by the processes. Then these
processes are associated with a data purpose and are used to algorithmically
generate data purpose statements, i.e., specifying which data is used for which
purpose and detect violation of data minimization. A main challenge tackled by
this work is to automatically generate compliant privacy policies from the model.
We share with this work an explicit specification of purpose. In [7], a purpose
is associated with a process, while in our approach a method accessing personal
information is tagged with a purpose and personal data is tagged with sets of
(subject, purpose) pairs. This tagging is useful in generating privacy policies to
check compliance.

6 Conclusion

We propose a consent management framework that allows a data subject to
communicate and update consent policies to the controller and to view all per-
sonal data about her in the system along with the purposes for which they are
used. We have considered a core language for distributed active object systems
and formalized the notion of policy compliance and given an operational seman-
tics for the considered programming language. The runtime system ensures that
every access to personal data complies with the currently consented polices.

We have illustrated the feasibility of formalizing GDPR specific privacy
requirements, including privacy by design by providing explicit specifications of
purpose and policy constructs; lawfulness and transparency of processing based

A Formal Framework for Consent Management 185

on consented purposes; data subject access request by providing predefined inter-
faces and classes to assist in providing the data subject with the personal data
and purposes for which it is being processed.

Our framework includes a general solution for subjects to observe and change
their privacy settings and for subjects to be informed about all personal data
stored about them. The solution consists of a set of predefined types for privacy
related concepts and a set of interfaces that forms the basis for interaction with
external users, a set of classes that is used in interaction with the runtime system,
and runtime checking of all access to personal data to ensure that it complies
with the current privacy settings. The same framework can be reused for another
language, as long as the assumption of interface abstraction is respected and as
long as the purpose of any method handling personal data is identified.

Future Work : The framework can be extended to accommodate for other legal
bases by having separate policy lists for each legal basis, and a logic to chose
from these bases as required. More information can be included in the tags for
a richer compliance check, for instance, the data creator can be recorded as the
current principal of the method instance creating the data. More information
can be included in the policy specification, for example restrictions on temporal
validity, data collectors, and data creators. Furthermore, we could add cases of
non-personal tag information as exceptions to the generated tags, for instance to
deal with encryption. We can easily add more fine-grained methods for selection
of policies/personal data in the interfaces/classes for privacy settings and data
collection (from sensitive objects), for instance using purpose and principal to
limit the selection.

References

1. European Parliament and Council of the European Union: The General Data
Protection Regulation (GDPR). https://eur-lex.europa.eu/eli/reg/2016/679/oj.
Accessed 24 Nov 2019

2. Article 29 Working Party: Guidelines on Consent under Regulation 2016/679.
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=623051.
Accessed 05 Feb 2020

3. Métayer, D.: Formal methods as a link between software code and legal rules. In:
Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 3–18.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24690-6_2

4. Tokas, S., Owe, O., Ramezanifarkhani, T.: Language-based mechanisms for
privacy-by-design. In: Friedewald, M., Önen, M., Lievens, E., Krenn, S., Fricker,
S. (eds.) Privacy and Identity 2019. IAICT, vol. 576, pp. 142–158. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-42504-3_10

5. Nierstrasz, O.: A tour of hybrid - a language for programming with active objects.
In: Advances in Object-Oriented Software Engineering, pp. 67–182. Prentice-Hall,
Upper Saddle River (1992)

6. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Softw. Syst. Model. 6, 39–58 (2007)

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=623051
https://doi.org/10.1007/978-3-642-24690-6_2
https://doi.org/10.1007/978-3-030-42504-3_10

186 S. Tokas and O. Owe

7. Basin, David, Debois, Søren, Hildebrandt, Thomas: On purpose and by necessity:
compliance under the GDPR. In: Meiklejohn, Sarah, Sako, Kazue (eds.) FC 2018.
LNCS, vol. 10957, pp. 20–37. Springer, Heidelberg (2018). https://doi.org/10.1007/
978-3-662-58387-6_2

8. Métayer, D.: A formal privacy management framework. In: Degano, P., Guttman,
J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 162–176. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-01465-9_11

9. Morel, V., Cunche, M., Le Métayer, D.: A generic information and consent frame-
work for the IoT. In: 2019 18th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications/13th IEEE International Confer-
ence on Big Data Science and Engineering (TrustCom/BigDataSE), pp. 366–373.
IEEE (2019)

10. Pardo, R., Le Métayer, D.: Analysis of privacy policies to enhance informed consent.
In: Foley, S.N. (ed.) DBSec 2019. LNCS, vol. 11559, pp. 177–198. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22479-0_10

11. Sen, S., Guha, S., Datta, A., Rajamani, S.K., Tsai, J., Wing, J.M.: Bootstrapping
privacy compliance in big data systems. In: 2014 IEEE Symposium on Security
and Privacy, pp. 327–342. IEEE (2014)

12. Yang, J., et al.: Preventing information leaks with policy-agnostic programming.
Ph.D. thesis, Massachusetts Institute of Technology (2015)

13. Yang, J., Yessenov, K., Solar-Lezama, A.: A language for automatically enforcing
privacy policies. ACM SIGPLAN Not. 47(1), 85–96 (2012)

14. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 9(4), 410–442 (2000)

15. Hayati, K., Abadi, M.: Language-based enforcement of privacy policies. In: Mar-
tin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 302–313. Springer,
Heidelberg (2005). https://doi.org/10.1007/11423409_19

https://doi.org/10.1007/978-3-662-58387-6_2
https://doi.org/10.1007/978-3-662-58387-6_2
https://doi.org/10.1007/978-3-642-01465-9_11
https://doi.org/10.1007/978-3-030-22479-0_10
https://doi.org/10.1007/11423409_19

Tutorials

Tutorial: Parameterized Verification
with Byzantine Model Checker

Igor Konnov1(B), Marijana Lazić2, Ilina Stoilkovska1,3, and Josef Widder1

1 Informal Systems, Vienna, Austria
{igor,ilina,josef}@informal.systems

2 TU Munich, Munich, Germany
lazic@in.tum.de

3 TU Wien, Vienna, Austria

Abstract. Threshold guards are a basic primitive of many fault-tolerant
algorithms that solve classical problems of distributed computing, such as
reliable broadcast, two-phase commit, and consensus. Moreover, thresh-
old guards can be found in recent blockchain algorithms such as Tender-
mint consensus. In this tutorial, we give an overview of the techniques
implemented in Byzantine Model Checker (ByMC). ByMC implements
several techniques for automatic verification of threshold-guarded dis-
tributed algorithms. These algorithms have the following features: (1)
up to t of processes may crash or behave Byzantine; (2) the correct pro-
cesses count messages and make progress when they receive sufficiently
many messages, e.g., at least t + 1; (3) the number n of processes in the
system is a parameter, as well as t; (4) and the parameters are restricted
by a resilience condition, e.g., n > 3t. Traditionally, these algorithms
were implemented in distributed systems with up to ten participating
processes. Nowadays, they are implemented in distributed systems that
involve hundreds or thousands of processes. To make sure that these
algorithms are still correct for that scale, it is imperative to verify them
for all possible values of the parameters.

1 Introduction

The recent advent of blockchain technologies [2,20,23,30,68,81] has brought
fault-tolerant distributed algorithms to the spotlight of computer science and
software engineering. In particular, due to the huge amount of funds managed
by blockchains, it is crucial that their software is free of bugs. At the same time,
these systems are characterized by a large number of participants. Thus, auto-
mated verification methods face the well-known state space explosion problem.

Supported by Interchain Foundation (Switzerland) and by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 787367 (PaVeS). Partially supported by the
Austrian Science Fund (FWF) via the Doctoral College LogiCS W1255.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 189–207, 2020.
https://doi.org/10.1007/978-3-030-50086-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-50086-3_11

190 I. Konnov et al.

Furthermore, the well-known undecidability results for the verification of param-
eterized systems [4,15,37,38,79] apply in this setting. One way to circumvent
these problems is to develop domain specific methods that work for a specific
subclass of systems.

In this tutorial, we consider verification techniques for fault-tolerant dis-
tributed algorithms. As an example, consider a blockchain system, where a
blockchain algorithm ensures coordination of the processes participating in the
system. We observe that to do so, the processes need to solve a coordination
problem called atomic (or, total order) broadcast [43], that is, every process
delivers the same transactions in the same order. To achieve that, we typically
need a resilience condition that restricts the fraction of processes that may be
faulty [70]. The techniques we survey in this tutorial deal with the concepts of
broadcast and atomic broadcast under resilience conditions.

While Bitcoin [68] was a new approach to consensus, several Blockchain sys-
tems like Tendermint [20] and HotStuff [81] are modern implementations that
are built on these classic Byzantine fault tolerance concepts. While the tech-
niques we describe here address in part the challenges for the verification of such
systems. We discuss open challenges in Sect. 5.

In addition to practical importance, the reasons for the long-standing interest
[39,58,61,70] in distributed systems is that distributed consensus is non-trivial
in two aspects:

1. Most coordination problems are impossible to solve without imposing con-
straints on the environment, e.g., an upper bound on the fraction of faulty
processes, assumptions on the behavior of faulty processes, or bounds on mes-
sage delays and processing speeds (i.e., restricting interleavings) [33,39,70].

2. Designing correct solutions is hard, owing to the huge state and execution
space, and the complex interplay of assumptions mentioned in Point 1. Thus,
even published protocols may contain bugs, as reported, e.g., by [62,64].

Due to the impossibility of asynchronous fault-tolerant consensus [39], much
of the research focuses one what kinds of problems are solvable in asynchronous
systems (e.g., some forms of reliable broadcast) or what kinds of systems allow to
solve consensus. In Sect. 2 we will survey some of the most fundamental system
assumptions that allow to solve problems in the presence of faults and example
algorithms, and in Sect. 3 we will discuss how these algorithms can be modeled
and how they can be automatically verified.

2 Threshold-Guarded Distributed Algorithms

In a classic survey, Schneider [73] explains replicated state machines by the
following notion of replica coordination that consists of two properties:

Agreement. “Every non-faulty state machine replica receives every request.”
Order. “Every non-faulty state machine replica processes the requests it receives

in the same relative order.”

Tutorial: Parameterized Verification with Byzantine Model Checker 191

Fig. 1. Pseudo code of reliable broadcast à la [77] and its threshold automaton.

In Schneider’s approach [73], the specification of Agreement can be solved using
an algorithm for reliable broadcast [43]. The processes can use a consensus algo-
rithm [25,27,35] to establish the Order property. For instance, the atomic broad-
cast algorithm from [25] contains these two sub-algorithms.

The simplest canonical system model that allows one to solve consensus is
the synchronous one, and we discuss it in Sect. 2.1. A second elegant way to
circumvent the impossibility of [39] is by replacing liveness with almost sure ter-
mination, that is, a probabilistic guarantee. We review this approach in Sect. 2.3.
In fact, reliable broadcast can be solved with an asynchronous distributed algo-
rithm. We discuss their characteristics in Sect. 2.2.

2.1 Synchronous Algorithms

A classic example of a fault-tolerant distributed algorithm is the broadcasting
algorithm by Srikanth & Toueg [76]. The description of its code is given in Fig. 1.
As is typical for distributed algorithms, the semantics are not visible from the
pseudo code. In fact, we use the same pseudo-code to describe its asynchronous
variant later in Sect. 2.2.

The algorithm satisfies the Agreement property mentioned above. In a dis-
tributed system comprising reliable servers, which do not fail and do not lose
messages, this property is easy to achieve. If a server receives a requests it sends
the request to all other servers. As messages are delivered reliably, every request
will eventually be received by every server. The problems comes with faults.
Srikanth and Toueg studied Byzantine failures, where faulty servers may send
messages only to a subset of the servers (or even send conflicting data). Then
two servers may receive different requests. The algorithm in Fig. 1 addresses this
problem, by forwarding message content received from other servers and only
accepting a message content when it was received from a quorum of servers. For
each message content m, one instance of this algorithm is executed. Initially the
variable v captures whether a process has received m, it is 1 if this is the case.
Then a process sends ECHO to all. In an implementation, the message would be
of the form (ECHO,m), that is, it would be tagged with ECHO, and carry the
content m to distinguish different instances running in parallel; also it would

192 I. Konnov et al.

Fig. 2. Pseudo code of FloodMin from [28]

suffice to send the message once instead of sending it in each iteration. Then if
the second guard in line 6 evaluates to true at a server p, then p has received t+1
ECHO messages, which means that at least one correct process has forwarded
the message, so it also forwards it. If a server receives n − t ECHO messages, it
finally accepts the request stored in m due to line 8. The reason this algorithm
works is that the combination of n − t, t + 1, and n > 3t ensures that if one
correct processes has n−t ECHO messages, every other correct process will even-
tually received at least t + 1 (there are t + 1 correct processes among any n − t
processes) so that every correct process will forward, and since there are at least
n − t correct processes, every one will accept. However, this arithmetics over
parameters is subtle and error-prone. To this end, our verification techniques
focus on threshold expressions and resilience conditions.

In the above discussion, we were imprecise about the code semantics. In this
section we consider the synchronous semantics: All correct processes execute the
code line-by-line in lock-step. One loop iteration is called one round. A mes-
sage sent by a correct process to a correct process is received within the same
round. Then after sending and receiving messages in lock-step, all correct pro-
cesses continue by evaluating the guards, before they all proceed to the next
round. Because this semantics ensures that all processes move together, and all
messages are received within the next rounds, no additional fairness needed to
ensure liveness. In practice, this approach is often considered slow and expensive,
as it has to be implemented with timeouts that are aligned to worst case mes-
sage delays (which can be very slow in real networks). However, synchronous
semantics offers a high-level abstraction that allows one to design algorithms
easier.

Figure 2 shows an example of another synchronous algorithm. This algorithm
is run by n replicated processes, up to t of which may fail by crashing, that is,
by prematurely halting. It solves the k-set agreement problem, that is, out of
the n initial values each process decides on one value, so that the number of
different decision values is at most k. By setting k = 1, we obtain that there can
be exactly one decision value, which coincides with the definition of consensus.
In contrast to the reliable broadcast above, it runs for a finite number of rounds.
The number of loop iterations �t/k� + 1 of the FloodMin algorithm has been
designed such that it ensures that there is at least one clean round in which at
most k − 1 processes crash. When we consider consensus, this means there is a

Tutorial: Parameterized Verification with Byzantine Model Checker 193

Fig. 3. Pseudo code of Ben-Or’s algorithm for Byzantine faults

round in which no process crashes, so that all processes receive the same values
b1, . . . b�. As a result, during that round all processes set best to the same value.

