
Test-Case Reduction and Deduplication Almost for
Free with Transformation-Based Compiler Testing

Alastair F. Donaldson
Imperial College London

UK
alastair.donaldson@imperial.ac.uk

Paul Thomson
Google
UK

paulthomson@google.com

Vasyl Teliman
National Technical University

Ukraine
vasniktel@gmail.com

Stefano Milizia
Imperial College London

UK
stefano.milizia00@gmail.com

André Perez Maselco
Federal University of ABC

Brazil
andreperezmaselco.developer@gmail.com

Antoni Karpiński
Warsaw University of Technology

Poland
ant.karpinski@gmail.com

Abstract

Recent transformation-based approaches to compiler testing
look for mismatches between the results of pairs of equiva-
lent programs, where one program is derived from the other
by randomly applying semantics-preserving transformations.
We present a formulation of transformation-based compiler
testing that provides effective test-case reduction almost for
free: if transformations are designed to be as small and inde-
pendent as possible, standard delta debugging can be used to
shrink a bug-inducing transformation sequence to a smaller
subsequence that still triggers the bug. The bug can then
be reported as a delta between an original and minimally-
transformed program. Minimized transformation sequences
can also be used to heuristically deduplicate a set of bug-
inducing tests, recommending manual investigation of those
that involve disparate types of transformations and thus may
have different root causes. We demonstrate the effectiveness
of our approach via a new tool, spirv-fuzz, the first compiler-
testing tool for the SPIR-V intermediate representation that
underpins the Vulkan GPU programming model.

CCS Concepts: • Software and its engineering → Com-

pilers; Software testing and debugging.

Keywords: Compilers, metamorphic testing, SPIR-V

ACM Reference Format:

Alastair F. Donaldson, Paul Thomson, Vasyl Teliman, StefanoMilizia,

André Perez Maselco, and Antoni Karpiński. 2021. Test-Case Reduc-

tion and Deduplication Almost for Free with Transformation-Based

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.

https://doi.org/10.1145/3453483.3454092

Compiler Testing. In Proceedings of the 42nd ACM SIGPLAN Inter-

national Conference on Programming Language Design and Imple-

mentation (PLDI ’21), June 20ś25, 2021, Virtual, Canada. ACM, New

York, NY, USA, 16 pages. https://doi.org/10.1145/3453483.3454092

1 Introduction

Because compilers are critical pieces of infrastructure on
which practically all deployed software depends, there has
been a lot of research interest inmethods for randomized com-

piler testing [4], which involves feeding randomly-generated
or randomly mutated programs to a compiler with the aim of
provoking bugs. Using randomized testing to find miscompi-

lations, where the compiler mistakenly produces wrong code,
is hampered by the lack of an oracle to determine whether
the result produced by a compiled program is acceptable. The
oracle problem can be avoided by cross-checking results for
a program across multiple compilers, or results for multiple
equivalent programs using a single compiler.
Techniques that cross-check multiple compilers usually

work by randomly generating programs and associated in-
puts from scratch, taking measures to ensure that generated
programs are free from undefined behavior (UB) when ex-
ecuted on their inputs. A generated program is compiled
by each compiler under test and the resulting binaries are
executed. If the compilers agree on implementation-defined
behavior (e.g. the widths of integer types in C), the exe-
cution results should be identical; mismatches are signs of
compiler bugs. Csmith [38] and YARPGen [26] are examples
of program generators that facilitate cross-checking of C
compilers.
In contrast, techniques that cross-check equivalent pro-

gramswith respect to a single compiler typically start with an
original programÐe.g. an existing compiler test caseÐand an
associated input such that the program is free from UB when
executed on the input. They then apply many semantics-

preserving transformations to the program in a randomized
fashion: transformations that neither change the result the
program computes when executed on its input, nor introduce
UB. This allows many variants of the original program to be

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1017

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454092
https://doi.org/10.1145/3453483.3454092
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3453483.3454092&domain=pdf&date_stamp=2021-06-18

PLDI ’21, June 20ś25, 2021, Virtual, Canada A.F. Donaldson, P. Thomson, V. Teliman, S. Milizia, A. Perez Maselco, and A. Karpiński

randomly apply
transformations

Original

fuzzer P T1 T2 Tn
...

Variant

P

compile and
execute

compile and
execute

results agree

No bug found,
continue fuzzing

Bug found, run
the reducer

results differ

Figure 1. Transformation-based testing randomly applies
semantics-preserving transformations to an original pro-
gram to yield more complex variants

generated, such that the original program and all variants
should compute identical results for the input. Again, result
mismatches are indicative of compiler bugs. As two examples,
the Orion tool [22] transforms a C program by randomly
deleting statements that have been shown to be dynamically
unreachable, while the glsl-fuzz tool (originally called GL-
Fuzz) [7] randomly transforms an OpenGL shader program
using more general semantics-preserving transformations,
such as wrapping a block of code in a single-iteration loop.

We refer to approaches that generate equivalent variants
by transforming an original program as transformation-based

(compiler) testing techniques.1 Figure 1 illustrates visually
how the process of finding bugs via transformation-based
testingworks. The variant program is depicted as the original
program 𝑃 with a number of transformations applied to it.

We present an approach to designing transformation-based
testing tools that, almost for free, helps solve two important
problems associated with randomized testing: automated
reduction and deduplication of bug-triggering test cases. We
explain why each of these problems are important and how
transformation-based testing can help to solve them.

Test-case reduction. A generator of programs for compiler
cross-checking should err on the side of generating large
and complex programs, to increase the probability that a
generated program will happen to exhibit the requisite fea-
tures to trigger a bug [38]. Likewise, a transformation-based
testing tool should apply many diverse transformations to
an original program to generate complex variants.
However, large and complex programs are not suitable

for reporting compiler bugs as they are difficult for human
developers to understand. This has led to the design of cus-
tomized tools for automatically reducing programs, such
as C-Reduce [32], C-Vise [27] and llvm-reduce [36]. The

1We prefer łtransformationž over łmutationž to avoid confusion with

mutation-based fuzzing [28, 39].

Original Variant

Execution results differ

reducer
While results differ,

remove
transformations

Small subset of original
transformations

P T1 T2 Tn...P

Original Reduced variant
Execution results

still differ P T3 T82 T105P

Figure 2. Test-case reduction involves searching for a re-

duced variant featuring a minimal set of bug-triggering trans-
formations (transformations 3, 82 and 105 in this example)

.
OpReturnValue %83 OpReturnValue %83

OpFunctionEnd OpFunctionEnd

%18 = OpFunction %2 None %3 %18 = OpFunction %2 DontInline %3

%19 = OpLabel %19 = OpLabel

%86 = OpVariable %7 Function %86 = OpVariable %7 Function

.

Figure 3. The small delta between an original SPIR-V pro-
gram (left) and reduced variant (right) that triggered a bug
in SwiftShader. Both feature 481 instructions but differ in
just one instruction.

guidelines for submitting bug reports to the LLVM com-
piler insist that a report should include a reduced test case
and recommends using one of these tools [36]. When reduc-
ing programs that trigger miscompilation bugs, it is vital to
preserve freedom from UB, otherwise the reducer tends to
produce a small program that exhibits a difference in the way
two compilers resolve UB instead of a program that triggers
the original miscompilation bug. Program reducers rely on a
variety of external static and dynamic analysis tools (such
as the Clang Static Analyzer [35] and AddressSanitizer [35]
in the context of C/C++) to identify and discard candidate
reduced programs that trigger UB. These tools can be impre-
cise or expensive to run, and may not yet exist if compilers
for a new language are being tested.
Transformation-based testing offers a different take on

test-case reduction, illustrated in Figure 2. Having found a
variant program that triggers a compiler bug (see Figure 1),
instead of trying to reduce it to a small, standalone program
that still triggers the bug, we can consider simplifying the
variant so that it is as similar as possible to the original
program, is still equivalent to the original program, and still
triggers the bug. If the delta between the original program
and the simplified variant is small enough that it is obvious
to the human eye that it should have no semantic impact
then the pair of programs provides actionable evidence for
the compiler bug, suitable for inclusion in a bug report.

1018

Test-Case Reduction and Deduplication Almost for Free PLDI ’21, June 20ś25, 2021, Virtual, Canada

Figure 3 illustrates the delta between an original and re-
duced variant for a bug found using spirv-fuzz, the new
transformation-based testing tool for the SPIR-V program-
ming language that we discuss later in the paper. The original
and reduced programs both feature 481 instructions, but dif-
fer in just one instruction. The delta is trivial: in the reduced
variant the DontInline attribute has been added to request
that a function is not inlined. This was sufficient to provoke
a bug in SwiftShader, a software rendering tool that supports
SPIR-V [10]. It is immediately apparent from the delta that
the underlying bug is related to the handling of function
calls, providing a good starting point for debugging.
If transformations have been designed to be as simple

and fine-grained as possible then this form of test-case re-
duction is easy to implement: the simple and well-known
delta debugging algorithm [40] can be used to search for
a short subsequence of transformations that still yields a
bug-inducing variant. Because the original program is free
from UB (a requirement of transformation-based testing)
and transformations are semantics-preserving (thus do not
introduce UB), the simplified variant program is also free
from UB. External UB analysis tools are thus not required.