2.2 Asynchronous Algorithms

We now discuss the asynchronous semantics of the code in Fig. 1: at each time,
exactly one processes performs a step. That is, the steps of the processes are
interleaved. In the example one may interpret this as one code line being an
atomic unit of executions at a process. In the “receive” statement, a process takes
some messages out of the incoming message buffer: possibly no message, and not
necessarily all messages that are in the buffer. The “send to all” then places one
message in the message buffers of all the other processes. Often asynchronous
semantics is considered more coarse-grained, e.g., a step consists of receiving,
updating the state, and sending one or more messages.

As we do not restrict which messages are taken out of the buffer during a
step, we cannot bound the time needed for message transmission. Moreover, we
do not restrict the order, in which processes have to take steps, so we cannot
bound the time between two steps of a single process. Typically, we are interested
in verifying safety (nothing bad ever happens) under these conditions.

However, for liveness this is problematic. We need messages to be delivered
eventually, and correct processes to take steps from time to time. So liveness
is typically preconditioned by fairness guarantees: every correct processes takes
infinitely many steps and every message sent from a correct process to a correct
process is eventually received. For broadcast these constraints are sufficient,
while for consensus they are not.

2.3 Randomized Algorithms

A prominent example is Ben-Or’s fault-tolerant binary consensus [7] algorithm in
Fig. 3. It circumvents the impossibility of asynchronous consensus [39] by relax-
ing the termination requirement to almost-sure termination, i.e., termination
with probability 1. Here processes execute an infinite sequence of asynchronous
rounds. While the algorithm is executed under asynchronous semantics, the pro-
cesses have a local variable r that stores the round number. Processes essages that

194 I. Konnov et al.

they send in round r with the round number. Observe that the algorithm only
operates on messages from the current round (the guards only count messages
tagged with r). Asynchronous algorithms with this feature are called communi-
cation closed [29,36]. Each round consists of two stages where the processes first
exchange messages tagged with R, wait until the number of received messages
reaches a certain threshold (the expression over parameters in line 5) and then
exchange messages tagged with P . As in the previous examples, n is the number
of processes, among which at most t may crash or be Byzantine. The thresholds
n − t, (n + t)/2 and t + 1 in combination with the resilience condition n > 5t
ensure that no two correct processes ever decide on different values. If there is
no “strong majority” for a value in line 13, a process chooses a new value by
tossing a coin in line 16.

3 Parameterized Verification

3.1 Synchronous Algorithms

In [78], we introduced the synchronous variant of threshold automata, and
studied their applicability and limitations for verification of synchronous fault-
tolerant distributed algorithms. We showed that the parameterized reachability
problem for synchronous threshold automata is undecidable. Nevertheless, we
observed that counter systems of many synchronous fault-tolerant distributed
algorithms have bounded diameters, even though the algorithms are parameter-
ized by the number of processes. Hence, bounded model checking can be used
for verifying these algorithms. We briefly discuss these results in the following.

Synchronous Threshold Automata. In a synchronous algorithm, the processes
execute the send, receive, and local computation steps in lock-step. Consider
the synchronous reliable broadcast algorithm from [77], whose pseudocode is
given in Fig. 1 (left). A synchronous threshold automaton (STA) that encodes
the pseudocode of this algorithm is given in Fig. 1 (right). The STA models the
loop body of the pseudo code: one iteration of the loop is expressed as an STA
edge that connects the locations before and after a loop iteration.

The semantics of the synchronous threshold automaton is defined in terms of
a counter system. For each location �i ∈ {v0,v1, se,ac} (a node in the graph),
we have a counter κi that stores the number of processes located in �i. The
counter system is parameterized in two ways: (i) in the number of processes n,
the number of faults f , and the upper bound on the number of faults t, (ii) the
expressions in the guards contain n, t, and f . Every system transition moves
all processes simultaneously; potentially using a different rule for each process
(depicted by an edge in the figure), provided that the rule guards evaluate to
true. The guards compare a sum of counters to a linear combination of parame-
ters. Processes send messages based on their current locations. Hence, we use the
number of processes in given locations to test how many messages of a certain
type have been sent in the previous round. However, the pseudo code in Fig. 1 is
predicated by received messages rather than by sent messages. This algorithm

Tutorial: Parameterized Verification with Byzantine Model Checker 195

Table 1. A long execution of reliable broadcast and the short representative.

Process σ0 σ1 σ2 . . . σt+1 σt+2 σt+3

1 v1 se se . . . se se ac

2 v0 v0 se . . . se se ac

· · · · · ·
t + 1 v0 v0 v0 . . . se se ac

· · · · · ·
n − f v0 v0 v0 . . . v0 se ac

Process σ′
0 σ′

1 σ′
2

1 v1 se ac

2 v0 se ac

· · · · · ·
t + 1 v0 se ac

· · · · · ·
n − f v0 se ac

is designed to tolerate Byzantine-faulty processes, which may send corrupt mes-
sages to some correct processes. Thus, the number of received messages may
deviate from the number of correct processes that sent a message. For example,
if the guard in line 6 evaluates to true, the t + 1 received messages may contain
up to f messages from the faulty processes. If i correct processes send <ECHO>,
for 1 ≤ i ≤ t, the faulty processes may “help” some correct processes to pass over
the t + 1 threshold. That is, the effect of the f faulty processes on the correct
processes is captured by the “−f” component in the guards. As a result, we run
only the correct processes, so that a system consists of n − f copies of the STA.

For example, in the STA in Fig. 1, processes send a message if they are in
a location v1, se, or ac. Thus, the guards compare the number of processes
in a location v1, se, or ac, which we denote by #{v1, se,ac}, to some linear
expression over the parameters, called a threshold. The assignment v:=1 in line 6
is modeled by the rule r2, guarded with φ1 ≡ #{v1, se,ac} ≥ t + 1 − f . This
guard evaluates to true if he number of processes in location v1, se, or ac is
greater than or equal to t+1−f . The implicit “else” branch between lines 6 and 8
is modeled by the rule r1, guarded with φ3 ≡ #{v1, se,ac} < t + 1. The effect
of the faulty processes is captured by both the rules r1 and r2 being enabled.
Similarly, the rules r5, r7, r8 are guarded with the guard φ2 ≡ #{v1, se,ac} ≥
n − t − f , which is true when the number of process in one of v1, se, or ac
is greater or equal to n − t − f , while the rules r3, r4 are guarded with φ4 ≡
#{v1, se,ac} < n − t. The rule r6 is unguarded, i.e., its guard is �.

Bounded Diameter. An example execution of the synchronous reliable broadcast
algorithm is depicted in Table 1 on the left. Observe that the guards of the rules
r1 and r2 are both enabled in the configuration σ0. One STA uses r2 to go to se
while the others use the self-loop r1 to stay in v0. As both rules remain enabled,
in every round one copy of STA can go to se. Hence, the configuration σt+1

has t + 1 correct STA in location se and the rule r1 becomes disabled. Then,
all remaining STA go to se and then finally to ac. This execution depends on
the parameter t, which implies that the length of this execution grows with t
and is thus unbounded. (We note that we can obtain longer executions, if some
STA use the rule r4). On the right, we see an execution where all copies of STA
immediately move to se via rule r2. That is, while the configuration σt+3 is

196 I. Konnov et al.

reached by a long execution on the left, it is reached in just two steps on the
right (observe that σ′

2 = σt+3). We are interested in whether there is a natural
number k (independent of n, t and f) such that we can always shorten executions
to executions of length ≤ k. (By length, we mean the number of transitions in an
execution.) In such a case, we say that the STA has bounded diameter. We adapt
the definition of diameter from [14], and introduce an SMT-based procedure
for computing the diameter of the counter system. The procedure enumerates
candidates for the diameter bound, and checks (by calling an SMT solver) if the
number is indeed the diameter; if it finds such a bound, it terminates.

Bounded Model Checking. The existence of a bounded diameter motivates the
use of bounded model checking, as safety verification can be reduced to checking
the violation of a safety property in executions with length up to the diameter.
Crucially, this approach is complete: if an execution reaches a bad configuration,
this bad configuration is already reached by an execution of bounded length.
Thus, once the diameter is found, we encode the violation of a safety property
using a formula in Presburger arithmetic, and use an SMT to check for violations.

The SMT queries that are used for computing the diameter and encoding
the violation of the safety properties contain quantifiers for dealing with the
parameters symbolically. Surprisingly, performance of the SMT solvers on these
queries is very good, reflecting the recent progress in dealing with quantified
queries. We found that the diameter bounds of synchronous algorithms in the
literature are tiny (from 1 to 8), which makes our approach applicable in practice.
The verified algorithms are given in Sect. 4.

Undecidability. In [78], we showed that the parameterized reachability problem
is in general undecidable for STA. In particular, this implies that some STA have
unbounded diameters. We identified a class of STA which in theory have bounded
diameters. For some STA outside of this class, our SMT-based procedure still can
automatically find the diameter. Remarkably, the SMT-based procedure gives us
the diameters that are independent of the parameters.

3.2 Asynchronous Algorithms

Asynchronous Threshold Automata. Similarly as in STAs, nodes in asynchronous
threshold automata (TAs) represent locations of processes, and edges represent
local transitions. What makes a difference between an STA and a TA are shared
variables and labels on edges that have a form γ 	→ act. A process moves along
an edge labelled by γ 	→ act and performs an action act, only if the condition γ,
called a threshold guard, evaluates to true.

We model reliable broadcast [76] using the same threshold automaton from
Fig. 1 but with different edge labels in comparison to the STA. We use a shared
variable x to capture the number of <ECHO> messages sent by correct processes.
We have two threshold guards: γ1 : x ≥ (t + 1) − f and γ2 : x ≥ (n − t) − f .
Depending on the initial value of a correct process, 0 or 1, the process is initially
either in location v0 or in v1. If its value is 1 a process broadcasts <ECHO>, and

Tutorial: Parameterized Verification with Byzantine Model Checker 197

executes the rule r3 : true 	→ x++. This is modelled by a process moving from v1
to se and increasing the value of x. If its value is 0, it has to wait to receive
enough messages, i.e., it waits for γ1 to become true, and then it broadcasts the
<ECHO> message and moves to location se. Thus, r2 is labelled by γ1 	→ x++.
Finally, once a process has γ2-enough <ECHO> messages, it sets accept to true
and moves to ac. Thus, r5 is labelled by γ2, whereas r7 and r8 by γ2 	→ x++.

Counter Systems. The semantics of threshold automata is captured by counter
systems. Instead of storing the location of each process, we count the number of
processes in each location, as all processes are identical. Therefore, a configura-
tion comprises (i) values of the counters for each location, (ii) values of the shared
variables, and (iii) parameter values. A configuration is initial if all processes are
in initial locations, here v0 or v1, and all shared variables have value 0 (here
x = 0). A transition of a process along an edge from location � to location �′ —
labelled by γ 	→ act — is modelled by the configuration update as follows: (i) the
counter of � is decreased by 1, and the counter of �′ is increased by 1, (ii) shared
variables are updated according to the action act, and (iii) parameter values are
unchanged. The key ingredient of our technique is acceleration of transitions,
that is, many processes may move along the same edge simultaneously. In the
resulting configuration, counters and shared variables are changed depending on
the number of processes that participate in the transition. It is important to
notice that any accelerated transition can be encoded in SMT.

Reachability. In [49], we determine a finite set of execution “patterns”, and
then analyse each pattern separately. These patterns restrict the order in which
threshold guards become true (if ever). Namely, we observe how the set of guards
that evaluate to true changes along each execution. In our example, there are
two (non-trivial) guards, γ1 and γ2. Initially, both are false as x = 0. During
an execution, none, one, or both of them become true, but note that once they
become true, they never return to false, as the number of sent messages x cannot
decrease. Thus, there is a finite set of execution patterns.

For instance, a pattern {} . . . {γ1} . . . {γ1, γ2} captures all finite executions
τ that can be represented as τ = τ1 · t1 · τ2 · t2 · τ3, where τ1, τ2, τ3 are sub-
executions of τ , and t1 and t2 are transitions. No threshold guard is enabled in a
configuration visited by τ1, and only γ1 is enabled in all configurations visited by
τ2. Both guards are enabled in configurations visited by τ3, and t1 and t2 change
the evaluation of the guards. Another pattern {} . . . {γ2} . . . {γ1, γ2} enables γ2
before γ1. Third pattern {} . . . {γ1} never enables γ2.

To perform verification, we have to analyse all execution patterns. For each
pattern we construct a so-called schema: A sequence of accelerated transitions
that have as free variables: the number of processes that execute the transitions
and the parameter values. In Fig. 1 transitions are modelled by edges denoted
with ri, i ∈ 1..8. For instance, the pattern {} . . . {γ1} produces the schema:

S = {} r1, r3
τ1

, r3
t1

{γ1} r1, r2, r3, r4
τ2

{γ1} .

198 I. Konnov et al.

Fig. 4. Three out of 18 shapes of lassos that satisfy the formula F (a ∧ F d ∧ F e ∧
G b ∧GF c). The crosses show cut points for: (A) formula F (a ∧ F d ∧ F e ∧G b ∧GF c),
(B) formula F d, (C) formula F e, (D) loop start, (E) formula F c, and (F) loop end.

There are two segments τ1 and τ2 corresponding to {} and {γ1}, respectively.
In each of them we list all the rules that can be executed according to the true
guards, in a fixed natural order: only r1 and r3 can be executed if no guard is
enabled, and r1, r2, r3, r4 if only γ1 holds true. Additionally, we have to list all
the candidate rules for t1 that can change the evaluation of the guards. In our
example only r3 can enable the guard γ1.

We say that an execution follows the schema S if its transitions appear
in the same order as in S, but they are accelerated (every transition is exe-
cuted by a number of processes, possibly zero). For example, if (r, k) denotes
that k processes execute the rule r simultaneously, then the execution ρ =
(r1, 2)(r3, 3)(r2, 2)(r4, 1) follows S, where the transitions of the form (r, 0) are
omitted. In this case, we prove that for each execution τ of pattern {} . . . {γ1},
there is an execution τ ′ that follows the schema S, and τ and τ ′ reach the
same configuration (when executed from the same initial configuration). This
is achieved by mover analysis: inside any segment in which the set of enabled
guards is fixed, we can swap adjacent transitions (that are not in a natural
order); in this way we gather all transitions of the same rule next to each
other, and transform them into a single accelerated transition. For example,
τ = (r3, 2)(r1, 1)(r3, 1)(r1, 1)(r2, 1)(r4, 1)(r2, 1) can be transformed into τ ′ = ρ
from above, and they reach the same configurations. Therefore, instead of check-
ing reachability for all executions of the pattern {} . . . {γ1}, it is sufficient to
analyse reachability only for the executions that follow the schema S.

Every schema is encoded as an SMT query over linear integer arithmetic with
free variables for acceleration factors, parameters, and counters. An SMT model
gives us an execution of the counter system, which typically disproves safety.

For example, consider the following reachability problem: Can the system
reach a configuration with at least one process in �3? For each SMT query, we
add the constraint that the counter of �3 is non-zero in the final configuration.
If the query is satisfiable, then there is an execution where at least one process
reaches �3. Otherwise, there is no such execution following the particular schema,
where a process reaches �3. That is why we have to check all schemas.

Safety and Liveness. In [50] we introduced a fragment of Linear Temporal Logic
called ELTLFT. Its atomic propositions test location counters for zero. Moreover,
this fragment only uses only two temporal operators: F (eventually) and G
(globally). Our goal is to check whether there exists a counterexample to a

Tutorial: Parameterized Verification with Byzantine Model Checker 199

Fig. 5. Ben-Or’s alorithm as PTA with resilience condition n > 3t ∧ t > 0 ∧ t ≥ f ≥ 0.

temporal property, and thus formulas in this fragment represent negations of
safety and liveness properties.

Our technique for verification of safety and liveness properties uses the reach-
ability method as its basis. As before, we want to construct schemas that we can
translate to SMT queries and check their satisfiability. Note that violations of
liveness properties are infinite executions of a lasso shape, that is, τ ·ρω, where τ
and ρ are finite executions. Hence, we have to enumerate the patterns of lassos.
These shapes depend not only on the values of thresholds, but also on the evalu-
ations of atomic propositions that appear in temporal properties. We single out
configurations in which atomic propositions evaluate to true, and call them cut
points, as they “cut” an execution into finitely many segments (see Fig. 4).

We combine these cut points with those “cuts” in which threshold guards
become enabled (as in the reachability analysis). All the possible orderings in
which thresholds and formulas become true, give us a finite set of lasso patterns.
We construct a schema for each shape by first defining schemas for each of
the segments between two adjacent cut points. On one hand, for reachability
it is sufficient to execute all enabled rules of that segment exactly once in the
natural order. Thus, each sub-execution τi can be transformed into τ ′

i that follows
the segment’s schema, so that τi and τ ′

i reach the same final configuration. On
the other hand, safety and liveness properties reason about atomic propositions
inside executions. To this end, we introduced a property specific mover analysis
that allows us to construct schemas by executing all enabled rules a fixed number
of times in a specific order. The number of rule repetitions depends on a temporal
property; it is typically two or three.

For each lasso pattern we encode its schema in SMT and check its satisfiabil-
ity. As ELTLFT formulas are negations of specifications, an SMT model gives us
a counterexample. If no schema is satisfiable, the temporal property holds true.

3.3 Asynchronous Randomized Multi-round Algorithms

Probabilistic Threshold Automata. Randomized algorithms typically have an
unbounded number of asynchronous rounds and randomized choices. Proba-
bilistic threshold automata (PTAs) are extensions of asynchronous threshold

200 I. Konnov et al.

automata that allow formalizing these features. A PTA modelling Ben-Or’s algo-
rithm from Fig. 3 is shown in Fig. 5. The behaviour of a process in a single round
is modelled by the solid edges. Note that in this case threshold guards should
be evaluated according to the values of shared variables, e.g., x0 and x1, in the
observed round. The dashed edges model round switches: once a process reaches
a final location in a round, it moves to an initial location of the next round.
The coin toss is modelled by the branching rule r10: a process in location SP by
moving along this fork can reach either CT0 or CT1, both with probability 1/2.

Unboundedly Many Rounds. In order to overcome the issue of unboundedly many
rounds, we prove that we can verify PTAs by analysing a one-round automaton
that fits in the framework of Sect. 3.2. In [11], we prove that one can reorder
transitions of any fair execution such that their round numbers are in a non-
decreasing order. The obtained ordered execution is stutter equivalent to the
original one. Thus, the both execution satisfy the same LTL-X properties over
the atomic propositions of one round. In other words, the distributed system
can be transformed to a sequential composition of one-round systems.

The main problem with isolating a one-round system is that consensus spec-
ifications often talk about at least two different rounds. In this case we need to
use round invariants that imply the specifications. For example, if we want to
verify agreement, we have to check that no two processes decide different values,
possibly in different rounds. We do this in two steps: (i) we check the round
invariant that no process changes its decision from round to round, and (ii) we
check that within a round no two processes disagree.

Probabilistic Properties. The semantics of a probabilistic threshold automaton
is an infinite-state Markov decision process (MDP), where the non-determinism
is traditionally resolved by an adversary. In [11], we restrict our attention to so-
called round-rigid adversaries, that is, fair adversaries that generate executions
in which a process enters round r + 1 only after all processes finished round r.

Verifying almost-sure termination under round-rigid adversaries calls for dis-
tinct arguments. Our methodology follows the lines of the manual proof of Ben
Or’s consensus algorithm by Aguilera and Toueg [3]. However, our arguments are
not specific to Ben Or’s algorithm, and apply to other randomized distributed
algorithms (see Table 2). Compared to their paper-and-pencil proof, the thresh-
old automata framework required us to provide a more formal setting and a more
informative proof, also pinpointing the needed hypotheses. The crucial parts of
our proof are automatically checked by the model checker ByMC.

4 ByMC: Byzantine Model Checker

Overview of the Techniques Implemented in ByMC. Table 2 shows coverage of
various asynchronous algorithms with the techniques that are implemented in
ByMC. In the following, we give a brief description of these techniques.

We started development of ByMC in 2012. We extended the classic {0, 1,∞}-
counter abstraction to threshold-guarded algorithms [41,46,47]. Instead of using

Tutorial: Parameterized Verification with Byzantine Model Checker 201

Table 2. Asynchronous fault-tolerant distributed algorithms that are verified by dif-
ferent generations of ByMC. For every technique and algorithm we show, whether the
technique could verify the properties: safety (S), liveness (L), almost-sure termination
under round-rigid aversaries (RRT), or none of them (-).

Algorithm CA+SPIN[47] CA+BDD[55] CA+SAT[55] SMT-S [52] SMT-L [50] SMT+MR[11]

FRB [26] S+L S+L S S S+L -

STRB [77] S+L S+L S S S+L -

ABA [18] - S+L - S S+L -

NBACG [42] - - - S S+L -

NBACR [71] - - - S S+L -

CBC [66] - - - S S+L -

CF1S [32] - S+L - S S+L -

C1CS [19] - - - S S+L -

BOSCO [75] - - - S S+L -

Ben-Or [7] - - - - - S+RRT

RABC [17] - - - - - S+RRT

kSet [65] - - - - - S+RRT

RS-BOSCO [75] - - - - - S+RRT

the predefined intervals [0, 1) and [1,∞), the tool was computing parametric
intervals by simple static analysis, for instance, the intervals [0, 1), [1, t + 1),
[t+1, n−t), and [n−t,∞). ByMC was automatically constructing the finite-state
counter abstraction from protocol specifications in Parameterized Promela. This
finite abstraction was automatically checked with Spin [45]. As this abstraction
was typically too coarse for liveness checking, we have implemented a simple
counterexample-guided abstraction refinement loop for parameterized systems.
This technique is called CA+SPIN in Table 2.

Spin scaled only to two broadcast algorithms. Thus, we extended ByMC
with the abstraction/checking loop that used nuXmv [24] instead of Spin. This
technique is called CA+BDD in Table 2. Although this extension scaled better
than CA+SPIN, we could only check two more benchmarks with it. Detailed
discussions of the techniques CA+SPIN and CA+BDD can be found in [41,53].

By running the abstraction/checking loop in nuXmv, we found that the
bounded model checking algorithms of nuXmv could check long executions of
our benchmarks. However, bounded model checking in general does not have
completeness guarantees. In [51,55], we have shown that the counter systems of
(asynchronous) threshold automata have computable bounded diameters, which
gave us a way to use bounded model checking as a complete verification approach
for reachability properties. This technique is called CA+SAT in Table 2. Still, the
computed upper bounds were too high for achieving complete verification.

The SMT-based techniques of Sect. 3.2 are called SMT-S (for safety) and
SMT-L (for liveness) in Table 2. These techniques accept either threshold
automata or Parametric Promela on their input. As one can see, these tech-
niques are the most efficient techniques that are implemented in ByMC. More
details on the experiments can be found in the tool paper [54].

202 I. Konnov et al.

Table 3. Synchronous fault-tolerant distributed algorithms verified with the bounded
model checking approach from [78]. With � we show that: the SMT based procedure
finds a diameter bound with Z3 (DIAM+Z3) and CVC4 (DIAM+CVC4); there is a theo-
retical bound on the diameter (DIAM+THM). We verify safety (S) by bounded model
checking with Z3 (BMC+Z3) and CVC4 (BMC+CVC4).

Algorithm DIAM+Z3 DIAM+CVC4 DIAM+THM BMC+Z3 BMC+CVC4

FloodSet [63] � � – S S

FairCons [72] � � – S S

PhaseKing [10] � � – S S

PhaseQueen [9] � � – S S

HybridKing [13] � � – S S

ByzKing [13] � � – S S

OmitKing [13] � � – S S

HybridQueen [13] – – – – –

ByzQueen [13] � � – S S

OmitQueen [13] � � – S S

FloodMin [63] � � – S S

kSetOmit [72] � � – S S

RB [77] � � � S S

HybridRB [13] � � � S S

OmitRB [13] � � � S S

Finally, the technique for multi-round randomized algorithms is called SMT-
MR in Table 2. This technique is explained in Sect. 3.3.

Model Checking Synchronous Threshold Automata. The bounded model checking
approach for STA introduced in Sect. 3.1 is not yet integrated into ByMC. It is
implemented as a stand-alone tool, available at [1]. In [78], we encoded multiple
synchronous algorithms from the literature, such as consensus [9,10,13,63,72],
k-set agreement (from [63], whose pseudocode is given in Fig. 2 and [72]), and
reliable broadcast (from [13,77]) algorithms. We use Z3 [67] and CVC4 [6] as
back-end SMT solvers. Table 3 gives an overview of the verified synchronous
algorithms. For further details on the experimental results, see [78].

5 Towards Verification of Tendermint Consensus

Tendermint consensus is a fault-tolerant distributed algorithm for proof-of-stake
blockchains [22]. Tendermint can handle Byzantine faults under the assumption
of partial synchrony. It is running in the Cosmos network, where currently over
100 validator nodes are committing transactions and are managing the ATOM
cryptocurrency [21]. Tendermint consensus heavily relies on threshold guards, as
can be seen from its pseudo-code in [22] [Algorithm 1]. For instance, one of the
Tendermint rules has the following precondition:

upon 〈PROPOSAL, hp, roundp, v, ∗〉 from proposer(hp, roundp)
AND 2f + 1 〈PREVOTE, hp, roundp, id(v)〉
while valid(v) ∧ stepp ≥ prevote for the first time (1)

Tutorial: Parameterized Verification with Byzantine Model Checker 203

The rule 1 requires two kinds of messages: (1) a single message of type PRO-
POSAL carrying a proposal v from the process proposer(hp, roundp) that is
identified by the current round roundp and consensus instance hp, and (2) mes-
sages of type PREVOTE from several nodes. Here the term 2f + 1 (taken from
the original paper) in fact does not refer to a number of processes. Rather each
process has a voting power (an integer that expresses how many votes a process
has), and 2f +1 (in combination with n = 3t+1) expresses that nodes that have
sent PREVOTE have more than two-thirds of voting power. Although this rule
bears similarity with the rules of threshold automata, Tendermint consensus has
the following features that cannot be directly modelled with threshold automata:

1. In every consensus instance hp and round roundp, a single proposer sends a
value that the nodes vote on. The identity of the proposer can be accessed
with the function proposer(hp, roundp). This feature breaks symmetry among
individual nodes, which is required by our modelling with counter systems.
Moreover, the proposer function should be fairly distributed among the nodes,
e.g., it can be implemented with round robin.

2. Whereas the classical example algorithms in this paper count messages, Ten-
dermint evaluates the voting power of the nodes from which messages where
received. This adds an additional layer of complexity.

3. Liveness of Tendermint requires the distributed system to reach a global sta-
bilization period, when every message could be delivered not later than after a
bounded delay. This model of partial synchrony lies between synchronous and
asynchronous computations and requires novel techniques for parameterized
verification.

As a first step towards parameterized verification, we are specifying Tender-
mint consensus in TLA+ [59] and check its properties with the symbolic model
checker Apalache [48]. As Apalache currently supports only non-parameterized
verification — the specification parameters must be fixed — we are planning to
use automatic abstractions to build a bridge between Apalache and ByMC.

6 Conclusions

Computer-aided verification of distributed algorithms and systems is a lively
research area. Approaches range from mechanized verification [44,74,80] over
deductive verification [8,29,31,34,69] to automated techniques [5,16,40,56]. In
our work, we follow the idea of identifying fragments of automata and logic that
are sufficiently expressive for capturing interesting algorithms and specifications,
while these fragments are amenable for completely automated verification. We
introduced threshold automata for that and implemented our verification tech-
niques in the open source tool ByMC [54]. By doing so, we verified several
challenging distributed algorithms; most of them were verified for the first time.

The threshold automata framework has proved to be both of practical rele-
vance as well as of theoretical interest. There are several ongoing projects that
consider automatic generation of threshold automata from code, complexity the-
oretic analysis of verification problems, and more refined probabilistic reasoning.

204 I. Konnov et al.

Acknowledgments. This survey is based on the results of a long-lasting research
agenda [12,47,49,50,57,60,78]. We are grateful to our past and present collaborators
Nathalie Bertrand, Roderick Bloem, Annu Gmeiner, Jure Kukovec, Ulrich Schmid,
Helmut Veith, and Florian Zuleger, who contributed to many of the described ideas
that are now implemented in ByMC.