Test-case deduplication. Randomized testing is notorious
for finding duplicate bugs. While a small number of distinct
test cases that expose the same bug may be useful [41], it is
not appropriate to flood the bug tracker of a system under test
with a large number of reports containing many duplicates.

When applying randomized testing to a project where
bugs can be rapidly fixed it may be feasible to repeat the
process of: testing for a while; reporting one bug; waiting for
a fix [31]. However, when conducting external testing of a
system that is updated infrequently it is desirable to be able
to report many distinct bugs affecting the current version of
the system, so that the next update can include as many fixes
as possible. Android graphics drivers fall into this category:
driver updates are slow, indicated by the recent updatable
drivers effort [2], which still only targets a subset of devices.
In the context of compiler testing, test cases that trigger

compiler crashes are usually easy to deduplicate based on
errormessages, but deduplication is much harder for miscom-
pilations, where incorrect code is emitted with no indication
of the cause of the incorrectness.
We propose using the transformations associated with

a reduced variant as a heuristic for deduplication. If two
reduced variants feature radically different types of transfor-
mations then they may well turn out to trigger bugs with
distinct root causes. This is based on the intuition that com-
piler bugs tend to be triggered by particular features of input
programs, and thus two variants that have been created by
applying very different transformations are likely to exhibit
significantly different features. Of course, this is not guar-
anteed; we merely propose using this idea as a heuristic for
deduplication.

Our contributions.We show that by following certain prin-
ciples in the design of transformation-based compiler test-
ing, the benefits of test-case reduction and deduplication de-
scribed above can be enjoyed almost for free. To demonstrate
this, we have designed and implemented spirv-fuzz [34], the
first compiler-testing tool to directly target SPIR-V [17], the
intermediate representation used by the Vulkan GPU pro-
gramming model [15] and implemented by many GPU ven-
dors. SPIR-V is a timely target: many SPIR-V compilers are
under continuous development in response to evolving GPU
hardware, and are thus prone to regressions that spirv-fuzz
can defend against. SPIR-V features UB, but there do not yet
exist mature tools for static and dynamic analysis of this UB,
thus a test-case reduction approach that does not require
such tools is particularly valuable. Furthermore, SPIR-V com-
pilers are part of modern Android graphics drivers, which
are infrequently updated as discussed above, motivating the
need for effective deduplication techniques.

We explain our approach in general (ğ2) and then describe
the design of spirv-fuzz (ğ3), using examples to illustrate
why test-case reduction and deduplication come almost but
not completely for free: care is required in designing trans-
formations that are as small and independent as possible.
We report on controlled experiments to evaluate the ef-

fectiveness of spirv-fuzz (ğ4). We first assess its bug-finding
ability by comparing it with glsl-fuzz [7], a compiler-testing
tool for the OpenGL shading language that can target SPIR-V
via cross-compilation [8]. Applied to 9 different SPIR-V com-
pilers from 6 different organizations, our results show that
spirv-fuzz is more effective at bug-finding than glsl-fuzz with
high statistical confidence. We compare the reduction quality
of spirv-fuzz with that of glsl-fuzz, which has a hand-crafted
reducer, using data from hundreds of reduction runs, using
the size difference between an original program and reduced
variant as a measure of reduction quality (a small difference
indicates that reduction has worked well). The median dif-
ference in instruction counts across all reductions is 8 for
spirv-fuzz, vs. 29 for glsl-fuzz. The size differences between
original and unreduced programs are in the order of many
thousands of instructions, so our results show that both tools
are effective at test-case reduction, and suggest that spirv-
fuzz is slightly more effective despite the fact that its reducer
is not hand-crafted. We empirically assess our deduplica-
tion heuristic using a set of 1467 reduced bug-triggering test
cases that are known to trigger 78 crash bugs with distinct
root causes. Our heuristic suggests creating bug reports for
49 of the reduced variants, covering 41 of the distinct bugs,
thus missing 29 bugs and featuring 8 duplicates. The low
rate of duplicates suggests that this approach is relatively
conservative so that using it is unlikely to lead to developers
being overwhelmed with duplicate bugs, while still allowing
reporting of a large portion of the underlying distinct bugs.

1019

PLDI ’21, June 20ś25, 2021, Virtual, Canada A.F. Donaldson, P. Thomson, V. Teliman, S. Milizia, A. Perez Maselco, and A. Karpiński

We also discuss our experience of putting spirv-fuzz into
practice, using it to test several SPIR-V compilers that are un-
der active development, leading to us finding and reporting
74 bugs that we believe to be distinct (ğ5).

2 Transformation-Based Compiler Testing

We give an overview of our approach (ğ2.1) then present it
more formally (ğ2.2), and discuss principles for maximizing
the success of test-case reduction and deduplication (ğ2.3).

2.1 Example-Driven Overview

We illustrate our approach using a simple language of basic
blocks. Every block contains zero or more instructions of
the form 𝑥 := 𝑦1, 𝑥 := 𝑦1 + 𝑦2 or print(𝑦1), where 𝑥 is a
variable and each of 𝑦1, 𝑦2 is either a variable or a literal. A
block either branches unconditionally to a single successor,
or conditionally to a pair of successors based on the value of
a boolean variable, in which case edges are labeled with the
variable or its negation. This language is only intended to
provide intuition for our approach and we do not formalize it
further. Figure 4 shows several łbasic blocksž programs that
all print the same outputÐthe value 6Ðwhen executed on the
input shown in the figure. We discuss the transformations
in the figure and the meaning of dead in due course.
A transformation-based compiler-testing tool has two

main components: a fuzzer and a reducer.

The fuzzer. The fuzzer takes an initial program and input
and repeatedly modifies them in randomized fashion by ap-
plying a series of transformations. Each transformation is an
instantiation of a template that defines a family of related
ways that the program and/or its input can be transformed.

Table 1 sketches templates for a number of transforma-
tions that could be applied to łbasic blocksž programs. The
parameters of a template control the modifications the trans-
formation should make. For example, the parameters of
SplitBlock specify the block 𝑏 that should be split, the in-
struction offset 𝑜 at which the split should occur, and an
identifier 𝑓 for the new block that is introduced. A template
has a precondition that must hold for the transformation to
be safely applied, and an effect determining how the program
and input should change. These must satisfy the following: if
the precondition holds, the output of the original (program,
input) pair must match the output of the (program, input)
pair obtained by applying the effect. The precondition may
depend onwhether certain facts about the program and input
are known to hold, and the effect can record new facts that
arise as a result of how the program or input was modified.
Figure 4 shows a sequence of transformations that the

fuzzermight apply to a (rather trivial) łbasic blocksž program.
In practice, onewould start with amore realistic program and
apply hundreds or thousands of transformations at random.
Transformation 𝑇1 splits block 𝑎 after its leading instruc-

tion, placing the remaining instructions in a new block 𝑏.

The precondition holds because block 𝑎 exists, 1 is a valid
offset into 𝑎, and the identifier 𝑏 is fresh.

A dead block 𝑐 is added by𝑇2: 𝑎 is modified to conditionally
branch to its original successor 𝑏 or a new block 𝑐 depending
on the truth of a new variable, 𝑢. The new block 𝑐 branches
to 𝑏. By setting 𝑢 to true the transformation guarantees that
𝑐 will not be reachable at runtime (it is dynamically dead).
Right after 𝑇2 has been applied this is apparent, but future
transformations might obfuscate the program and make it
non-obvious (especially if we had more sophisticated trans-
formations than those of Table 1). Thus𝑇2 records a fact, ł𝑐 is
deadž, indicated by dead in Figure 4, which the preconditions
of future transformations can take on trust.
In particular, 𝑇3 exploits the fact ł𝑐 is deadž by adding an

instruction to 𝑐 that stores the value of 𝑖 to existing variable
𝑠 . In general, adding a store to an existing variable may
completely change the program’s semantics and thus would
not be legitimate, but a store in a dead block has no effect.

In contrast, a load from an existing program variable into
a fresh variable may be safely added at any program point;
𝑇4 adds a load from 𝑠 to new variable 𝑣 .

Finally, 𝑇5 exploits the fact that input 𝑘 has the value true
to change the assignment 𝑢 := true to 𝑢 := 𝑘 , obscuring
from the compiler (which cannot make assumptions about
the inputs on which the program will be run) the fact that
control is guaranteed to pass from 𝑎 directly to 𝑏.

The reducer. The example of Figure 4 is so simple that it
is clear both the original and fully transformed programs
should print the same value, but this will not be the case
when applying transformation-based testing for real. The
job of the reducer is to search for a small subsequence of
transformations that suffice to trigger the bug. This will
hopefully provide a much smaller transformed program to
serve as a good starting point for debugging.