References

1. Bounded Model Checking of STA. https://github.com/istoilkovska/syncTA
2. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: Solidus: an incentive-

compatible cryptocurrency based on permissionless Byzantine consensus. CoRR
abs/1612.02916 (2016). http://arxiv.org/abs/1612.02916

3. Aguilera, M., Toueg, S.: The correctness proof of Ben-Or’s randomized consensus
algorithm. Distributed Computing pp. 1–11 (2012)

4. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. IPL 15, 307–309 (1986)

5. Bakst, A., von Gleissenthall, K., Kici, R.G., Jhala, R.: Verifying distributed
programs via canonical sequentialization. PACMPL 1(OOPSLA), 110:1–110:27
(2017)

6. Barrett, C., et al.: CVC4. In: CAV, pp. 171–177 (2011)
7. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement

protocols (extended abstract), In: PODC, pp. 27–30 (1983)
8. Berkovits, I., Lazić, M., Losa, G., Padon, O., Shoham, S.: Verification of threshold-

based distributed algorithms by decomposition to decidable logics. In: Dillig, I.,
Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 245–266. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 15

9. Berman, P., Garay, J.A., Perry, K.J.: Asymptotically optimal distributed con-
sensus. Technical report, Bell Labs (1989). http://plan9.bell-labs.co/who/garay/
asopt.ps

10. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus
(Extended Abstract). In: FOCS, pp. 410–415 (1989)

11. Bertrand, N., Konnov, I., Lazic, M., Widder, J.: Verification of randomized con-
sensus algorithms under round-rigid adversaries. In: CONCUR 2019, LIPIcs, vol.
140, pp. 33:1–33:15 (2019)

12. Bertrand, N., Konnov, I., Lazić, M., Widder, J.: Verification of randomized consen-
sus algorithms under round-rigid adversaries. In: CONCUR, pp. 33:1–33:15 (2019)

13. Biely, M., Schmid, U., Weiss, B.: Synchronous consensus under hybrid process and
link failures. Theor. Comput. Sci. 412(40), 5602–5630 (2011)

14. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. TACAS. LNCS 1579, 193–207 (1999)

15. Bloem, R., et al..: Decidability of Parameterized Verification. Morgan & Claypool,
Synthesis Lectures on Distributed Computing Theory (2015)

16. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying mes-
sage passing programs under bounded asynchrony. In: CAV. pp. 372–391 (2018)

17. Bracha, G.: Asynchronous Byzantine agreement protocols. Inf. Comput. 75(2),
130–143 (1987)

18. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
32(4), 824–840 (1985)

19. Brasileiro, F.V., Greve, F., Mostéfaoui, A., Raynal, M.: Consensus in one commu-
nication step PaCT. LNCS 2127, 42–50 (2001)

https://github.com/istoilkovska/syncTA
http://arxiv.org/abs/1612.02916
https://doi.org/10.1007/978-3-030-25543-5_15
http://plan9.bell-labs.co/who/garay/asopt.ps
http://plan9.bell-labs.co/who/garay/asopt.ps

Tutorial: Parameterized Verification with Byzantine Model Checker 205

20. Buchman, E.: Tendermint: Byzantine Fault Tolerance in the Age of Blockchains.
Master’s thesis, University of Guelph (2016). http://hdl.handle.net/10214/9769

21. Buchman, E., Kwon, J.: Cosmos whitepaper: a network of distributed ledgers
(2018). https://cosmos.network/resources/whitepaper

22. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv
preprint arXiv:1807.04938 (2018). https://arxiv.org/abs/1807.04938

23. Buterin, V.: A next-generation smart contract and decentralized application plat-
form (2014)

24. Cavada, R., et al.: The NUXMV symbolic model checker, In: CAV. pp. 334–342
(2014)

25. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

26. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. JACM 43(2), 225–267 (1996)

27. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distrib. Comput. 22(1), 49–71 (2009)

28. Chaudhuri, S., Herlihy, M., Lynch, N.A., Tuttle, M.R.: Tight Bounds for k-set
Agreement. J. ACM 47(5), 912–943 (2000)

29. Damian, A., Drăgoi, C., Militaru, A., Widder, J.: Communication-closed asyn-
chronous protocols, In: CAV. pp. 344–363 (2019)

30. Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin meets strong consistency, In:
ICDCN. pp. 13:1–13:10 (2016). https://doi.org/10.1145/2833312.2833321

31. Desai, A., Garg, P., Madhusudan, P.: Natural proofs for asynchronous programs
using almost-synchronous reductions, In: OOPSLA, pp. 709–725 (2014)

32. Dobre, D., Suri, N.: One-step consensus with zero-degradation, In: DSN. pp. 137–
146 (2006)

33. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for
distributed consensus. J. ACM 34, 77–97 (1987)

34. Drăgoi, C., Henzinger, T.A., Veith, H., Widder, J., Zufferey, D.: A logic-based
framework for verifying consensus algorithms VMCAI. LNCS 8318, 161–181
(2014)

35. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

36. Elrad, T., Francez, N.: Decomposition of distributed programs into communication-
closed layers. Sci. Comput. Program. 2(3), 155–173 (1982)

37. Emerson, E., Namjoshi, K.: Reasoning about rings, In: POPL, pp. 85–94 (1995)
38. Esparza, J.: Decidability of model checking for infinite-state concurrent systems.

Acta Informatica 34(2), 85–107 (1997)
39. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus

with one faulty process. J. ACM 32(2), 374–382 (1985)
40. Gleissenthall, K.V., Gökhan Kici, R., Bakst, A., Stefan, D., Jhala, R.: Pretend

synchrony. In: POPL (2019), (to appear)
41. Gmeiner, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Tutorial on parame-

terized model checking of fault-tolerant distributed algorithms. In: Bernardo, M.,
Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS,
vol. 8483, pp. 122–171. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07317-0 4

42. Guerraoui, R.: Non-blocking atomic commit in asynchronous distributed systems
with failure detectors. Distrib. Comput. 15(1), 17–25 (2002)

43. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. In: Mul-
lender, S. (ed.) Distributed systems (2nd Ed.) pp. 97–145 (1993)

http://hdl.handle.net/10214/9769
https://cosmos.network/resources/whitepaper
http://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1807.04938
https://doi.org/10.1145/2833312.2833321
https://doi.org/10.1007/978-3-319-07317-0_4
https://doi.org/10.1007/978-3-319-07317-0_4

206 I. Konnov et al.

44. Hawblitzel, C., et al.: Ironfleet: proving safety and liveness of practical distributed
systems. Commun. ACM 60(7), 83–92 (2017)

45. Holzmann, G.: The SPIN Model Checker. Addison-Wesley, Boston (2003)
46. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Counter attack on byzan-

tine generals: parameterized model checking of fault-tolerant distributed algo-
rithms, October 2012. http://arxiv.org/abs/1210.3846

47. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction, In: FMCAD. pp.
201–209 (2013)

48. Konnov, I., Kukovec, J., Tran, T.: TLA+ model checking made symbolic. PACMPL
3(OOPSLA), 123:1–123:30 (2019)

49. Konnov, I., Lazić, M., Veith, H., Widder, J.: Para2: Parameterized path reduc-
tion, acceleration, and SMT for reachability in threshold-guarded distributed algo-
rithms. Formal Methods Syst. Des. 51(2), 270–307 (2017)

50. Konnov, I., Lazić, M., Veith, H., Widder, J.: A short counterexample property for
safety and liveness verification of fault-tolerant distributed algorithms. In: POPL,
pp. 719–734 (2017)

51. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. CONCUR. LNCS 8704,
125–140 (2014)

52. Konnov, I., Veith, H., Widder, J.: SMT and POR beat counter abstraction: param-
eterized model checking of threshold-based distributed algorithms. In: CAV (Part
I). LNCS, vol. 9206, pp. 85–102 (2015)

53. Konnov, I., Veith, H., Widder, J.: What you always wanted to know about model
checking of fault-tolerant distributed algorithms. In: Mazzara, M., Voronkov, A.
(eds.) PSI 2015. LNCS, vol. 9609, pp. 6–21. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-41579-6 2

54. Margaria, T., Steffen, B. (eds.): ISoLA 2018. LNCS, vol. 11246. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03424-5

55. Konnov, I.V., Veith, H., Widder, J.: On the completeness of bounded model check-
ing for threshold-based distributed algorithms: reachability. Inf. Comput. 252, 95–
109 (2017)

56. Kragl, B., Qadeer, S., Henzinger, T.A.: Synchronizing the asynchronous. In: CON-
CUR. pp. 21:1–21:17 (2018)

57. Kukovec, J., Konnov, I., Widder, J.: Reachability in parameterized systems: all
flavors of threshold automata. In: CONCUR. LIPIcs, vol. 118, pp. 19:1–19:17 (2018)

58. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

59. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

60. Lazić, M., Konnov, I., Widder, J., Bloem, R.: Synthesis of distributed algorithms
with parameterized threshold guards. In: OPODIS. LIPIcs, vol. 95, pp. 32:1–32:20
(2017). https://doi.org/10.4230/LIPIcs.OPODIS.2017.32

61. Le Lann, G.: Distributed systems - towards a formal approach. In: IFIP
Congress, pp. 155–160 (1977). http://www-roc.inria.fr/novaltis/publications/IFIP
%20Congress%201977.pdf

62. Lincoln, P., Rushby, J.: A formally verified algorithm for interactive consistency
under a hybrid fault model. In: FTCS, pp. 402–411 (1993)

63. Lynch, N.: Distributed Algorithms. Morgan Kaufman, San Francisco (1996)

http://arxiv.org/abs/1210.3846
https://doi.org/10.1007/978-3-319-41579-6_2
https://doi.org/10.1007/978-3-319-41579-6_2
https://doi.org/10.1007/978-3-030-03424-5
https://doi.org/10.4230/LIPIcs.OPODIS.2017.32
http://www-roc.inria.fr/novaltis/publications/IFIP%20Congress%201977.pdf
http://www-roc.inria.fr/novaltis/publications/IFIP%20Congress%201977.pdf

Tutorial: Parameterized Verification with Byzantine Model Checker 207

64. Malekpour, M.R., Siminiceanu, R.: Comments on the “Byzantine self-stabilizing
pulse synchronization”. protocol: Counterexamples. Tech. rep., NASA, February
2006. http://shemesh.larc.nasa.gov/fm/papers/Malekpour-2006-tm213951.pdf

65. Mostéfaoui, A., Moumen, H., Raynal, M.: Randomized k-set agreement in crash-
prone and Byzantine asynchronous systems. Theor. Comput. Sci. 709, 80–97
(2018)

66. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-
based approach to solve consensus. In: DSN, pp. 541–550 (2003)

67. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS, pp. 337–340
(2008)

68. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

69. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifica-
tion by interactive generalization. In: PLDI, pp. 614–630 (2016)

70. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

71. Raynal, M.: A case study of agreement problems in distributed systems: Non-
blocking atomic commitment. In: HASE, pp. 209–214 (1997)

72. Raynal, M.: Fault-tolerant agreement in synchronous message-passing systems.
Morgan & Claypool Publishers, Synthesis Lectures on Distributed Computing The-
ory (2010)

73. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

74. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. PACMPL 2(POPL), 281–2830 (2018)

75. Song, Y.J., van Renesse, R.: Bosco: one-step Byzantine asynchronous consensus.
DISC. LNCS 5218, 438–450 (2008)

76. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. J. ACM 34(3), 626–645
(1987)

77. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Dist. Comp. 2, 80–94 (1987)

78. Stoilkovska, I., Konnov, I., Widder, J., Zuleger, F.: Verifying safety of synchronous
fault-tolerant algorithms by bounded model checking. In: Vojnar, T., Zhang, L.
(eds.) TACAS 2019. LNCS, vol. 11428, pp. 357–374. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17465-1 20

79. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett.
28(4), 213–214 (1988)

80. Wilcox, J.R., et al.: Verdi: a framework for implementing and formally verifying
distributed systems. In: PLDI, pp. 357–368 (2015)

81. Yin, M., Malkhi, D., Reiter, M.K., Golan-Gueta, G., Abraham, I.: Hotstuff: BFT
consensus with linearity and responsiveness. In: PODC, pp. 347–356 (2019)

http://shemesh.larc.nasa.gov/fm/papers/Malekpour-2006-tm213951.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-030-17465-1_20

Typechecking Java Protocols
with [St]Mungo

A. Laura Voinea(B) , Ornela Dardha , and Simon J. Gay

School of Computing Science, University of Glasgow, Glasgow, UK
a.voinea.1@research.gla.ac.uk, {Ornela.Dardha,Simon.Gay}@glasgow.ac.uk

Abstract. This is a tutorial paper on [St]Mungo, a toolchain based on
multiparty session types and their connection to typestates for safe dis-
tributed programming in Java language.

The StMungo (“Scribble-to-Mungo”) tool is a bridge between multi-
party session types and typestates. StMungo translates a communication
protocol, namely a sequence of sends and receives of messages, given as a
multiparty session type in the Scribble language, into a typestate spec-
ification and a Java API skeleton. The generated API skeleton is then
further extended with the necessary logic, and finally typechecked by
Mungo. The Mungo tool extends Java with (optional) typestate specifi-
cations. A typestate is a state machine specifying a Java object protocol,
namely the permitted sequence of method calls of that object. Mungo
statically typechecks that method calls follow the object’s protocol, as
defined by its typestate specification. Finally, if no errors are reported,
the code is compiled with javac and run as standard Java code.

In this tutorial paper we give an overview of the stages of the
[St]Mungo toolchain, starting from Scribble communication protocols,
translating to Java classes with typestates, and finally to typechecking
method calls with Mungo. We illustrate the [St]Mungo toolchain via a
real-world case study, the HTTP client-server request-response proto-
col over TCP. During the tutorial session, we will apply [St]Mungo to a
range of examples having increasing complexity, with HTTP being one
of them.

Keywords: Multiparty session types · Typestate · Mungo ·
StMungo · HTTP protocol

1 Introduction

The concept of an application programming interface (API) is central to soft-
ware architecture and implementation. An API is a specification of a collection

Supported by the UK EPSRC grant EP/K034413/1, “From Data Types to Session
Types: A Basis for Concurrency and Distribution (ABCD)”, by the EU HORIZON 2020
MSCA RISE project 778233 “BehAPI: Behavioural Application Program Interfaces”,
and by an EPSRC PhD studentship.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 208–224, 2020.
https://doi.org/10.1007/978-3-030-50086-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_12&domain=pdf
http://orcid.org/0000-0003-4482-205X
http://orcid.org/0000-0001-9927-7875
http://orcid.org/0000-0003-3033-9091
https://doi.org/10.1007/978-3-030-50086-3_12

Typechecking Java Protocols with [St]Mungo 209

of related programming language operations that enable the use of a particular
kind of functionality. For example, in a typical programming language, the func-
tionality for implementing graphical user interfaces is organised and described
as an API. In an object-oriented language, an API is presented as a collection of
classes, each with methods for a range of related operations. A specific example
is the JavaFX API, which provides graphics and media functionality—in fact
JavaFX is so large that it is better described as a collection of APIs for more
specific purposes, such as media streaming and web rendering.

Nowadays, APIs are not only used to present the library functions of pro-
gramming language implementations. They can also package up the functionality
of distributed services, and be called remotely in networked applications. A sig-
nificant trend is the development and publication of APIs to allow access to
functions that were previously internal to a software application. For example,
the developer of a student records database might publish an API to allow pro-
grammatic access to the data, and this could be used by third-party developers
to produce applications that make use of student records to provide additional
services. This evolution of the API concept has become a key aspect of open
software development and service-oriented system architectures. In a commer-
cial setting it has enabled the birth of an API economy in which the provision
of APIs can be monetised. APIs have thus become a key focus of the software
industry.