Suppose the final program of Figure 4 was found to trigger
a bug in a łbasic blocksž compiler. The reducer would repeat-
edly try applying subsequences of 𝑇1, . . . ,𝑇5 from scratch
to the original program, in each case checking whether the
bug still manifests. This is where the precondition of a trans-
formation is important: it would make no sense to apply 𝑇2,
which adds a dead block 𝑐 with successor𝑏, if𝑇1 had not been
applied, since 𝑇1 introduces 𝑏. Because the effect of a trans-
formation is guaranteed to preserve program output when
the precondition holds, the reducer can try any subsequence
of transformations, skipping those whose preconditions fail.
For example, applying the subsequence 𝑇1,𝑇3,𝑇4,𝑇5 leads to
only𝑇1 and𝑇4 being applied:𝑇3’s precondition does not hold
because block 𝑐 (which would have been introduced by 𝑇2)
does not exist; 𝑇5 cannot be applied because the assignment
𝑢 := true, which 𝑇5 modifies, is not present.

The reduction process can be driven by delta debugging [40],
with the reducer terminating when a 1-minimal sequence
of transformations is found: a sequence that triggers the

1020

Test-Case Reduction and Deduplication Almost for Free PLDI ’21, June 20ś25, 2021, Virtual, Canada

AddStore(c, 0, s, i)

s := i + j
t := s + s
print(t) t := s + s

print(t)

aInput:
 i = 1
 j = 2
 k = true
(Not modified by
these transformations)

s := i + j

a

b

t := s + s
print(t)

s := i + j
u := true

a

b

c

u

!u

SplitBlock
(a, 1, b)

T1

AddDeadBlock
(a, c, u)

T2

dead

t := s + s
print(t)

s := i + j
u := true

a

bs := i

c

u

!u

dead

T3

v := s
t := s + s
print(t)

s := i + j
u := true

a

bs := i

c

u

!u

dead

v := s
t := s + s
print(t)

s := i + j
u := k

a

bs := i

c

u

!u

dead
ChangeRHS

(a, 1, k)
AddLoad
(b, 0, v, s)

T4T5

Figure 4. A series of transformations applied to a łbasic blocksž program; dead denotes a łblock is deadž fact

Table 1. Transformation templates for our basic blocks language, where 𝑏 denotes a block, 𝑜 an offset, 𝑥 an existing variable,
and 𝑓 a fresh block or variable identifier. Each precondition additionally requires that any block 𝑏 or variable 𝑥 exists.

Transformation Precondition Effect

SplitBlock(𝑏, 𝑜, 𝑓) 𝑏 has at least 𝑜 instructions; 𝑓 is fresh Instructions 𝑏 [𝑜] onward are placed in new block 𝑓 ; 𝑓 ’s

successors are 𝑏’s original successors; 𝑏 branches to 𝑓

AddDeadBlock(𝑏, 𝑓1, 𝑓2) 𝑏 has a single successor, 𝑐; 𝑓1 and 𝑓2 are fresh and

distinct

New block 𝑓1 is introduced, branching to 𝑐; 𝑓2 := true is

added to 𝑏; 𝑏 is changed to branch to 𝑐 if 𝑓2 holds and to

𝑓1 otherwise; fact ł𝑓1 is deadž is recorded

AddLoad(𝑏, 𝑜, 𝑓 , 𝑥) 𝑏 has at least 𝑜 instructions; 𝑓 is fresh 𝑓 := 𝑥 is added to 𝑏 at index 𝑜

AddStore(𝑏, 𝑜, 𝑥1, 𝑥2) Fact ł𝑏 is deadž holds; 𝑏 has at least 𝑜 instructions 𝑥1 := 𝑥2 is added to 𝑏 at index 𝑜

ChangeRHS(𝑏, 𝑜, 𝑥) 𝑏 [𝑜] has the form 𝑦 := 𝑧; 𝑥 and 𝑧 are guaranteed to

be equal at 𝑏 [𝑜]

𝑧 is replaced with 𝑥 in 𝑏 [𝑜]

bug with the property that if any single transformation is
removed from the sequence the bug is not triggered.
Suppose that to trigger the hypothetical bug in our ex-

ample it suffices to add a dead block and obfuscate the fact
that it is dead. Reduction would then find the minimized
transformation sequence𝑇1,𝑇2,𝑇5, whose application is illus-
trated in Figure 5. The ticks and cross indicate that programs
𝑃0Ð𝑃2 do not trigger the bug (if they did, the sequence would
not be 1-minimal) but 𝑃3 does. Comparing 𝑃3 with the final
program of Figure 4 we see that 𝑃3 is simpler.

Bug reports and regression tests. Suppose we have found
a 1-minimal sequence of transformations 𝑇1, . . . ,𝑇𝑛 that trig-
gers a bug when applied to an initial program and input
(𝑃0, 𝐼0). If the program and input obtained by applying the
first 𝑗 transformations is denoted (𝑃 𝑗 , 𝐼 𝑗) then any pair of pro-
grams and inputs ((𝑃 𝑗 , 𝐼 𝑗), (𝑃𝑛, 𝐼𝑛)), for 𝑗 < 𝑛, is suitable for
illustrating the bug: the delta between 𝑃 𝑗 and 𝑃𝑛 illustrates a
sufficient modification for the bug to trigger. In practice, the
cases where 𝑗 = 0 or 𝑗 = 𝑛−1 are the most useful. The former
demonstrates the complete delta, e.g. the pair of programs
(𝑃0, 𝑃3) in Figure 5 (all programs in the figure operate on the
same inputs). This is often attractive if the original program
𝑃0 is well-understood. The latter demonstrates only the final

transformation, e.g. the pair of programs (𝑃2, 𝑃3) in Figure 5.
This involves the smallest delta, but sometimes the fact that
this delta is semantics-preserving can be non-obvious when
it is viewed in isolation. The pair of programs and inputs
used to report the bug also provides a natural regression test
that can be added to the compiler’s test suite or to a confor-
mance test suite for the programming languages. Specifically
the test should execute both programs on their respective
inputs and check that their results are the same.

The comprehensibility of these bug reports and regression
tests depends on a reasonably small original program. In
our experiments (ğ4) we have found that a set of existing
manually-written test cases works well.

Deduplicating bug reports. Suppose we ran łbasic blocksž
fuzzing over a weekend and returned to find a set of 100 min-
imized miscompilation bug reports. As randomized testing
is infamous for producing duplicate bug reports, it is likely
that the reports all stem from a small number of distinct
miscompilation bugs, but we have no way of knowing for
sure without investigating the root cause of each bug in turn.

Suppose that: 35 of the minimized reports (set 𝐴) involve
all three of SplitBlock, AddDeadBlock and ReplaceRHS, po-
tentially multiple times, and no other transformations; 42

1021

PLDI ’21, June 20ś25, 2021, Virtual, Canada A.F. Donaldson, P. Thomson, V. Teliman, S. Milizia, A. Perez Maselco, and A. Karpiński

s := i + j
t := s + s
print(t) t := s + s

print(t)

a
s := i + j

a

b

t := s + s
print(t)

s := i + j
u := true

a

b

c

u

!u

SplitBlock
(a, 1, b)

T1

AddDeadBlock
(a, c, u)

T2

dead
ChangeRHS

(a, 1, k)

T5

t := s + s
print(t)

s := i + j
u := k

a

b

c

u

!u

dead

P0 P1 P2 P3

Figure 5. A minimized transformation sequence obtained by applying test-case reduction to the transformations of Figure 4

Input: Tests, a set of reduced test cases

Output: ToInvestigate, a subset of Tests for investigation

ToInvestigate ⇐ ∅

𝑖 ⇐ 1

while Tests ≠ ∅ do

if ∃𝑡 ∈ Tests . |types(𝑡) | = 𝑖 then

ToInvestigate ⇐ ToInvestigate ∪ {𝑡}

Tests ⇐ {𝑡 ′ ∈ Tests | types(𝑡) ∩ types(𝑡 ′) = ∅}

else

𝑖 ⇐ 𝑖 + 1

end if

end while

Figure 6. Deduplicating reduced test cases; types(𝑡) denotes
the set of transformation types associated with test case 𝑡

of the reports (set 𝐵) feature all of, and only, AddStore and
AddLoad; and the remaining 23 reports feature at least four
of the five types of transformations. It seems reasonable to
report two bugs, one from each of 𝐴 and 𝐵. Being triggered
by totally different transformations they have a good chance
of being distinct.
This deduplication approach is formalized by the algo-

rithm of Figure 6. In the algorithm, types(𝑡) returns the
(unordered, duplicate-free) set of transformation types as-
sociated with the transformations involved in test 𝑡 . The
algorithm takes a set of reduced test cases (i.e. their trans-
formation sequences have been minimized) and returns a
subset ToInvestigate such that no two tests in ToInvestigate

share a common transformation type. Our hypothesis is that
they thus have a good chance of triggering distinct bugs. If
a transformation-based testing tool features certain basic
transformations whose main purpose is to support more in-
teresting future transformations then it may be worthwhile
ignoring these basic transformations when deciding whether
two transformation sequences have any types in common.
We discuss this adaptation in the context of our spirv-fuzz
tool in ğ3.5.

2.2 Formal Treatment

We now present transformation-based testing more precisely,
formalizing the notion of the precondition and effect of a
transformation and the role of facts. We deliberately leave
details of the programming language of interest abstract.