Typical methods in an API require parameters, and these can be specified
using standard type-theoretic techniques. In a statically typed language, each
method in an API has its type signature, specifying the types of its param-
eters and the type of any result that it returns. The standard techniques of
typechecking, especially when implemented in an integrated development envi-
ronment (IDE), are effective in supporting programmers to use APIs correctly,
identifying errors during development rather than waiting until the testing phase
when they are much more expensive to correct.

The description of an API as a collection of typed method signatures however,
does not capture any constraints on the sequence in which methods can be
called. For example, an API for working with files requires that a file must be
successfully opened before it can be read or written. After the file has been
closed, it cannot be read or written any more, and the only available method
is open. Another standard example is the Iterator class in Java, in which the
hasNext method must be called (and return true) before the next method can
be called.

Another category of examples arises in APIs for communication, in concur-
rent or distributed systems. Typically the communication within a system is
structured around various communication protocols, each of which specifies a
permitted sequence of messages and the format (type) of each message. An API
whose operations allow sending and receiving of messages in a given protocol has
constraints so that the operation calls follow the protocol specification. These
constraints cannot be expressed purely within the framework of typed method
signatures, more expressive types and type systems are needed. In general, we

210 A. L. Voinea et al.

can speak of behavioural APIs, a term based on the term behavioural types for
type systems that specify sequence-related properties involving multiple method
calls.

Two established lines of research are relevant in this context. One is typestates
[42], which is the idea of using static type systems to specify permitted sequences
of method calls. The other is session types [26,28,44], which are type-theoretic
descriptions of communication protocols. The StMungo and Mungo tools are the
result of convergence between these two lines of research [2,17,34,35]. On the one
hand, APIs for communication protocols are clearly a special case of behavioural
APIs in general. On the other hand, transferring the concepts of session types
from process calculi or functional languages to object-oriented languages requires
embedding them in a more general setting that supports typestates. This is
because it is natural to define methods that each perform several communication
steps, and then the original communication protocol (session type) gives rise to
different, although related, sequencing constraints on the methods.

StMungo is a bridge between session types and typestates, by translating
multiparty session types (MPST) [29] written in the Scribble language [41] into
typestate specifications for Java classes. The key steps are given in the following:

– Scribble is used as a specification language for global protocols (or global
types) describing communication among all involved participants in a com-
munication protocol in a distributed system.

– The Scribble tools are used to validate and project a global type into local
protocols (or local types) for each participant involved.

– StMungo translates Scribble local types into typestate specifications for Java
classes, describing the Java object protocols, namely the permitted sequences
of method calls of an object.

– StMungo also generates an API implementation for each participant, which
follows its typestate specification, described in the previous step.

At this stage we can run the Mungo tool. The key ideas and steps behind
Mungo are given in the following:

– Typestate specifications are expressed as annotations of Java classes, so there
is no change to the language itself.

– Linear typing is used to control aliasing, so that there is no possibility of
inconsistent views of an object’s state.

– The Mungo typechecker checks that method calls are performed following the
object’s protocol, as specified by its associated typestate.

– If Mungo typechecking is successful and no errors are reported, then the code
is compiled with javac and run as standard Java code.

– The Mungo typechecker is formalised inspired by session types theory and the
resulting type system is proved correct via the standard theorems of progress
and subject reduction [34,35].

In the remainder of this tutorial paper we will describe the StMungo Sect. 2
and Mungo Sect. 3 tools via a real-world case study, the HTTP protocol.

Typechecking Java Protocols with [St]Mungo 211

In Sect. 4 we give step-by-step instructions on how to run the tools. In Sect. 5
we discuss related work and in Sect. 6 we conclude the paper and discuss future
work.

2 StMungo

The StMungo tool is a Java-based transpiler implemented using the ANTLR
v4.5 framework [6]. StMungo acts as a bridge between multiparty session types
and typestate specifications. In particular it is the link between the Scribble
specification language [27,41] and the Mungo tool Sect. 3. StMungo is the first
tool to provide a practical embedding of Scribble multiparty session types into
an object-oriented language with typestates.

In order to better understand the StMungo tool, we need to describe both
the Scribble language and the typestate specifications. Let’s start with Scribble.

The Scribble specification language is an implementation of multiparty ses-
sion types (MPST) [29,41]. Participants in a distributed system communicate
among each other by sending and receiving messages and following a predefined
communication protocol. Such protocol is given as a global protocol (or global
type) in Scribble. The Scribble tools can perform validation and projection of
a global protocol. First, we must check if the specified global protocol is valid,
meaning if it is correct with respect to transmitted data; there are no deadlocks
within the global protocol; there are no un-notified participants for example,
regarding session termination, and so on. These checks follow the MPST the-
ory [29]. Once a global protocol is validated, with Scribble tools we can project
it into local protocols (or local types) for each participant in the system.

The HTTP Protocol Case Study. Let us illustrate the notions of global and local
protocols using our HTTP case study. HTTP (HyperText Transfer Protocol) [22]
is the underlying data protocol used by the World Wide Web defining how
messages are formatted and transmitted, and what actions servers and clients
may take in response to various methods, such as GET, PUT or POST. An HTTP
session is a sequence of network request-response transactions, initiated by the
client sending a request over a TCP connection to a particular port of a server.
Upon receiving the request, the server listening on that port sends back a status
line, such as “HTTP/1.1 200 OK”, and a message of its own. The structure of
the request and response messages exchanged is rich and complex, lending itself
to be further specified through session types. Hence, we represent the HTTP
global protocol in the style of Hu [31] where an HTTP request and response are
broken down respectively into sending and receiving a request line – request,
followed by zero or more header-fields – host or usera terminated by a new-line.
This fine grained representation of the protocol is made possible by the message
being broken down via TCP bit streams, in a manner that is transparent to the
parties involved.

The global protocol for HTTP specified in Scribble is given in Listing 1.1.
Line 1 contains the module declaration, made up of an optional package prefix

212 A. L. Voinea et al.

i.e., http, and the name of the file containing the module, Http. Line 2 contains
a payload type declaration type <java>..., which gives an alias (str) to a
data type (String) from an external language java which can be used in the
payload of a message signature. A module can contain zero or more global protocol
declarations, consisting of a protocol signature (line 4), choices (lines 5 and 27),
message passing (line 6), and recursion (line 7). Lines 11–46 model a correctly
formatted client request and lines 49–91 a server response.

1 module http.Http;

2 type <java > "java.lang.String" from "rt.jar" as str;

3

4 global protocol Http(role C, role S){

5 choice at C{ // Request

6 request(str) from C to S; //GET / HTTP /1.1

7 rec X{ choice at C{

8 host(str) from C to S;//Host: www.google.co.uk

9 continue X;

10 }or{

11 userA(str) from C to S;//User -Agent :...

12 continue X;

13 }or{

14 acceptT(str) from C to S;// Accept: text/html ...

15 continue X;

16 }or{

17 ... //other header fields

18 body(str) from C to S;

19 }}}

20 // Response

21 httpv(str) from S to C;//HTTP /1.1

22 choice at S{

23 200(str) from S to C;//200 OK

24 }or{

25 404(str) from S to C;//404 Bad Request

26 }

27 rec Y{

28 choice at S{

29 date(str) from S to C;//Date: ...

30 continue Y;

31 }or{

32 server(str) from S to C;// Server :...

33 continue Y;

34 }or{

35 strictTS(str) from S to C;//Strict -Transport -Security

36 continue Y;

37 }or{

38 ...//other header fields

39 body(str) from S to C;

40 }}}

Listing 1.1. HTTP Global Protocol

Using the Scribble tools, we can project the HTTP global protocol onto local
protocols for the server S and the client C. In this tutorial we will focus only
on the client side as we will interact with real-world HTTP servers. The local
protocol for the HTTP client C, given in Listing 1.2, describes the behaviour of
this role. The _C in the protocol name indicates that C is the local endpoint. For
simplicity, we limit this protocol to the GET command only, with the rest being
represented in a similar manner.

Typechecking Java Protocols with [St]Mungo 213

1 ...

2 local protocol Http_C(role C, role S) {

3 choice at C {

4 request(str) to S;

5 rec X { choice at C {

6 host(str) to S;

7 continue X;

8 } or {

9 userA(str) to S;

10 continue X;

11 } or {

12 acceptT(str) to S;

13 continue X;

14 } or {

15 ...//other header fields

16 body(str) to S;

17 }}}

18 httpv(str) from S;

19 choice at S {

20 200(str) from S;

21 } or {

22 404(str) from S;

23 }

24 rec Y { choice at S {

25 date(str) from S;

26 continue Y;

27 } or {

28 server(str) from S;

29 continue Y;

30 } or {

31 strictTS(str) from S;

32 continue Y;

33 } or {

34 ...//other header fields

35 body(str) from S;

36 }}}

Listing 1.2. HTTP Client Protocol

The client can send a request line request (line 4), followed by zero or
more header-fields—host, or userA and so on. The server responds with a line
containing the HTTP version—httpv (line 18) followed by the status of the
request, either—200 for a found resource, or—404 for a bad request. The server
can choose zero or more header-fields to follow this message with. The StMungo
tool takes in input a Scribble local protocol for a role and translates it into a
typestate specification for a Java API skeleton. This translation is based on the
principle that each role in the multiparty session communication following its
local protocol, can be abstracted as a Java class following its typestate specifica-

214 A. L. Voinea et al.

tion. A typestate is a state machine defining the permitted sequence of method
calls of a Java object, thus defining the object’s protocol.

The HTTP Protocol Case Study (Continued). Running StMungo on the HTTP
client protocol Listing 1.2 produces the following files, where C at the beginning
of each file name stands for client.

1. CProtocol.protocol: the typestate specification representing the HTTP
client’s local protocol. The send and receive operations are translated as Java
methods (Listing 1.3 below in this section).

2. CRole.java: the Java API implementing the HTTP client. This class imple-
ments the typestate CProtocol over Java sockets (Listing 1.4, Sect. 3).

3. CMain.java: this can be an optional file. It gives a minimum logic of the
client CRole and provides a main() method (Listing 1.5, Sect. 3).

The typestate specification CProtocol.protocol for the HTTP client is
given in Listing 1.3.

1 typestate CProtocol {

2 State0 = {void send_REQUESTToS (): State1}

3 State1 = {void send_requestStrToS (String): State2}

4 State2 = {void send_HOSTToS (): State3 ,

5 void send_USERAToS (): State4 ,

6 void send_ACCEPTTToS (): State5 ,

7 ... //send other labels

8 void send_BODYToS (): State12}

9 State3 = {void send_hostStrToS (String): State2}

10 State4 = {void send_userAStrToS(String): State2}

11 ... //send other main messages

12 State12 = {void send_bodyStrToS (String): State13}

13 State13 = {String receive_httpvStrFromS (): State14}

14 State14 = {Choice1 receive_Choice1LabelFromS ():

15 <_200: State15 , _404: State16 >}

16 State15 = {String receive_200StrFromS (): State17}

17 State16 = {String receive_404StrFromS (): State17}

18 State17 = {Choice2 receive_Choice2LabelFromS ():

19 <DATE: State18 , SERVER: State19 ,

20 STRICTTS: State20 , ..., BODY: State28 >}

21 State18 = {String receive_dateStrFromS (): State17}

22 State19 = {String receive_serverStrFromS (): State17}

23 State20 = {String receive_strictTSStrFromS (): State17}

24 ...

25 State28 = {String receive_BODYStrFromS (): end}}

Listing 1.3. Typestate Specification

A typestate is a state machine (Fig. 1) with states labelled State0 (initial
state), State1, State2 . . . Each state offers a set of methods that must be a
subset of the methods defined by the class; each method specifies a transition to
a successor state, such that when called at runtime allows the object to change
state as specified by its typestate.

Typechecking Java Protocols with [St]Mungo 215

Fig. 1. State machine for CProtocol

216 A. L. Voinea et al.

The send and receive operations given in the client’s local protocol are trans-
lated as typestate methods in CProtocol.protocol. For example, the message
request(str) to S (line 4, Listing 1.2) where the client sends a request mes-
sage of type str to the server, is translated as two method calls due to for-
matting and parsing (lines 2–3 in Listing 1.3). Calling the first method void
send_REQUESTToS() specifying the method and calling the second method void
send_requestStrToS(String) requests the rest of the message of type String

(further details in Sect. 3).
We will comment on the other two files CRole.java and CMain.java in

Sect. 3.

3 Mungo

The Mungo tool is a Java front-end tool used to statically typecheck typestate
specifications for Java classes. The tool is implemented in Java using the ExtendJ
framework [25,38], a meta-compiler based on reference attribute grammars.

Mungo extends a Java class with a typestate specification, which is saved
in a separate file (such as CProtocol.protocol in Sect. 2) and is attached
to a Java class using the annotation @Typestate("ProtocolName"), where "
ProtocolName" names the file where the typestate is defined. The typestate
inference algorithm given by the formalisation of the Mungo tool in [34,35] con-
structs the sequences of methods called on all objects associated with a typestate,
and then checks if the inferred typestate is a subtype of the object’s declared
typestate. The formalisation of the typestate inference system and its sound-
ness properties are beyond the scope of this paper and the reader is referred to
[34,35].

Source files are typechecked in two phases: first, according to the standard
Java type system, and then to the typestate type system via Mungo. The source
files can then be compiled using standard javac and executed in the standard
Java runtime environment.

The typestate specification generated from StMungo together with the
Mungo typechecker can guide the user in the design and development of dis-
tributed multiparty communication-based systems with guarantees of communi-
cation safety and soundness.

We will now describe the use of Mungo via our running example, the HTTP
protocol, and in particular we will do so by commenting on the last two files
CRole.java and CMain.java generated by StMungo for the HTTP client C.

The HTTP Protocol Case Study (Continued). The HTTP client API is given by
Listing 1.4 annotated by the typestate CProtocol, defined in Listing 1.3.

Lines 3–9 define the client’s constructor where the connection phase over Java
sockets takes place. The rest of CRole contains a minimal implementation of the
methods specified in the typestate CProtocol. The methods for sending and
receiving messages contain basic formatting and parsing, which can be further
improved by the programmer.