Definition 2.1. A program 𝑃 is well-defined with respect to
an input 𝐼 if, according to the semantics of the programming
language, 𝑃 is guaranteed to terminate normally when ex-
ecuted on 𝐼 yielding a deterministic result. In this case we
use Semantics(𝑃, 𝐼) to denote the result.

This definition restricts us to testing correct compilation
of programs that compute a deterministic final result, a re-
striction shared with most prior work on compiler testing.

Definition 2.2. When applied to a program 𝑃 and input
𝐼 , an implementation Impl of the programming language of
interest either faults or yields a value Impl(𝑃, 𝐼). Implementa-
tion Impl is correct if, whenever a program 𝑃 is well-defined
with respect to an input 𝐼 , Impl does not fault when applied
to 𝑃 and 𝐼 , and satisfies Impl(𝑃, 𝐼) = Semantics(𝑃, 𝐼).

For simplicity we do not get into details of program termi-
nation, and regard a non-terminating program as faulting.

A fact about a program 𝑃 and input 𝐼 is any property over
𝑃 and 𝐼 that holds (recall e.g. the łblock 𝑏 is deadž fact).

Definition 2.3. A transformation context C (called a context
for brevity) is a tuple (𝑃, 𝐼, 𝐹) where 𝑃 is a program, 𝐼 an
input for 𝑃 such that 𝑃 is well-defined with respect to 𝐼 ,
and 𝐹 a set of facts about 𝑃 and 𝐼 . The set of all contexts is
denoted by Contexts.

Definition 2.4. A transformation is a tuple (Type, Pre, Effect)
where:

• Type is drawn from some finite set of identifiers and
indicates the type of the transformation.

• Pre, the precondition of the transformation, is a predi-
cate over Contexts.

• Effect, the effect of the transformation, is a partial func-
tion from Contexts to Contexts.

• For every C ∈ Contexts:
ś If Pre(C) does not hold then Effect (𝐶) is not defined.
ś Otherwise Effect (C) is defined as (𝑃 ′, 𝐼 ′, 𝐹 ′), say, and
Semantics(𝑃, 𝐼) = Semantics(𝑃 ′, 𝐼 ′).

The Type component of a transformation is useful for
type-based deduplication of bug reports, as shown in the
algorithm of Figure 6.

By Definition 2.3, the program associated with a context is
well-defined with respect to the associated input. Hence Def-
inition 2.4 precisely captures the notion that when a transfor-
mation is applicable it produces a valid program-input pair

1022

Test-Case Reduction and Deduplication Almost for Free PLDI ’21, June 20ś25, 2021, Virtual, Canada

that yields the same output as the original program-input
pair. Likewise, because the facts associated with a context
hold for the program and input, the definition captures the
idea that a transformation’s precondition can depend on
facts, and its effect can add new facts.

A sequence of transformations can be applied to a context,
skipping transformations whose preconditions fail:

Definition 2.5. LetC be a context and [𝑇1, . . .𝑇𝑛] a sequence
of transformations. Define Apply(𝐶, []) = 𝐶 and:

Apply(𝐶, [𝑇1, . . . ,𝑇𝑛]) = Apply(𝐶 ′, [𝑇2, . . . ,𝑇𝑛]),

with 𝐶 ′
= 𝑇1.Effect (𝐶) if Pre(𝐶) holds and 𝐶

′
= 𝐶 otherwise.

The following theorem, which follows by induction on the
fact that individual transformations preserve results, shows
that mismatches found by transformation-based testing do
indeed point to compiler bugs:

Theorem 2.6. Let 𝑃 be a program, 𝐼 an input such that 𝑃 is

well-defined with respect to 𝐼 . Let ®𝑇 be a sequence of transfor-

mations with Apply((𝑃, 𝐼, {}), ®𝑇) = (𝑃 ′, 𝐼 ′, 𝐹 ′). Suppose that
Impl faults when applied to 𝑃 ′ and 𝐼 ′, or that Impl(𝑃, 𝐼) ≠

Impl(𝑃 ′, 𝐼 ′). Then Impl is not correct.

2.3 Design Principles

Regarding the łalmost for freež part of the paper title: whether
the benefits of test-case reduction and deduplication associ-
ated with our approach work well depends on how carefully
the transformations have been designed. We discuss three
principles that should be followed.

Maximize independence between transformations. If
a transformation 𝑇𝑗 ’s precondition only holds after some
other transformation 𝑇𝑖 has been applied then any reduced
test case that features𝑇𝑗 must also feature𝑇𝑖 . This is fine if𝑇𝑖
is designed to enable 𝑇𝑗 , but otherwise it should be avoided
as it can limit reduction quality.
SplitBlock (Table 1) violates this principle. If a program

contains distinct instructions 𝑠 and 𝑡 then the operations
of splitting a block before 𝑠 vs. before 𝑡 should be indepen-
dent. But suppose 𝑠 and 𝑡 are in block 𝑏 at offsets 3 and 5
respectively. Transformations 𝑇1 = SplitBlock(𝑏, 3, 𝑓1) and
𝑇2 = SplitBlock(𝑓1, 2, 𝑓2), applied in order, have the effect of
splitting before 𝑠 and again before 𝑡 , introducing new blocks
𝑓1 and 𝑓2 in the process. If these transformations are part of
a bug-triggering sequence, and if the bug requires the split
before 𝑡 but not the split before 𝑠 in order to trigger, reduc-
tion will be sub-optional. It will not be possible to eliminate
𝑇1 (which splits before 𝑠) because 𝑇1 introduces block 𝑓1 and
𝑇2 (which splits before 𝑡) requires 𝑓1 to exist. A better design
would involve SplitBlock taking an instruction identifier in-
stead of a block and offset. The transformation could deduce
in which block the instruction resides and split that block
at the appropriate point. Our łbasic blocksž language does
not have syntax for uniquely identifying instructionsÐnor

do most languagesÐbut a transformation-based testing tool
can introduce such identifiers in its internal representation.

Favor simple transformations.A conceptually-large trans-
formation should be expressed as a sequence of smaller trans-
formations if possible. This lets the reducer strip away excess
transformations if only part of the conceptually-large trans-
formation is required in order to trigger a bug.

TheAddDeadBlock(b, f1, f2) transformation of Table 1 adds
a statement 𝑓2 := true to an existing block and adds a con-
ditional branch on 𝑓2 to a new block 𝑓1. If triggering some
compiler bug only hinges on the new statement 𝑓2 := true

being added then test-case reduction will be sub-optimal
because the reducer will apply AddDeadBlock in its entirety.
A better design would be for AddDeadBlock not to add the
true-valued variable. Instead it could requireÐvia a factÐthe
existence of a variable 𝑣 for which 𝑣 = true holds at the
end of block 𝑏. Another transformation, AddTrueVariable
say, could be used to introduce true-valued variables and
associated facts. The effect of the original AddDeadBlock
could be achieved by applying AddTrueVariable followed by
the simpler version of AddDeadBlock. This would allow the
reducer to keep only the AddTrueVariable transformation if
it turns out that adding the dead block is unnecessary.
As another example, AddStore(𝑐, 0, 𝑠, 𝑖) in Figure 4 adds

the store 𝑠 := 𝑖 to the start of block 𝑐 , where 𝑖 is a program
input. If this triggered a bug, a compiler developer might
think that storing the value of a program input, specifically,
is important. If in fact the stored value is irrelevant then
using the statement 𝑠 := 0 would make the test case slightly
simpler. An alternative design would be for AddStore to al-
ways use 0 as the stored value, but to add a fact stating that
this use of 0 is irrelevantÐi.e. the use can be changed to any
other value without affecting the program’s output. Another
transformation, ChangeIrrelevantValue, could then be em-
ployed to change the use of 0 to something more interesting
(such as the input 𝑖). If it turns out that the simple value,
0, suffices to trigger a bug then the reducer will be able to
eliminate the instance of ChangeIrrelevantValue.

Use the same type for similar transformations. Our ap-
proach to deduplication depends on transformations with
different types having substantially different effects. The
AddLoad and AddStore transformations of Table 1 have very
similar effects: they both introduce a new assignment. This
might lead to ineffective deduplication if a bug can be trig-
gered by adding a particular form of assignment and if it is
possible for this form to be achieved by either AddLoad or
AddStore. Instead these could be captured by a single type,
AddAssignment(𝑏, 𝑜, 𝑥1, 𝑥2), with a precondition requiring
either (a) 𝑥1 is a fresh variable identifier, or (b) fact ł𝑏 is deadž
holds. AddAssignment behaves like AddLoad in case (a) and
AddStore in case (b). Using a single type avoids duplicate
bugs being suggested in this scenario.

1023

PLDI ’21, June 20ś25, 2021, Virtual, Canada A.F. Donaldson, P. Thomson, V. Teliman, S. Milizia, A. Perez Maselco, and A. Karpiński

3 Design and Implementation of spirv-fuzz

We have implemented the ideas of ğ2 in an open source
tool, spirv-fuzz [34], targeting compilers for SPIR-V [17], an
LLVM-like intermediate representation designed with GPU
computing in mind, and used by the Vulkan and OpenCL
programming models. After providing background on SPIR-
V (ğ3.1) we describe the tool and its transformations (ğ3.2),
discuss the design principles behind a selection of transfor-
mations (ğ3.3), and explain how we have implemented easy
test-case reduction (ğ3.4) and deduplication (ğ3.5).

3.1 SPIR-V Background

A SPIR-V module comprises a series of instructions defining
types, constants and global variables, followed by a number
of functions, one of which is designated as an entry point

from which execution will commence. Types include integer,
boolean and floating-point scalars, vectors of these types,
floating-point matrices, structures, arrays and pointers.
A function is made up of a series of basic blocks, with

a designated entry block. Each block has a unique result

id and contains a sequence of instructions ending with a
block terminator: an unconditional or conditional branch
to another block or blocks or a return instruction. Every
instruction that generates a result also has a unique result
id; i.e. SPIR-V uses static single-assignment form. Special 𝜙
instructions at the start of a block can be used to select a
value based on the predecessor block from which control
passes at runtime.

The syntactic order in which blocks appear in a function
is irrelevant, except that the entry block must appear first,
and a block must appear before all blocks that it dominates.
An instruction 𝑖 can only use the result id of an instruction
𝑗 if 𝑗 is available at 𝑖: it either appears earlier in the same
block, or in a dominating block.

We focus on the Vulkan subset of SPIR-V, which includes
support for writing fragment shaders: programs that will
be invoked by thousands of GPU threads simultaneously to
render an image. Roughly speaking, each invocation (called
a fragment) is responsible for coloring a single pixel.

3.2 Overview of the Tool and Transformations

As input, spirv-fuzz takes a SPIR-V binary module, a file
describing the inputs on which the module will be executed,
and a directory containing a set of donor SPIR-V binaries that
are used in the construction of certain transformations (dis-
cussed below). An initially empty set of facts is maintained.
The module and facts are repeatedly modified by running
fuzzer passes, each of which sweeps through the module
looking for opportunities to apply a particular combination
of transformations, probabilistically deciding which of these
opportunities to take. When a fuzzer pass completes, the tool
probabilistically decides whether to stop or apply another
pass, definitely stopping if a limit of 2000 transformations is

exceeded. Randomization is controlled by a seed passed to
spirv-fuzz on the command line. At present spirv-fuzz only
transforms the SPIR-V module, leaving the input unchanged.

We have integrated spirv-fuzz into gfauto, a framework for
graphics shader compiler testing [8]. This supports running
spirv-fuzz repeatedly with a large number of seeds, identi-
fying crashes and miscompilations, and invoking the tool’s
reducer in such cases. As gfauto was originally designed for
running the glsl-fuzz tool, it facilitates our comparison of
spirv-fuzz and glsl-fuzz discussed in ğ4.

We now provide some detail on the facts that transforma-
tions can manipulate and the transformations themselves.

Facts. Transformations can establish and depend on the
following kinds of facts, which we illustrate below:

• DeadBlock(𝑏): Block 𝑏 will never be executed

• Synonymous(𝑢 [®𝑖], 𝑣 [®𝑗]): 𝑢 [®𝑖] = 𝑣 [®𝑗] holds at any pro-
gram point where ids 𝑢 and 𝑣 are both available

• Irrelevant(𝑖): The value of id 𝑖 does not affect the end
result of computation

• IrrelevantPointee(𝑝): The value of data pointed to by
pointer 𝑝 does not affect the end result of computation

• LiveSafe(𝑓): Calling function 𝑓 from any program
point does not affect the end result of computation
as long as pointer arguments satisfy IrrelevantPointee

In the case of Synonymous facts, ®𝑖 and ®𝑗 denote possibly
empty vectors of literal indices. For example, if 𝑎 is a scalar
and𝑚 a column-major matrix, then Synonymous(𝑎,𝑚[0, 1])
means that the value at column 0, row 1 of𝑚 is equal to 𝑎.

Transformations. The tool features 85 types of transforma-
tion at time of writing, some of which we discuss below. The
full set of transformations is formalized in a Protocol Buffers
file [11] with descriptive comments in the spirv-fuzz source
tree [34]. Transformations were inspired by prior work, dis-
cussions with SPIR-V compiler developers, and reading the
SPIR-V specification carefully with an eye for interesting
ways to combine its features.

Several supporting transformations add types, constants
and variables to the module. They are not interesting in
isolation, but fuzzer passes frequently use them to enable
more interesting transformations.
Prior work has shown that transformations that affect

control flow can be effective in uncovering bugs [7, 22],
leading us to devise many such transformations. For exam-
ple, AddDeadBlock creates dynamically-unreachable blocks
with associated DeadBlock facts, and ReplaceBranchWithKill

changes a dead block’s terminator to a special OpKill instruc-
tion, which terminates a fragment; this substantially changes
the static control-flow graph with no semantic impact.

A number of transformations support moving an instruc-
tion within its block or between blocks based on a conserva-
tive dependency analysis. We discuss a bug found using the
PropagateInstructionUp transformation in ğ5.

1024

Test-Case Reduction and Deduplication Almost for Free PLDI ’21, June 20ś25, 2021, Virtual, Canada

Many transformations create Synonymous facts. For ex-
ample, CompositeConstruct creates a composite value (e.g. of
vector or struct type) from appropriate constituents, creating
Synonymous facts relating each index of the composite to
the constituent with which it was created. Similarly, Com-

positeExtract adds a SPIR-V instruction to extract from a
composite value at a particular index, adding a Synonymous

fact relating the result of this extraction to the component
that was extracted. Other transformations create Irrelevant
facts; e.g. AddParameter adds a new parameter to a function
and updates all call sites to provide values for the new pa-
rameter. Because the values that are provided do not matter,
they are recorded as being irrelevant.

A use of an id can be replaced with a known-to-be-equal
id via ReplaceIdWithSynonym, which exploits Synonymous

facts. A use of an id for which the Irrelevant fact holds can be
replaced with any id of the right type by ReplaceIrrelevantId.
The fact that spirv-fuzz knows the runtime values of the
module’s inputs (called uniforms in SPIR-V) is exploited by
ReplaceConstantWithUniform, which can e.g. obfuscate from
the compiler the fact that a block is dead by making the
block’s dynamic reachability depend on the value of an input.
AddFunction is a large transformation that adds a new

function to the module. The fuzzer pass that creates this
transformation uses the donor modules as a source of func-
tions. Full details of a function are encoded in anAddFunction
instance so that the donors are not required during reduction.
AddFunction can be configured tomake its function łlive-safež
(documented via a LiveSafe fact) by clamping memory ac-
cesses to be in-bounds, truncating loops via an iteration limit,
and eliminating uses of OpKill. A live-safe function can be
called from anywhere without changing the results of com-
putation, as long as IrrelevantPointee pointers are passed
for any pointer arguments. The FunctionCall transforma-
tion adds calls to LiveSafe functions from anywhere, and to
non-LiveSafe functions from dead blocks. IrrelevantPointee
pointers come from new variables that the fuzzer introduces
via an AddVariable transformation.

Function calls can be inlined via the InlineFunction trans-
formation, which duplicates the blocks (and instructions) of
a callee function and inserts them in place of a particular
call to that function.
MoveBlockDown swaps a block with its syntactic succes-

sor if doing so respects the SPIR-V dominance rules. A Per-

muteBlocks fuzzer pass repeatedly applies MoveBlockDown

to shuffle the blocks of functions in interesting ways. We
discuss a bug found by MoveBlockDown in ğ5.

Using recommendations to drive fuzzing. Many of our
transformations have the potential to interact, e.g. adding
new functions creates opportunities for adding function calls,
which in turn creates opportunities for inlining. To increase
the likelihood of such interactions we implemented a rec-
ommendations strategy. For every fuzzer pass, we used our

knowledge of the tool to manually select a (possibly empty)
set of follow-on passes that may be worth running soon after
the pass. When recommendations are enabled, spirv-fuzz
maintains an initially empty recommendation queue of fuzzer
passes.When deciding which fuzzer pass to run next, the tool
chooses with uniform probability to select a pass at random
or pop a pass from the queue (if non-empty). After running
a pass 𝑝 , spirv-fuzz pushes a random subset of follow-on
passes for 𝑝 to the queue. We evaluate the effectiveness of
recommendations with respect to bug finding ability in ğ4.

3.3 Transformation Design

We give some examples of how we have followed the prin-
ciples of ğ2.3 when designing transformations; similar ap-
proaches were followed for many other transformations.

Maximizing independence. Recall that the InlineFunction
transformation duplicates the blocks and instructions of a
called function. Fresh ids are required for this duplication.
The simplest way to implement this would be to obtain fresh
ids on-the-fly while applying the transformation, from the
set of ids not yet in use. However, suppose we have a trans-
formation sequence𝑇1 that adds instructions to a function 𝑓 ,
𝑇2 that inlines 𝑓 , and 𝑇3 that manipulates some instruction
in the inlined version of 𝑓 . If 𝑇3 depends on the existence
of an instruction with a particular id then 𝑇3’s applicability
is highly sensitive to the specific fresh ids used by 𝑇2 when
inlining 𝑓 . Suppose that during reduction 𝑇1 is eliminated.
Applying𝑇2 now involves inlining a smaller function, requir-
ing fewer fresh ids. The inline-expanded version of 𝑓 will
now feature different ids, and so 𝑇3 may no longer apply. To
avoid this problem, an InlineFunction instance is equipped
with an explicit mapping from ids of the to-be-inlined func-
tion to fresh ids. During fuzzing it is easy to construct an
appropriate mapping, and the mapping can then be used
unchanged during reduction.