Typechecking Java Protocols with [St]Mungo 217

1 @Typestate("CProtocol")

2 public class CRole {

3 public CRole () { ...// Bind the sockets and accept a client

4 connection

5 try { // Create the read and write streams

6 socketSIn = new BufferedReader (...);

7 socketSOut = new PrintWriter (...) ;}

8 catch (IOException e) {...}}

9 public void send_REQUESTToS (){this.socketSOut.print("GET")

;}

10 public void send_requestStrToS (String payload){this.

socketSOut.println(payload);}

11 ... // Define all other send methods in CProtocol

12 public String receive_httpvStrFromS ()() {

13 String line = "";

14 try {line = this.socketSIn.readLine ();}

15 catch (IOException e) {...}

16 return line;}

17 public Choice1 receive_Choice1LabelFromS () {

18 try {stringLabelChoice1 = this.socketSIn.readLine ();}

19 catch (IOException e) {...}

20 switch (stringLabelChoice1) {

21 case "200":

22 return Choice1._200;

23 case "404":

24 default:

25 return Choice1._404 ;}}

26 public String receive_200StrFromS () {

27 String line = "";

28 try {line = this.socketSIn.readLine ();}

29 catch (IOException e) {...}

30 return line;}

31 public String receive_404StrFromS () {

32 String line = "";

33 try {line = this.socketSIn.readLine ();}

34 catch (IOException e) {...}

35 return line;}

36 .../* Define all other receive methods in CProtocol */}}}

Listing 1.4. Client API

Lines 8–9 define the two methods for sending the initial, mandatory, request
line—send_REQUESTToS (for the method, i.e.“GET”) and send_requestStrToS
(for the rest of the message). Lines 11–34 define methods for receiving the first
line in a response, composed of the HTTP version—receive_httpvStrFrom and
the status. The method in line 16 Choice1 receive_Choice1LabelFromS cap-
tures the status. This method returns a Choice1 type, which is an enumerated
type defined as:

1 enum Choice1 {_200 , _404;}

For each choice there is an enumerated type, named by StMungo according
to the position of the choice in the sequence of choices within the local protocol.

218 A. L. Voinea et al.

The values of the enumerated type are the names of the first message in each
branch of the choice, for example for Choice1 they are _200 or _400. Thus, the
method receive_Choice1LabelFromS receives a message which represents one
of the two status codes, and it returns the corresponding enum value.

Let’s move now onto the CMain.java given in Listing 1.5. CMain.java con-
tains a minimal implementation of the client endpoint using the CRole class to
communicate with the server endpoint. Below we give the main method, omit-
ting any auxiliary methods generated by StMungo. The code is modified from
the generated version by adding the request and host messages needed to request
the home page from www.google.co.uk.

1 public static void main(String [] args) {

2 CRole currentC = new CRole ();

3 String sread = // input REQUEST

4 if ("REQUEST".equals(sread)) {

5 currentC.send_REQUESTToS ();

6 currentC.send_requestStrToS ("/ HTTP /1.1");

7 _X: do { sread = // input header choice

8 switch (sread) {

9 case ("HOST"):

10 currentC.send_HOSTToS ();

11 currentC.send_hostStrToS ("www.google.co.uk");

12 continue _X;

13 ... // other cases corresponding to header fields

14 case ("BODY"):

15 currentC.send_BODYToS ();

16 currentC.send_bodyStrToS ("/r/n");

17 break _X;

18 }} while (true);}

19 currentC.receive_httpvStrFromS ();

20 switch (currentC.receive_Choice1LabelFromS ()) {

21 case _200:

22 currentC.receive_200StrFromS ();

23 break;

24 case _404:

25 currentC.receive_404StrFromS ();

26 break ;}

27 _Y:do {

28 switch (currentC.receive_Choice2LabelFromS ()) {

29 case DATE:

30 currentC.receive_dateStrFromS ();

31 continue _Y;

32 ... // other cases corresponding to the header fields

33 case BODY:

34 currentC.receive_bodyStrFromS ();

35 break _Y;}

36 } while (true);}

Listing 1.5. Client Implementation

In line 2 we create a new HTTP client, currentC, and proceed by showing the
code for a small correctly formatted request, with the initial, mandatory request
line messages being sent first (lines 5–6); then among the recursive choice cases

Typechecking Java Protocols with [St]Mungo 219

we show the code for sending the the host field (lines 10–11), before concluding
the request by an empty body (lines 15–16). Then currentC will receive the
response status line (lines 19–26) followed by recursive choice cases for the fields
to be received from the server (lines 27–36).

To ensure that methods of the protocol are called in a valid sequence and
that all possible responses are handled, the CMain implementation is checked
by computing the sequences of method calls that are made on the currentC
object, inferring the minimal typestate specification that allows them, and then
comparing it with the specification declared in CProtocol.

4 How to Run [St]Mungo: A Step-by-Step Tutorial

Scribble ProjectionScribble
Global Protocol

StMungo translationScribble
 Local Protocol

Mungo checkingTypestate Specification
Java API skeleton Implementation

Typestate Specification
Java application

Mungo checking

Implementation

The tools together with the HTTP example and further examples can be
obtained from the [St]Mungo repository [1].

The tools come prebuilt and ready to use as runnable jar files: stmungo.jar
and mungo.jar. In the same repository we also provide the latest release—0.4.3,
of the command line tool for Scribble.

We show how to use these tools via the HTTP example, assuming the root
folder of the repository linked above.

To run the Scribble tool on the global protocol for validation only: ./
scribble-0.4.3/scribblec.sh demos/http/Http.scr

To run the Scribble tool on the global protocol and project the client role:
./scribble-0.4.3/scribblec.sh demos/http/Http.scr -project http C

To run StMungo and obtain the Java prototype implementation: java -jar
stmungo.jar demos/http/Http_C.scr

To run Mungo: java -jar mungo.jar demos/http/CMain.java
Finally, if no errors are reported, the code can be compiled with javac and

run as standard Java code.

5 Related Work

There is a huge and growing literature on session types and other forms of
behavioural types, going back to the original papers on binary session types
[26,28,44] and multiparty session types [29,30]. The BETTY project1 produced
three survey articles: one on foundations of behavioural types [33], one on
behavioural types and security [13] and one on behavioural types in programming

1 COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems
(BETTY), www.behavioural-types.eu.

220 A. L. Voinea et al.

languages [5]. The project also produced a book [24] describing implementations
of programming languages and tools based on behavioural types. The ABCD
project2 has produced a list of implementations of session types in programming
languages.

Since the introduction of typestate [42], there have been several projects
to add the concept to practical programming languages. Vault [18,21] is an
extension of C, and Fugue [19] applies similar ideas to C#. Plural [10] is based
on Java and has been used to study access control systems [9] and transactional
memory [8], and to evaluate the effectiveness of typestate in Java APIs [10].
Sing# [20] is an extension of C# which was used to implement Singularity,
an operating system based on message-passing. It incorporates typestate-like
contracts, which are a form of session type, to specify protocols. Bono et al. [12]
have formalised a core calculus based on Sing# and proved type safety.

The Plaid programming language [3,43] proposes a new paradigm of
typestate-oriented programming. Instead of class definitions, a program con-
sists of state definitions containing methods that cause transitions to other
states. Transitions are specified in a similar way to Plural’s pre- and post-
conditions. Like classes, states are organised into an inheritance hierarchy. Recent
work [23,45] uses gradual typing to integrate static and dynamic typestate
checking.

Bodden and Hendren [11] developed the Clara framework, which combines
static typestate analysis with runtime monitoring. The monitoring is based
on the trace matches approach [4], using regular expressions to define allowed
sequences of method calls. The static analysis attempts to remove the need for
runtime monitoring, but if this is not possible, the runtime monitor is optimised.

A challenge in typestate systems is aliasing. State changes to a given object
must be reflected in all references that point to that object, otherwise incon-
sistency can result in violations of type safety. The literature includes sev-
eral approaches to alias control. Some work, including ours, uses linear typ-
ing to forbid aliasing completely. The adoption and focus approach of Vault
and Fugue, and the permission-based approaches of Plural and Plaid, are more
flexible. Militão et al. [36] present an expressive fine-grained system. Crafa and
Padovani [16,40] present an approach to concurrent typestate-oriented program-
ming, allowing objects to be accessed and modified concurrently by several pro-
cesses, each potentially changing only part of their state. Some work [32,39]
combines static checking of typestate (or session type) properties with dynamic
monitoring of (non-)aliasing properties. Balzer et al. [7] augment session types
with points at which locks need to be acquired in order to perform state-changing
operations; this approach has not yet been applied to a typestate system.

There is relatively little work combining behavioural types and typestate in
the way that Mungo and StMungo do. The only other research we are aware of
is the API generation approach of Hu [31]. The idea is to translate a Scribble
protocol into a collection of classes for a standard language such as Java [32],

2 EPSRC EP/K034413/1 From Data Types to Session Types: A Basis for Concurrency
and Distribution (ABCD), groups.inf.ed.ac.uk/abcd/.

Typechecking Java Protocols with [St]Mungo 221

F# [37] or Go [15]. Each class represents a particular state in a protocol, with the
methods available in that state. Each method returns the object on which it was
called, but with a different class corresponding to the new state of the object.
Because each state has its own class, standard IDEs can show the programmer
which methods are available; however, for a complex protocol there can be a large
number of classes. Runtime monitoring is used to check absence of aliasing.

For this tutorial we have used an example based on a standard internet
protocol, HTTP. In previous work with Mungo and StMungo we have analysed
SMTP [34,35] and POP3 [17]. Hu et al. also use SMTP [32,37] and HTTP [31]
as case studies.

6 Conclusion and Future Work

We have presented a tutorial on using the [St]Mungo toolchain for static type-
checking of a communication protocols. StMungo connects the Scribble specifi-
cation language, used to define communication protocols, to Mungo by translat-
ing multiparty session types into typestate specifications. Mungo extends Java
with typestate specifications, which annotate classes and define the permitted
sequence of method calls of Java objects. We illustrate the workflow of both tools
through implementing a substantial case study, an HTTP client. We use this
client to communicate with a real-world server, the www.google.co.uk server.

While the toolchain is effective for statically typechecking the correct imple-
mentation of communication protocols, we intend to further improve its features
for distributed programming in Java. On the StMungo side, we will keep it up to
date with any changes in the Scribble specification language. On the Mungo side,
we aim to offer static typechecking of generics and exceptions. To support gener-
ics, method calls on an object whose type is a generic parameter must be type-
checked against the typestate specification of the parameter’s upper bound. To
support typechecking of exception handlers, typestate specifications must define
the state transitions corresponding to exceptions, and check the transitions are
consistent with the states of fields at the point where an exception is thrown.
While existing work on exceptions in session types [14] provides inspiration, the
complexities of Java’s exception mechanism need to be accounted for as well.
Another aim is to improve Mungo’s error messages to better allow debugging.

References

1. Mungo Repository. https://bitbucket.org/abcd-glasgow/mungo-tools/src/master/
2. Mungo Webpage. http://www.dcs.gla.ac.uk/research/mungo/
3. Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.: Typestate-oriented programming.

In: OOPSLA Companion, pp. 1015–1022. ACM (2009). https://doi.org/10.1145/
1639950.1640073

4. Allan, C., et al.: Adding trace matching with free variables to AspectJ. In: OOP-
SLA, pp. 345–364. ACM (2005). https://doi.org/10.1145/1094811.1094839

5. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016). https://doi.org/10.1561/2500000031

https://bitbucket.org/abcd-glasgow/mungo-tools/src/master/
http://www.dcs.gla.ac.uk/research/mungo/
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1094811.1094839
https://doi.org/10.1561/2500000031

222 A. L. Voinea et al.

6. ANTLR Project Homepage. www.antlr.org
7. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session

types. In: Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 611–639. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17184-1 22

8. Beckman, N.E., Bierhoff, K., Aldrich, J.: Verifying correct usage of atomic blocks
and typestate. In: OOPSLA, pp. 227–244. ACM (2008). https://doi.org/10.1145/
1449764.1449783

9. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: OOP-
SLA, pp. 301–320. ACM (2007). https://doi.org/10.1145/1297027.1297050

10. Bierhoff, K., Beckman, N.E., Aldrich, J.: Practical API protocol checking with
access permissions. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
195–219. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03013-
0 10

11. Bodden, E., Hendren, L.J.: The clara framework for hybrid typestate analysis.
STTT 14(3), 307–326 (2012). https://doi.org/10.1007/s10009-010-0183-5

12. Bono, V., Messa, C., Padovani, L.: Typing copyless message passing. In: Barthe,
G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 57–76. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19718-5 4

13. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Information flow safety in mul-
tiparty sessions. Math. Struct. Comput. Sci. 26(8), 1352–1394 (2016). https://doi.
org/10.1017/S0960129514000619

14. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions in session
types. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
402–417. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-
9 32

15. Castro-Perez, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed pro-
gramming using role-parametric session types in go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019). https://doi.org/10.1145/3290342

16. Crafa, S., Padovani, L.: The chemical approach to typestate-oriented programming.
In: OOPSLA, pp. 917–934. ACM (2015). https://doi.org/10.1145/2814270.2814287

17. Dardha, O., Gay, S.J., Kouzapas, D., Perera, R., Voinea, A.L., Weber, F.: Mungo
and StMungo: tools for typechecking protocols in Java. In: Behavioural Types:
From Theory to Tools. River Publishers (2017)

18. DeLine, R., Fähndrich, M.: Enforcing high-level protocols in low-level software.
In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 59–69. ACM (2001). https://doi.org/10.
1145/378795.378811

19. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24851-4 21

20. Fähndrich, M., et al.: Language support for fast and reliable message-based com-
munication in singularity OS. In: EuroSys, pp. 177–190. ACM (2006). https://doi.
org/10.1145/1217935.1217953

21. Fähndrich, M., DeLine, R.: Adoption and focus: practical linear types for imper-
ative programming. In: PLDI, pp. 13–24. ACM (2002). https://doi.org/10.1145/
512529.512532

22. Fielding, R.T., Reschke, J.F.: Hypertext transfer protocol (HTTP/1.1): message
syntax and routing. RFC 7230, pp. 1–89 (2014)

www.antlr.org
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1145/1449764.1449783
https://doi.org/10.1145/1449764.1449783
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1007/978-3-642-03013-0_10
https://doi.org/10.1007/978-3-642-03013-0_10
https://doi.org/10.1007/s10009-010-0183-5
https://doi.org/10.1007/978-3-642-19718-5_4
https://doi.org/10.1017/S0960129514000619
https://doi.org/10.1017/S0960129514000619
https://doi.org/10.1007/978-3-540-85361-9_32
https://doi.org/10.1007/978-3-540-85361-9_32
https://doi.org/10.1145/3290342
https://doi.org/10.1145/2814270.2814287
https://doi.org/10.1145/378795.378811
https://doi.org/10.1145/378795.378811
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1145/1217935.1217953
https://doi.org/10.1145/1217935.1217953
https://doi.org/10.1145/512529.512532
https://doi.org/10.1145/512529.512532

Typechecking Java Protocols with [St]Mungo 223

23. Garcia, R., Tanter, É., Wolff, R., Aldrich, J.: Foundations of typestate-oriented pro-
gramming. ACM Trans. Program. Lang. Syst. 36(4), 12:1–12:44 (2014). https://
doi.org/10.1145/2629609

24. Gay, S.J., Ravara, A. (eds.): Behavioural Types: From Theory to Tools. River
Publishers, Denmark (2017)

25. Hedin, G.: An introductory tutorial on JastAdd attribute grammars. In: Fernandes,
J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp.
166–200. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18023-
1 4

26. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

27. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19056-8 4

28. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

29. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008). https://doi.org/10.1145/1328438.1328472

30. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695

31. Hu, R.: Distributed programming using Java APIs generated from session types.
Behavioural Types: from Theory to Tools, pp. 287–308 (2017)

32. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

33. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016). https://doi.org/10.1145/2873052

34. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
mungo and StMungo. In: PPDP, pp. 146–159. ACM (2016). https://doi.org/10.
1145/2967973.2968595

35. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo: a session type toolchain for java. Sci. Comput. Program.
155, 52–75 (2018). https://doi.org/10.1016/j.scico.2017.10.006

36. Militão, F., Aldrich, J., Caires, L.: Aliasing control with view-based typestate.
In: FTfJP@ECOOP, pp. 7:1–7:7. ACM (2010). https://doi.org/10.1145/1924520.
1924527

37. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: CC, pp.
128–138. ACM (2018). https://doi.org/10.1145/3178372.3179495

38. Öqvist, J.: ExtendJ: extensible java compiler. In: Programming, pp. 234–235. ACM
(2018). https://doi.org/10.1145/3191697.3213798

39. Padovani, L.: A simple library implementation of binary sessions. J. Funct. Pro-
gram. 27, e4 (2017). https://doi.org/10.1017/S0956796816000289

40. Padovani, L.: Deadlock-free typestate-oriented programming. Program. J. 2(3), 15
(2018). https://doi.org/10.22152/programming-journal.org/2018/2/15

41. Scribble Project Homepage. www.scribble.org

https://doi.org/10.1145/2629609
https://doi.org/10.1145/2629609
https://doi.org/10.1007/978-3-642-18023-1_4
https://doi.org/10.1007/978-3-642-18023-1_4
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1145/1924520.1924527
https://doi.org/10.1145/1924520.1924527
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3191697.3213798
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.22152/programming-journal.org/2018/2/15
www.scribble.org

224 A. L. Voinea et al.

42. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986). https://doi.
org/10.1109/TSE.1986.6312929

43. Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, É.: First-class state change in
Plaid. In: OOPSLA, pp. 713–732 (2011). https://doi.org/10.1145/2048066.2048122

44. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7 118

45. Wolff, R., Garcia, R., Tanter, É., Aldrich, J.: Gradual typestate. In: Mezini, M.
(ed.) ECOOP 2011. LNCS, vol. 6813, pp. 459–483. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22655-7 22

https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/2048066.2048122
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-642-22655-7_22

Short Paper

Towards a Hybrid Verification
Methodology for Communication

Protocols (Short Paper)

Christian Bartolo Burlò1(B) , Adrian Francalanza1(B) ,
and Alceste Scalas2(B)

1 University of Malta, Msida, Malta
{christian.bartolo.16,adrian.francalanza}@um.edu.mt

2 Aston University, Birmingham, UK
a.scalas@aston.ac.uk

Abstract. We present our preliminary work towards a comprehensive
solution for the hybrid (static + dynamic) verification of open distributed
systems, using session types. We automate a solution for binary ses-
sions where one endpoint is statically checked, and the other endpoint
is dynamically checked by a monitor acting as an intermediary between
typed and untyped components. We outline our theory, and illustrate a
tool that automatically synthesises type-checked session monitors, based
on the Scala language and its session programming library (lchannels).

Keywords: Session types · Static and dynamic verification · Monitors

1 Introduction

Session Types [12,13,27] have emerged as a central formalism for the verification
of concurrent and distributed programs. Session-types-based analysis ensures
that a program correctly implements some predetermined communication pro-
tocol, stipulating the desired exchange of messages [4,16]. The analysis is typi-
cally performed statically, via type checking, before the programs are deployed.
However, full static analysis is not always possible (e.g., when the source code of
third-party programs and components is unavailable); in such cases, session types
are checked at runtime via monitors [6,10,17,19]. We view these approaches as
two extremes on a continuum: our aim is to develop practical hybrid (static and
dynamic) verification methodologies and tools for distributed programs in open
settings. In particular, our aim is to verify distributed systems where:

The research was partly supported by the EU H2020 RISE programme under the Marie
Sk�lodowska-Curie grant agreement No. 778233.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 227–235, 2020.
https://doi.org/10.1007/978-3-030-50086-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_13&domain=pdf
http://orcid.org/0000-0002-0016-086X
http://orcid.org/0000-0003-3829-7391
http://orcid.org/0000-0002-1153-6164
https://doi.org/10.1007/978-3-030-50086-3_13

228 C. Bartolo Burlò et al.

(i) we make no assumptions on how messages are delivered between compo-
nents;

(ii) the components available prior-deployment are checked statically; and
(iii) the components that are unavailable for checking prior-deployment are ver-

ified at runtime, by deploying autogenerated, type-checked monitors.

To achieve this aim, we present a methodology with three key features, presented
as contributions in this paper:

F1. Open systems are prone to malicious attacks and data corruption. Thus, we
describe protocols via augmented session types including runtime data asser-
tions (reminiscent of interaction refinements [18]), and synthesise monitors
that automate such data checks. Unlike [6,18], our monitors are indepen-
dent, type-checked processes, that can be deployed over any network.

F2. We develop a tool that, given a session type S, can synthesise the Scala code
of (1) a type-checked monitor that verifies at run-time whether an interaction
abides by S (aim (iii)), and (2) the signatures usable to implement a process
that interacts according to S, in a correct-by-construction manner (aim (ii)).

F3. Our monitor synthesis can abstract over low-level communication protocols,
bridging across a variety of message transports (e.g., TCP/IP, REST, etc.):
this is key to facilitate the interaction with third-party (untyped) compo-
nents in open systems (aim (i)); this is also unlike previous work on session
monitoring (theoretical [6] or practical [19]) that focus on a specific technol-
ogy and runtime system, or assume a centralised message routing medium.

2 Binary Sessions with Assertions

A session type defines the intended behaviour of a participant that communicates
with another over a channel. Our work is based on session types with assertions:

Assertions A ::= v1 == v2 | v1 >= v2 | A1 && A2 | !A | . . .
Base types B ::= Int | Str | Boolean | . . .

Session types R,S ::= &i∈I?li(Vi : Bi)[Ai].Si | ⊕i∈I !li(Vi : Bi)[Ai].Si

| rec X.S | X | end (with I �=∅, li pairwise distinct)

We assume a set of base types B, and introduce payload identifiers V (with
their types) and assertions A (i.e., predicates on payload values). Branching (or
external choice) &i∈I?li(Vi : Bi)[Ai].Si requires the participant to receive one
message of the form li(vi), where vi is of (base) type Bi for some i ∈ I; the value
vi (i.e., the message payload) is bound to the variable Vi in the continuation. If
the assertion Ai [vi/Vi] holds, the participant must proceed according to the con-
tinuation type Si [vi/Vi], but if the assertion fails, a violation is raised. Selection
(or internal choice) ⊕i∈I !li(Vi : Bi)[Ai].Si requires the participant to choose and
send one message li(vi) where vi is of (base) type Bi for some i ∈ I; a violation
is raised if the assertion Ai [vi/Vi] does not hold, otherwise the protocol proceeds
as Si [vi/Vi]. The recursive session type rec X.S binds the recursion variable X

Towards a Hybrid Verification Methodology for Communication Protocols 229

in S (we assume guarded recursion), while end is the terminated session. For
brevity, we often omit ⊕ and & for singleton choices, end, and trivial assertions
(i.e., true). A process implementing a session type S can correctly interact with
a process implementing the dual type of S, denoted S—where each selection
(resp. branching) of S is a branching (resp. selection), with the same choices:
&i∈I?li(Vi : Bi)[Ai].Si = ⊕i∈I !li(Vi : Bi)[Ai].Si end = end X = X

⊕i∈I !li(Vi : Bi)[Ai].Si = &i∈I?li(Vi : Bi)[Ai].Si rec X.S = rec X.S

Example 1. The type Slogin below describes the protocol of a server handling
authorised logins. Notice that the type uses two assertion predicates:

– validAuth() checks if an OAuth2-style token [20] authorises a given user;
– validId() checks whether an authentication id is correct for a given user.

Slogin = rec X.?Login(uname:Str, pwd :Str, tok:Str)[validAuth(uname, tok)].
⊕{

!Success(id :Str)[validId(id , uname)].R , !Retry().X
}

The server waits to receive Login(uname:Str, pwd :Str, tok :Str), where tok is
a token obtained by the client from an authorisation service. Once received,
the values of uname and tok are passed to the predicate validAuth() which
checks whether tok contains a desired cryptographically-signed authorisation for
uname: if it evaluates to true, the server can either send Success including an id ,
or Retry. If the server chooses the former, then id and uname must be validated
by validId(): if it succeeds, the message is sent and the server continues along
session type R. If the server chooses to send Retry, the session loops. �

3 Design and Implementation

We now give an overview (Sect. 3.2) and an example-driven tour (Sect. 3.3) of our
methodology; but first, we summarise the toolkit underlying its implementation
(Sect. 3.1).

3.1 Background: Session Programming with lchannels

lchannels [21,24,25] is a library implementation of session types in the Scala
programming language. Its API is inspired by the continuation-passing encoding
of session types into the linear π-calculus [9]. lchannels allows to implement
a program that communicates according to a session type S by (1) translating
S into a set of Continuation-Passing Style Protocol classes (CPSPc), capturing
the order of send/receive operations in S; and (2) communicating via “one-
shot” channel objects, having type Out[A] or In[A]—where A is a CPSP class.
We show an example of CPSPc in Sect. 3.3. The main payoffs of lchannels
are that (1) the CPSP classes restrict the usage the In[A]/Out[A] channel
objects to receive/send messages according to S, letting the Scala compiler check
safety (i.e., only messages allowed by S are sent) and exhaustiveness (i.e., all

230 C. Bartolo Burlò et al.

inputs allowed by S are handled); and (2) the library provides run-time lin-
earity enforcement: e.g., if a “one-shot” channel object is used twice to send
messages, then the program is not advancing along S, hence lchannels discards
the message and raises an error.

3.2 Hybrid Verification via Static and Dynamic Checking

Srv C

Slogin

We now illustrate how our methodology is implemented,
as a tool [7] targeting the Scala programming language.
Consider the scenario on the right: a client C exchanges
messages with a server Srv over a network. Srv imple-
ments the session type Slogin outlined in Example 1, and expects each client C
to follow the dual, Slogin. However, in an open system, we cannot guarantee that
C abides by Slogin.

Srv Mon CM C

SynthSlogin CPSPc

lchannels

Our approach is outlined on the left.
The accessible participant Srv is statically
checked, and the behaviour of the inacces-
sible participant C is dynamically moni-
tored at runtime. Given Slogin, the syn-

thesiser Synth generates (1) the Continuation-Passing-Style Protocol classes
(CPSPc) for representing Slogin in Scala and lchannels (see Sect. 3.1), and (2)
the source code of a runtime monitor (Mon), based on the CPSPc above. Below
are the CPSPc generated from Slogin by our synthesiser: notably, they can be
used to write a type-checked version of Srv.

1 case class Login(uname: String, pwd: String, tok: String)(val cont: Out[Choice1])
2 sealed abstract class Choice1
3 case class Success(id: String)(val cont: Out[R]) extends Choice1
4 case class Retry()(val cont: Out[Choice1]) extends Choice1
5 case class R(...) // This is the continuation of the session (omitted)

The messages sent from Srv to C (and vice versa) must pass through the mon-
itor Mon. As Srv and Mon use lchannels to interact, they are statically typed
according to Slogin and Slogin; instead, there is no assumption on the interaction
between Mon and C: it is handled by a user-supplied connection manager (CM),
which acts as a translator and gatekeeper by transforming messages from the
transport protocol supported by C to the Mon’s CPSP classes, and vice versa.
Hence, CM provides a message transport abstraction for Mon and Srv: to support
new clients and message transports, only CM needs extending.

When the monitor is initialised, it invokes CM to set up the communication
channel with client C, through a suitable message transport: e.g., in the case
of TCP/IP, CM creates a socket and initialises the I/O buffers. Each message
sent from Srv to Mon via lchannels is analysed by Mon, and if it conforms to
Slogin and its assertions, it is translated by CM and forwarded to C. Dually, each
message sent from C to Mon is translated by CM and analysed by Mon, and if
it conforms to Slogin and its assertions, it is forwarded to Srv. Mon’s assertion
checks provide additional verification against incorrect values from Srv or C.

Towards a Hybrid Verification Methodology for Communication Protocols 231

3.3 A Step-by-Step Example

To illustrate our approach and implementation, we now follow the message
exchanges prescribed by Slogin, showing how they engage with the elements
of our design. Roughly, Mon acts as a state machine: it transitions by receiving
and forwarding messages between Srv and CM, abiding by the type Slogin and its
dual. CM, in turn, provides a send/receive interface to Mon, and delivers mes-
sages to/from client C. The monitor also maintains a mapping, called payloads,
that associates the payload identifiers of Slogin to their current values.

1 val loginR = """LOGIN (.+) (.+) (.+)""".r
2 def receive(): Any = inBuf.readLine() match {
3 case loginR(uname, pwd, tok) => Login(uname, pwd, tok)(null)
4 case other => other
5 }

We begin with the
login request sent from
a client over TCP/IP.
The client’s message
is initially handled by

the connection manager CM, which provides a receive method like the one
shown above: it is invoked by Mon to retrieve messages. When invoked, receive
checks the socket input buffer inBuf: if a new supported message is found (line
3, where the message matches the regex loginR), the corresponding CPSP class
is returned to the monitor; otherwise, the unaltered message is returned (line 4).

1 def receiveLogin(srv: Out[Login], client: ConnManager): Unit = {
2 client.receive() match {
3 case msg @ Login(_, _, _) =>
4 if (validateAuth(msg.uname, msg.tok)) {
5 val cont = srv !! Login(msg.uname, msg.pwd, msg.tok)_
6 payloads.Login.uname = msg.uname
7 sendChoice1(msg.cont, client) // Protocol continues
8 } else { /* log and halt: Incorrect values received */ }
9 case _ => /* log and halt: Unexpected message received */

10 } }

On the left is the
synthesised code
for Mon that han-
dles the beginning
of Slogin. The mon-
itor invokes CM’s
method receive
(shown above) to
retrieve the latest

message (line 2). Depending on the type of message, the monitor will perform a
series of actions. By default, a catch-all case (line 9) handles any messages violat-
ing the protocol. If Login is received, the monitor initially invokes the function
validateAuth() with the values of uname and tok; i.e., the assertion predicate
in Slogin corresponds to a Scala function (imported from a user-supplied library).
If the function returns true, the message is forwarded to the server Srv (line 5),
otherwise the monitor logs the violation and halts. The function used to forward
the message (!!), which is part of lchannels, returns a continuation channel
that is stored in cont. The value of uname is stored in a mapping (line 6) since it
is used later on in Slogin. Finally, the monitor moves to the next state, by calling
the synthesised method sendChoice1, passing cont to continue the protocol.