Favoring simple transformations. Instead of having a
transformation that directly permutes function blocks, the
PermuteBlocks fuzzer pass achieves a permutation by ap-
plying many instances of MoveBlockDown. If a permutation
triggers a bug the reducer eliminates unnecessary Move-

BlockDown instances to converge on a simpler permutation.
The FunctionCall transformation must provide parameters

when adding a function call. Instead of choosing interest-
ing ids for parameters, trivial constants are used (e.g. 0 for
an integer parameter), and the IsIrrelevant fact is added for
each of them. Subsequent fuzzer passes can then use Repla-
ceIrrelevantId to replace these simple parameters with more
interesting expressions. This allows the reducer to simplify
parameters back to 0 if doing so still triggers the bug.

Common types for related transformations. The tool
features a WrapRegionInSelection transformation that can
be applied in one of two forms: a region of blocks can be
wrapped in the ‘then’ branch of a true conditional construct

1025

PLDI ’21, June 20ś25, 2021, Virtual, Canada A.F. Donaldson, P. Thomson, V. Teliman, S. Milizia, A. Perez Maselco, and A. Karpiński

or in the ‘else’ branch of a false conditional construct. Rather
than having a separate type of transformation for each form,
both are captured by the same transformation type. Test-case
deduplication will thus regard reduced test cases that feature
this transformation as similar, even if they use different forms
of the transformation.

3.4 Test-case Reduction

On detecting a bug, gfauto generates an interestingness test

for the bug: a script that takes a SPIR-V binary with its input
values, runs it on the compiler under test, and returns true if
and only if the bug appeared to be triggered. For crashes and
internal errors, the interestingness test looks for a crash sig-

nature associated with the bug. This is automatically derived
from the error message emitted by the compiler, the text
associated with an assertion failure, or the stack trace that
triggered the bug. We have fine-tuned a script for extracting
useful crash signatures for a range of SPIR-V compilers [14].
For miscompilations, which manifest as an unexpected

image being rendered when a SPIR-V binary is executed on
the GPU, the interestingness test compares the pair of images
rendered via the SPIR-V binary (passed to the script) and the
original SPIR-V binary.
The spirv-fuzz reducer then uses delta debugging [40]

to find a 1-minimal subsequence of transformations that
still passes the interestingness test. The reduction algorithm
maintains a chunk size 𝑐 , initialized to ⌊𝑛/2⌋ where 𝑛 is the
size of the initial transformation sequence. It divides the
sequence into chunks of size 𝑐 , starting from the last trans-
formation and working backwards (the chunk of transforma-
tions at the start will be smaller than 𝑐 if 𝑐 does not divide
𝑛). It considers each chunk in turn, checking whether the
interestingness test still passes when a chunk is removed,
and eliminating the chunk if so. When no chunk of size 𝑐
can be removed, 𝑐 is halved. Reduction terminates when no
chunk of size 1 can be removed.
Recall from ğ3.2 that instances of AddFunction encode

entire functions. Sometimes these functions turn out to be
larger than is necessary to trigger a bug, and AddFunction

is the one transformation type that we found difficult to
split into a smaller sequence of transformations. After delta
debugging, the reducer applies spirv-reduce, a generic test
case reducer for SPIR-V [20], to any remaining AddFunction

transformations in an attempt to simplify their associated
functions such that the interestingness test still passes. This
use of spirv-reduce is merely an optimization, and without
spirv-reduce, the delta between a minimally-reduced pro-
gram and the same minimally-reduced program with one
fewer transformation applied (as explained in ğ2.1) is still
small even if functions are added, since adding a function
is usually an enabler for subsequent transformations that
actually trigger a bug. We also note that even though spirv-
reduce is available, it does not provide the kind of features
necessary for reduction in transformation-based testing or

Table 2. The SPIR-V targets we test, where Version denotes
either a driver version, git revision, or device factory image

Target Version GPU type

AMD-LLPC git-4781635 Discrete

Mesa 20.2.1 Integrated

Mesa-Old 19.1.0 Integrated

NVIDIA 440.100 Discrete

Pixel-5 RD1A.201105.003.C1 Mobile

Pixel-4 QD1A.190821.014.C2 Mobile

spirv-opt git-02195a0 N/A

spirv-opt-old git-2276e59 N/A

SwiftShader git-b5bf826 Software

of miscompilations in generalÐit cannot revert transforma-
tions, and it does not preserve semantics.

3.5 Test-case Deduplication

We have implemented the algorithm of Figure 6 in a Python
script accompanying spirv-fuzz. We have refined the script
to totally ignore a fixed list of transformation types: sup-
porting transformations for adding types and constants, as
well as SplitBlock and AddFunction (which are enablers for
other transformations rather than being interesting in isola-
tion) and ReplaceIdWithSynonym (which reaps the benefits
of prior transformations but is not interesting in isolation).
We fixed this list before commencing controlled experiments
to evaluate test-case deduplication (see ğ4.3).

4 Controlled Experiments

We study the effectiveness of spirv-fuzz in practice, com-
paring it with glsl-fuzz [7] where appropriate; recall that
glsl-fuzz operates on the OpenGL shading language but can
be used to test SPIR-V compilers via cross compilation [8].
Our evaluation focuses on the following research questions:

RQ1 How effective is spirv-fuzz compared with glsl-fuzz in
its ability to find defects in SPIR-V implementations?

RQ2 How effective is the łfreež test-case reduction afforded
by spirv-fuzz compared with the hand-crafted reducer
used by glsl-fuzz?

RQ3 Is our heuristic for łfreež deduplication of test cases
that trigger bugs effective in practice?

Our experimentswere performed using git revision 02195a0
of spirv-fuzz and 751148b of glsl-fuzz. When running the
test case experiments of ğ4.2 we found a minor bug in the
glsl-fuzz reducer, so switched to glsl-fuzz git revision a0f2f9a
which contains a fix for this bug (the fix did not affect the
fuzzing component of glsl-fuzz).

Targets. We use łlatestž to mean łlatest when we com-
menced our experimentsž. We conducted experiments on
the SPIR-V targets summarized in Table 2. AMD-LLPC is
the latest version of AMD’s LLVM-based Pipeline Compiler
(LLPC) [12]. Mesa is the most recent release of the Mesa 3D

1026

Test-Case Reduction and Deduplication Almost for Free PLDI ’21, June 20ś25, 2021, Virtual, Canada

drivers [9], targeting an Intel HD Graphics 620 GPU; Mesa-
Old is an approx. 1-year older version targeting the same
GPU. NVIDIA is the latest driver for the Quadro P1000 GPU
rolled out to Linux workstations at the company where some
of the authors work. Pixel-5 is a Pixel 5 Android phone with
a Qualcomm Adreno 620 GPU, with the latest factory image.
Pixel-4 is a Pixel 4 phone with an Adreno 640 GPU and 1-
year old factory image. spirv-opt is the latest version of the
SPIR-V optimizer [20]; spirv-opt-old is a version from Octo-
ber 2019. SwiftShader is the latest version of the SwiftShader
software renderer [10]. We did not have access to an AMD
GPU, and spirv-opt is not a full Vulkan implementation, so
we could not use these targets to render images, but could
still find crashes and internal errors. The targets of Table 2
cover a range of GPU types plus supporting tooling. Using
both the latest and 1-year old versions of Mesa and spirv-opt,
as well as new and older Pixel device images, provides access
to a diverse range of compiler bugs.

References, donors and test execution.As references we
used a set of 21 OpenGL ES shaders from the GraphicsFuzz
project [13] that are known to produce numerically-stable
images and are thus suitable for detecting miscompilations.
As donors we used the full set of 43 shaders from Graph-
icsFuzz. To feed these shaders to spirv-fuzz we converted
them to SPIR-V using the glslang front-end [18]. We also pro-
vided spirv-fuzz with an optimized version of each shader by
running the spirv-opt tool with the -O argument (standard
optimizations). We could not provide optimized shaders to
glsl-fuzz because it does not accept SPIR-V code. Tests are
executed by the gfauto framework (see ğ3.2). With glsl-fuzz,
gfauto applies glslang to turn a generated OpenGL shader
into SPIR-V. For both spirv-fuzz and glsl-fuzz, gfauto runs
the test on the target of interest. If no bug is detected, gfauto
applies spirv-opt with the -O argument, then runs the opti-
mized test, again checking to see whether a bug is triggered.

4.1 Bug-Finding Ability (RQ1)

Table 3 presents data comparing the effectiveness of spirv-
fuzz and glsl-fuzz. We also evaluated the effectiveness of the
recommendations strategy used by spirv-fuzz and discussed
in ğ3; we use spirv-fuzz-simple to refer to a configuration of
spirv-fuzz where the recommendations strategy is disabled.

We used each of spirv-fuzz, spirv-fuzz-simple and glsl-fuzz
to generate a set of 10,000 transformed shaders, with each
shader obtained by running the respective tool configura-
tion with a distinct random seed. For each tool configuration,
Table 3 shows the total number of distinct bug signatures

observed for each target when running all 10,000 tests. A bug
signature is either a crash signature (see ğ3.4), or a special
signature to indicate that the bug is a miscompilation. Be-
cause all miscompilations contribute the same bug signature,
the results do not provide insight into how many different
miscompilations the tools can detect.

To allow statistical analysis we separated each set of 10,000
tests into 10 disjoint sets of 1,000 tests. This allowed us to
compute the number of distinct bug signatures observed for
each target when running a particular set of 1,000 tests. For
each target, Table 3 reports the median number of distinct
bug signatures observed across the 10 disjoint subsets of
size 1,000. The last two columns show the results of run-
ning the Mann-Whitney U (MWU) test [1] to compare the
effectiveness of spirv-fuzz vs. each of spirv-fuzz-simple and
glsl-fuzz, using the number of distinct bug signatures in each
1,000-sized test group as populations. Each percentage indi-
cates the certainty with which spirv-fuzz is (or is not) more
effective according to MWU.

In answer toRQ1, the results show that spirv-fuzz is more
effective than glsl-fuzz at bug-finding: according to theMWU
test this is the case with 99.98% confidence overall, and with
≥ 95% confidence for 6 out of 9 targets. The results com-
paring spirv-fuzz with spirv-fuzz-simple are less clear-cut:
spirv-fuzz performs better with high confidence for 3 con-
figurations, but results for other targets are not statistically
significant, and MWU regards spirv-fuzz as superior overall
with only 85% confidence.

Each segment in each Venn diagram of Figure 7 shows the
number of bug signatures that were found by all the tool con-
figurations associated with that segment at least once across
the full set of 10,000 tests. For every configuration, spirv-
fuzz is able to find at least one bug signature not found by
glsl-fuzz or spirv-fuzz-simple. Still, there is complementarity
between spirv-fuzz and glsl-fuzz, and room for improving the
strategies used by spirv-fuzz: ideally the recommendations

strategy would lead to strictly more bugs being found.

4.2 Quality of Test-Case Reduction (RQ2)

To investigate RQ2, we ran reductions for the AMD-LLPC,
spirv-opt, spirv-opt-old and SwiftShader targets, capping
the number of reductions per bug signature at 100. This was
feasible because these targets do not require running tests
on GPUs so we could run a very large number of reduction
instances in parallel. This led to 932 reduced tests from spirv-
fuzz and 245 reduced tests from glsl-fuzzÐthere are more
reductions for spirv-fuzz because spirv-fuzz was able to find
more bugs than glsl-fuzz, as discussed in ğ4.1.

Recall that a reduction results in a reduced variant, which
is derived from an original program by applying a minimized
sequence of transformations (see Figure 2). As the aim of this
process is to yield a delta between the original and reduced
variant that is easy for a developer to understand, a good
measure of the success of reduction is the size of this delta.
For each reduction, we computed the size of this delta as the
difference between the number of instructions in the original
SPIR-V module and the reduced variant SPIR-V module.

The median delta size across all reductions was 8 instruc-
tions for spirv-fuzz and 29 instructions for glsl-fuzz. This is
not an entirely like-for-like comparison because the tools

1027

PLDI ’21, June 20ś25, 2021, Virtual, Canada A.F. Donaldson, P. Thomson, V. Teliman, S. Milizia, A. Perez Maselco, and A. Karpiński

Table 3. Comparing the bug-finding ability of spirv-fuzz, spirv-fuzz-simple and glsl-fuzz

Distinct bug signatures spirv-fuzz beats. . .

Target spirv-fuzz spirv-fuzz-simple glsl-fuzz spirv-fuzz-simple? glsl-fuzz?

Total Median Total Median Total Median (% confidence) (% confidence)

AMD-LLPC 6 3.0 4 2.5 6 2.5 Yes (83.80%) Yes (57.26%)

Mesa 10 5.5 7 4.5 11 5.5 Yes (97.43%) No (14.99%)

Mesa-Old 15 12.0 13 11.5 16 11.5 Yes (95.06%) Yes (93.04%)

NVIDIA 29 13.0 30 14.0 9 5.0 No (77.35%) Yes (99.98%)

Pixel-5 11 7.0 10 7.5 6 5.0 No (34.99%) Yes (99.91%)

Pixel-4 10 7.5 10 8.0 7 4.5 No (45.47%) Yes (99.97%)

spirv-opt 6 1.0 6 1.5 0 0.0 No (63.57%) Yes (99.75%)

spirv-opt-old 15 7.0 9 5.5 1 0.0 Yes (95.87%) Yes (99.98%)

SwiftShader 16 9.0 13 8.0 2 1.0 Yes (77.35%) Yes (99.98%)

All 118 66.0 102 63.0 58 35.5 Yes (84.91%) Yes (99.98%)

spirv-fuzz

spirv-fuzz-simple

glsl-fuzz

Legend

2
1

1 0 3

1
2

AMD-LLPC

2
3

0 0 6

1
4

Mesa

1
8

0 0 10

1
5

Mesa-Old

9
15

10 0 4

0
5

NVIDIA

2
4

1 0 1

0
5

Pixel-5

1
3

1 0 1

0
6

Pixel-4

3
3

3 0 0

0
0

spirv-opt

5
9

0 0 0

1
0

spirv-opt-old

4
10

1 0 0

0
2

SwiftShader

29
56

17 0 25

4
29

All

Figure 7. Complementarity of spirv-fuzz, spirv-fuzz-simple and glsl-fuzz with respect to bug-finding. Each number denotes
the number of distinct bug signatures found by all tools represented by the associated part of the Venn diagram.

found different sets of bugs and the number of reductions
available for analysis with spirv-fuzz is much larger than for
glsl-fuzz. However, with respect to RQ2, the median sizes
indicate that (a) both tools are effective at test-case reduction,
since the size differences between original and unreduced

variant modules are in the order of thousands or tens of thou-
sands of instructions, and (b) the quality of łfreež reduction
that spirv-fuzz offers automatically due to its design appears
to be somewhat superior to the quality of reduction offered
by the hand-crafted glsl-fuzz reducer.

We found that spirv-fuzz reductions were a lot faster than
glsl-fuzz reductions, but we do not dwell on this since the
tools are implemented in different programming languages.

4.3 Effectiveness of Test-Case Deduplication (RQ3)

Investigating RQ3 requires a baseline against which to com-
pare the set of test cases that the deduplication algorithm
predicts as triggering distinct bugs, i.e. a set of bugs that are
known to be distinct, and a large corpus of reduced test cases
that trigger these bugs, such that we know which bug each
test case triggers. To obtain a suitable baseline we took the
large set of reduced test cases gathered to assess reduction
quality (ğ4.2), and also gathered a set of reduced test cases

Table 4. The effectiveness of test-case deduplication

Target Tests Sigs Reports Distinct Dups

AMD-LLPC 131 6 6 4 2

Mesa 60 8 6 6 0

Mesa-Old 202 13 9 7 2

Pixel-5 94 9 6 6 0

Pixel-4 96 8 9 6 3

spirv-opt 16 5 3 3 0

spirv-opt-old 511 15 6 5 1

SwiftShader 357 14 4 4 0

Total 1467 78 49 41 8

for all remaining targets, capping the maximum number of
reductions per bug signature at 20 to allow experiments to
complete in reasonable time. We were unable to gather this
data for NVIDIA due to a driver bug that caused frequent
machine freezes. We restricted attention solely to crash bugs
(i.e., ignoring miscompilation bugs), because for crash bugs
we can obtain reliable crash signatures as discussed in ğ3.4.

For each target we then ran the transformation-based
deduplication algorithm on the set of associated reduced test
cases. The results are summarised in Table 4. For each target,
Tests shows the total number of reduced test cases on which

1028

Test-Case Reduction and Deduplication Almost for Free PLDI ’21, June 20ś25, 2021, Virtual, Canada

the deduplication algorithm was invoked and Sigs shows the
number of distinct crash signatures we know that these test
cases collectively exhibit. For example, for AMD-LLPC we
ran deduplication on 131 reduced test cases, each of which
triggers one of 6 distinct crashes. Reports shows the num-
ber of test cases that the deduplication algorithm suggests
investigating andDistinct shows howmany distinct crashes
are actually triggered by the suggested test cases. In the ideal
case the numbers for Sigs, Reports and Distinct would all
be equal: this would mean that exactly one test case per bug
signature was suggested, with no duplicates and no missed
signatures. If Distinct is less thanReports then some of the
suggested test cases trigger duplicate bugs; the number of
duplicates is shown under Dups. Exemplifying again using
AMD-LLPC, the algorithm suggests investigating 6 test cases
that cover 4 of the 6 distinct AMD-LLPC bugs that the full
set of test cases trigger, meaning that there are 2 duplicates.