232 C. Bartolo Burlò et al.

1 def sendChoice1(srv: In[Choice1], Client: ConnManager): Unit = {
2 srv ? {
3 case msg @ Success(_) =>
4 if (validateId(msg.id, payloads.Login.uname)) {
5 Client.send(msg)
6 /* Continue according to R */
7 } else {
8 /* log and halt: Sending incorrect values. */
9 }

10 case msg @ Retry() =>
11 Client.send(msg)
12 receiveLogin(msg.cont, Client)
13 } }

On the left is the
synthesised code
of Mon that han-
dles the server’s
response to the
client. According
to Slogin, the
server can choose
to send either
Success or Retry;

correspondingly, the monitor waits to receive either of the options from Srv, using
the function ? from lchannels (line 2).

– If the server sends Success, including the value id as specified in Slogin, the
first case is selected (line 3). The monitor evaluates the assertion on id and
uname (stored in receiveLogin above, and now retrieved from the payloads
mapping): if it is satisfied, the message is sent to the client (line 5) via CM’s
send method (explained below), and the monitor continues according to ses-
sion type R. Otherwise, the monitor logs a violation and halts (line 8).

– Instead, if the server sends Retry (line 10), the message is forwarded directly
to the client using the method send of the CM (see below); notice that there
are no dynamic checks at this point, as there is no assertion after Retry in
Slogin. The monitor then goes back to the previous state receiveLogin.

Notably, unlike the synthesised code of receiveLogin (that handles the previous
external choice), there is no catch-all case for unexpected messages from Srv. In
fact, here we assume that Srv is written in Scala and lchannels, hence statically
checked, and conforming to Slogin; hence, it can only send one of the expected
messages (as per Sect. 3.1). The monitor only checks the assertions on Srv’s
messages.

1 def send(msg: Any): Unit = msg match {
2 case Success(id) => outB.write(f"SUCCESS ${id}\n")
3 case Retry() => outB.write(f"RETRY\n")
4 case _ => { close();
5 throw new Exception("Invalid message") }
6 }

Finally, we review the send
method of CM: it trans-
lates messages from a CPSP
class instance to the for-
mat accepted by the client’s
transport protocol. In this

case, the format is a textual representation of the session type. The catch-all
case (lines 4–5) is for debugging purposes.

4 Conclusion

We presented our preliminary work on the hybrid verification of open distributed
systems, based on session types with assertions and automatically syntehsised
monitors—with a supporting tool [7] based on the Scala programming language.

Future Work. Our approach adheres to the “fail-fast” design methodology: if
an assertion fails, the monitor logs the violation and halts. In the practice of

Towards a Hybrid Verification Methodology for Communication Protocols 233

distributed systems, “fail-fast” is advocated as an alternative to defensive pro-
gramming [8]; it is also in line with existing literature on runtime verification [5].
Our further rationale for this design choice is that we intend to investigate mon-
itorability properties of session types, along the lines of recent work [1,2,11],
and identify any limits, in terms of what can be verified at runtime. We plan
to extend our approach to multiparty sessions [14,15], in connection to existing
work [22,23] based on lchannels and Scribble [26,28]. Finally, we plan to inves-
tigate how to handle assertion violations by adding compensations to our session
types, formalising how the protocol should proceed whenever an assertion fails.

Related Work. The work in [6] formalises a theory of monitored (multiparty)
session types, based on a global, centralised router providing a safe transport
network that dispatches messages between participant processes. The main com-
monality with our work is that session types are used to synthesise monitors.
The main differences (besides our focus on a tool implementation) are that (1)
we do not assume a centralised message routing system, and consider the net-
work adversarial (as per contribution F1) and use monitors to also protect typed
participants; (2) our monitors can enforce data constraints, through assertions;
and (3) in our setting, if a participant sends an invalid message, the monitor
will flag violations (and stop computation) whereas [6] drops the invalid mes-
sage, but will continue forwarding the rest, akin to runtime enforcement via
suppressions [3]. Our protocol assertions are reminiscent of interaction refine-
ments in [18], that are also statically generated (by an F# type provider), and
dynamically enforced when messages are sent/received. However, we enforce our
assertions by synthesising well-typed monitoring processes that can be deployed
over a network, whereas [18] injects dynamic checks in the local executable of a
process.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. PACMPL
3(POPL), 1–29 (2019). https://doi.org/10.1145/3290365

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: An oper-
ational guide to monitorability. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019.
LNCS, vol. 11724, pp. 433–453. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30446-1 23

3. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On runtime enforcement via
suppressions. In: CONCUR, LIPIcs, vol. 118. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2018). https://doi.org/10.4230/LIPIcs.CONCUR.2018.34

4. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016). https://doi.org/10.1561/2500000031

5. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

https://doi.org/10.1145/3290365
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1

234 C. Bartolo Burlò et al.

6. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring
networks through multiparty session types. In: Beyer, D., Boreale, M. (eds.)
FMOODS/FORTE - 2013. LNCS, vol. 7892, pp. 50–65. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38592-6 5

7. Burlò, C.B., Francalanza, A., Scalas, A.: STMonitor implementation (February
2020). https://github.com/chrisbartoloburlo/stmonitor

8. Cesarini, F., Thompson, S.: ERLANG Programming, 1st edn. O’Reilly Media Inc.,
Sebastopol (2009)

9. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. Inf. Comput. 256,
253–286 (2017). https://doi.org/10.1016/j.ic.2017.06.002

10. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and Python. Form. Methods Syst. Des. 46(3), 197–225 (2014). https://doi.org/10.
1007/s10703-014-0218-8

11. Francalanza, A., Aceto, L., Ingolfsdottir, A.: Monitorability for the Hennessy–
Milner logic with recursion. Form. Methods Syst. Des. 51(1), 87–116 (2017).
https://doi.org/10.1007/s10703-017-0273-z

12. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

13. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL. ACM (2008). https://doi.org/10.1145/1328438.1328472. Full version in [15]

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 1–67 (2016). https://doi.org/10.1145/2827695

16. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 1–36 (2016). https://doi.org/10.1145/2873052

17. Jia, L., Gommerstadt, H., Pfenning, F.: Monitors and blame assignment for higher-
order session types. In: POPL. ACM (2016). https://doi.org/10.1145/2837614.
2837662

18. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: Compile-
time API generation of distributed protocols with refinements in f#. In: Proceed-
ings of the 27th International Conference on Compiler Construction, CC 2018.
ACM (2018). https://doi.org/10.1145/3178372.3179495

19. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
Proceedings of the 26th International Conference on Compiler Construction. ACM
(2017). https://doi.org/10.1145/3033019.3033031

20. OAuth Working Group: RFC 6749: OAuth 2.0 framework (2012). http://tools.ietf.
org/html/rfc6749

21. Scalas, A.: lchannels (2017). https://alcestes.github.io/lchannels
22. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty

sessions for safe distributed programming. In: ECOOP, Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 74. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2017). https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

23. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming (artifact). DARTS 3(2) (2017). https://
doi.org/10.4230/DARTS.3.2.3

https://doi.org/10.1007/978-3-642-38592-6_5
https://github.com/chrisbartoloburlo/stmonitor
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3033019.3033031
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
https://alcestes.github.io/lchannels
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/DARTS.3.2.3
https://doi.org/10.4230/DARTS.3.2.3

Towards a Hybrid Verification Methodology for Communication Protocols 235

24. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: ECOOP,
LIPIcs, vol. 56. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016).
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21

25. Scalas, A., Yoshida, N.: Lightweight session programming in scala (artifact).
DARTS 2(1) (2016). https://doi.org/10.4230/DARTS.2.1.11

26. Scribble Homepage (2020). http://www.scribble.org
27. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-

ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7 118

28. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2 3

https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/DARTS.2.1.11
http://www.scribble.org
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-319-05119-2_3

Author Index

Bartolo Burlò, Christian 227
Basile, Davide 3
Bernardo, Marco 22
Biewer, Sebastian 59
Bila, Eleni 39

Dardha, Ornela 208
Derrick, John 39
Dimitrova, Rayna 59
Doherty, Simon 39
Dongol, Brijesh 39

Feo-Arenis, Sergio 78
Francalanza, Adrian 227

Gay, Simon J. 208
Gazda, Maciej 59
Gros, Timo P. 96

Hermanns, Holger 59, 96
Hoffmann, Jörg 96
Hurault, Aurélie 133

Klauck, Michaela 96
Konnov, Igor 189

Lazić, Marijana 189
Legay, Axel 3

Mezzina, Claudio Antares 22
Minami, Kiraku 115
Mousavi, Mohammad Reza 59

Owe, Olaf 169

Queinnec, Philippe 133

Scalas, Alceste 227
Schellhorn, Gerhard 39
Shimi, Adam 133
Sproston, Jeremy 150
Steinmetz, Marcel 96
Stoilkovska, Ilina 189

ter Beek, Maurice H. 3
Tokas, Shukun 169

Voinea, A. Laura 208
Vujinović, Milan 78

Wehrheim, Heike 39
Westphal, Bernd 78
Widder, Josef 189

	Foreword
	Preface
	Organization
	Contents
	Full Papers
	Strategy Synthesis for Autonomous Driving in a Moving Block Railway System with Uppaal Stratego
	1 Introduction
	2 Background: Uppaal Stratego
	3 Context and Case Study
	4 Formal Model
	5 Formal Analysis and Experiments
	6 Conclusion and Future Work
	References

	Towards Bridging Time and Causal Reversibility
	1 Introduction
	2 Causal Consistent Reversibility
	3 Time Reversibility
	4 Integrating Causal and Time Reversibility
	4.1 Syntax and Semantics for RMPC
	4.2 Properties Preliminary to Reversibility
	4.3 Causal Consistent Reversibility for RMPC
	4.4 Time Reversibility for RMPC

	5 Conclusions
	References

	Defining and Verifying Durable Opacity: Correctness for Persistent Software Transactional Memory
	1 Introduction
	2 Transactional Memory and Opacity
	2.1 Histories
	2.2 Opacity

	3 STMs over Persistent Memory
	3.1 Durable Opacity
	3.2 Example: Durable Transactional Mutex Lock

	4 Proving Durable Opacity
	4.1 Background: IOA, Refinement and Simulation
	4.2 IOA for dTML
	4.3 IOA for dTMS2

	5 Durable Opacity of dTML
	6 Related Work
	7 Conclusions
	References

	Conformance-Based Doping Detection for Cyber-Physical Systems
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Conformance-Based Cleanness
	5 Case Study
	6 Conclusions
	References

	On Implementable Timed Automata
	1 Introduction
	2 Preliminaries
	3 Implementable Timed Automata
	4 Timed While Programs
	5 Correct Implementation of Implementable Networks
	6 Evaluation and Discussion
	7 Conclusion
	References

	Deep Statistical Model Checking
	1 Introduction
	2 Background
	3 Neural Networks as MDP Action Policies
	4 Getting Concrete: The Racetrack Case Study
	5 Getting Practical: DSMC Case Studies in Racetrack
	5.1 Quality Assurance in System Approval
	5.2 Learning Pipeline Analysis and Revision
	5.3 Computational Effort for the Analysis

	6 Conclusion
	References

	Trace Equivalence and Epistemic Logic to Express Security Properties
	1 Introduction
	1.1 Background
	1.2 Contributions

	2 The Applied Pi Calculus
	2.1 Syntax
	2.2 Semantics

	3 Congruency of Trace Equivalence
	4 An Epistemic Logic for the Applied Pi Calculus
	4.1 Syntax
	4.2 Semantics
	4.3 Correspondence with Trace Equivalence
	4.4 Applications
	4.5 Comparison with the Work of Chadha et al.

	5 Related Work
	6 Conclusion
	6.1 Summary
	6.2 Future Work

	References

	Derivation of Heard-of Predicates from Elementary Behavioral Patterns
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions

	2 Operations and Examples
	2.1 Basic Concepts
	2.2 Definition of Operations
	2.3 Executions and Domination
	2.4 Examples
	2.5 Families of Strategies

	3 Oblivious Strategies
	3.1 Minimal Oblivious Strategy
	3.2 Operations Maintain Minimal Oblivious Strategy
	3.3 Computing Heard-of Predicates
	3.4 Domination by an Oblivious Strategy

	4 Conservative Strategies
	4.1 Minimal Conservative Strategy
	4.2 Operations Maintain Minimal Conservative Strategies
	4.3 Computing Heard-Of Predicates

	5 Conclusion
	References

	Probabilistic Timed Automata with One Clock and Initialised Clock-Dependent Probabilities
	1 Introduction
	2 Interval Markov Decision Processes
	3 Clock-Dependent Probabilistic Timed Automata with One Clock
	4 Translation from 1c-cdPTAs to IMDPs
	5 Conclusion
	References

	A Formal Framework for Consent Management
	1 Introduction
	2 Language Setting
	2.1 Policy and Consent Specification
	2.2 A High-Level Language for Active Objects

	3 Consent Management
	3.1 Data Collection from Sensitive Objects to Data Subjects

	4 Runtime System
	4.1 Runtime Tagging of Values
	4.2 Runtime Checking of Privacy Compliance
	4.3 Operational Rules

	5 Related Work
	6 Conclusion
	References

	Tutorials
	Tutorial: Parameterized Verification with Byzantine Model Checker
	1 Introduction
	2 Threshold-Guarded Distributed Algorithms
	2.1 Synchronous Algorithms
	2.2 Asynchronous Algorithms
	2.3 Randomized Algorithms

	3 Parameterized Verification
	3.1 Synchronous Algorithms
	3.2 Asynchronous Algorithms
	3.3 Asynchronous Randomized Multi-round Algorithms

	4 ByMC: Byzantine Model Checker
	5 Towards Verification of Tendermint Consensus
	6 Conclusions
	References

	Typechecking Java Protocols with [St]Mungo
	1 Introduction
	2 StMungo
	3 Mungo
	4 How to Run [St]Mungo: A Step-by-Step Tutorial
	5 Related Work
	6 Conclusion and Future Work
	References

	Short Paper
	Towards a Hybrid Verification Methodology for Communication Protocols (Short Paper)
	1 Introduction
	2 Binary Sessions with Assertions
	3 Design and Implementation
	3.1 Background: Session Programming with lchannels
	3.2 Hybrid Verification via Static and Dynamic Checking
	3.3 A Step-by-Step Example

	4 Conclusion
	References

	Author Index