The results show that the recommended tests tend to cover
a reasonable number of distinct crash signatures with a low
duplicate rate. Overall, 41 out of 78 distinct crash signatures
are covered by at least one suggested test case (53% of crash
signatures are covered), with 8 out of 49 suggested test cases
turning out to be duplicates (16%). Per target, the crash signa-
ture coverage rate ranges from as low as 29% (SwiftShader)
to as high as 67% (AMD-LLPC and Mesa), while the duplicate
rate is zero for several targets (Mesa, Pixel-5, spirv-opt-old
and SwiftShader) and as high as 33% (AMD-LLPC and Pixel-
4). While the deduplication heuristic is far from perfect, these
results show that it covers more than half of the distinct crash
signatures with a reasonably low rate of duplicates.

5 Using spirv-fuzz in the Wild

Over the last 6 months we have used spirv-fuzz, at vari-
ous stages of its development, to test a number of SPIR-V
targets: the SPIR-V optimizer, spirv-opt, and validator, spirv-
val, part of the SPIRV-Tools project that supports the Vulkan
ecosystem [20]; the SwiftShader software renderer, which is
widely-used as a reference implementation of Vulkan [10];
the Mesa [9] and LLPC [12] open source driver projects; and
various Android devices including Pixel 4 and Pixel 5 phones.

So far we have reported 74 issues: 14 miscompilations, 49
crashes/internal errors, 7 cases where spirv-opt emits illegal
SPIR-V (that spirv-val rejects), 3 cases where spirv-val rejects
valid SPIR-V, and one SPIR-V specification issue. We have
also submitted 34 new test cases to the Vulkan Conformance
Test Suite (CTS) in response to a variety of these issues,
which have been accepted [19]. This ensures that fixes to the
associated bugs will be rolled out to devices (since all GPU
vendors must pass CTS), and defends against them being
re-introduced.

We provide details of two interesting miscompilation bugs.

Example Mesa bug. Figure 8a illustrates a miscompilation
bug we reported to Mesa. The left control flow graph (CFG)

represents a loop within a SPIR-V module; block 𝑐 , the loop
body, also contained load and store operations that we omit
from the figure. The PropagateInstructionUp transformation
was used to duplicate instruction 𝑥1 = 𝑖1 ≤ 100 in block
𝑏 into each of its predecessors, 𝑎 and 𝑐 , selecting between
their results using a 𝜙 instruction, leading to the middle
CFG. PropagateInstructionUp was then applied twice more
to move the increment and comparison from block 𝑐 into
𝑏, leading to the right CFG. The images rendered by the
full SPIR-V modules containing the (unsimplified versions
of these) CFGs are shown beneath each graph. The final
transformation leads to a significantly different image. The
optimization bug, fixed in response to our report, caused the
last loop iteration to be skipped.

Example Pixel 5 bug. Figure 8b illustrates a bug thatMove-

BlockDown triggered in the Vulkan driver of a Pixel 5 phone
(with a November 2020 factory image). The two CFGs shown
in the figure are identical. Both top-to-bottom block orders
shown in the figure are also valid, because in both cases each
block appears before the blocks it dominates. However, the
second ordering leads to holes in the image rendered by the
Pixel 5 driver. The actual CFGs associated with the bug were
larger than the ones we show, but the transformation still
involved swapping a single pair of blocks.

6 Related Work

Transformation-based testing is employed by Orion and the
EMI family of tools [22, 23, 33] for testing C compilers, the
CLsmith tool for testing OpenCL compilers [25], and the
glsl-fuzz tool [7]. We believe the transformations employed
by these tools could be readily expressed using the precon-
dition and effect formalization (ğ2.2), providing test-case
reduction benefits. The EMI tools rely on external reducers
such as C-Reduce [32] to find a small well-defined program
that exhibits a result mismatch between the compiler under
test and an oracle compiler (usually CompCert [24]), and
C-Reduce relies on the availability of undefined behavior san-
itizers, which may be incomplete such that the final results
of reduction are not always valid.

The glsl-fuzz reducer is able to revert transformations be-
cause transformations leave a trail of syntactic markers in the
transformed program [7]. This requires keeping the fuzzer
and reducer in sync, which has been a source of bugs [6, 8].

Our approach avoids the need for external reduction tools,
oracle compilers, or sanitizers, and its correctness does not
require maintaining a relationship between fuzzer and re-
ducer. A downside is that if the original program is very
large, the difference between it and a minimally transformed
version may not provide an actionable bug report.

The Hypothesis property-based testing tool [30] uses in-
ternal reduction to avoid the need for an explicit external test
case reducer [29]. Internal reduction takes the sequence of
choices that the test case generator made, and searches for a

1029

PLDI ’21, June 20ś25, 2021, Virtual, Canada A.F. Donaldson, P. Thomson, V. Teliman, S. Milizia, A. Perez Maselco, and A. Karpiński

i0 = 0
x2 = i0 <= 100

i1 = φ(i0←a, i2←c)
x1 = i1 <= 100

i0 = 0

i2 = i1 + 1

b

c

a

x1

i1 = φ(i0←a, i2←c)
x1 = φ(x2←a, x3←c)

i2 = i1 + 1
x3 = i2 <= 100

a

b

c

!x1

x1

!x1

i0 = 0
x2 = i0 <= 100

i1 = φ(i0←a, i2←c)
x1 = φ(x2←a, x3←c)
i3 = i1 + 1
x4 = i3 <= 100

i2 = φ(i3←b)
x3 = φ(x4←b)

a

b

c

x1

!x1

(a) Mesa compiler bug

a

b

c

d

a

c

b

d

(b) Pixel 5 compiler bug

Figure 8. Illustrations of miscompilations that affected SPIR-V compilers in Mesa and Pixel 5 drivers

shorter choice sequence that still leads to a bug-triggering
input when fed to the generator. If applied in our domain,
internal reduction might have the advantage of being able
to find a small sequence of different transformations that
trigger a bug, but will be incapable of finding a particular
subsequence of original transformations if no path through
the fuzzer would directly generate this sequence.
Chen et al. have shown that data sources such as com-

piler code coverage and metrics gathered from the compiler
output, can be used to rank tests to prioritize a diverse set
of bugs [5]. Looking at a prefix of the resulting bugs in pri-
ority order then provides a means of deduplication. The
recent YARPGen tool [26] attempts to distinguish between
bugs by determining the sequence of compiler optimiza-
tions that are required to trigger them, an instance of a long-
standing idea [37]. These could be used to complement our
transformation-based deduplication approach, which works
in a black box manner, but only if coverage information and
compiler metrics are available or if the compiler supports
fine-grained optimization control. In the context of SPIR-V,
usually neither are available from compilers embedded in
deployed graphics drivers.

A metric for deduplicating historic compiler bugs is based
on the notion of correcting commits [3]. If two test cases are
successfully compiled by the latest version of a compiler, and
incorrectly compiled by some older revision of the compiler,
they can be deemed to trigger distinct underlying bugs if the
compiler revision at which they start passing differsÐi.e., the
underlying bugs were corrected by two different commits.
This measure is not useful for deduplicating test cases that
trigger newly-found, unfixed bugs. However, it is an effective
deduplication technique for historic bugs when a compiler’s
source code and revision history are available, and thus could
be used to provide an alternative baseline against which to

compare deduplication heuristics such as the one proposed
in this paper.
A forthcoming paper on sources of inspiration for meta-

morphic relations uses spirv-fuzz as one of three case stud-
ies [21].

7 Conclusions and Future Work

Wehave described an approach to transformation-based com-
piler testing that provides test-case reduction and a heuristic
for test-case deduplication out-of-the-box, and demonstrated
its effectiveness via spirv-fuzz, the first compiler-testing tool
targeting the SPIR-V language. Our experiments show that
spirv-fuzz out-performs the glsl-fuzz tool with respect to
bug-finding, the łalmost freež reduction of spirv-fuzz is com-
petitive with the hand-crafted reducer of glsl-fuzz, and the
heuristic for test-case deduplication has merit.

It would be interesting to extend spirv-fuzz with transfor-
mations that modify both a SPIR-V module and its input in
sync, for example changing struct padding and array sizes
to find layout-related bugs, and to improve the recommen-

dations strategy of the tool. There is scope for applying our
approach to other programming languages, or to compiler
intermediate representations such as LLVM IR and MLIR. We
also believe that transformation-based testing approaches,
with corresponding reduction and deduplication advantages,
may be of interest beyond the domain of compilers.

Acknowledgments

We are grateful to Hugues Evrard, Vasileios Klimis, David
Neto, John Wickerson, Matthew Windsor, the PLDI 2021
reviewers and the PLDI 2021 Artifact Evaluation Commit-
tee for insightful feedback on earlier drafts of this work.
This work was supported by EPSRC projects EP/R011605/1
and EP/R006865/1, and two Google Summer of Code projects.

1030

Test-Case Reduction and Deduplication Almost for Free PLDI ’21, June 20ś25, 2021, Virtual, Canada

References
[1] On a Test of Whether One of Two Random Variables is Stochastically

Larger Than The Other. 1947. H.B. Mann and D.R. Whitney. Annals

of Mathematical Statistics 18 (1947), 50ś60. https://doi.org/10.1214/

aoms/1177730491

[2] Android Authority. 2019. Qualcomm will let you update GPU drivers

via the Play Store. https://www.androidauthority.com/qualcomm-

gpu-driver-updates-1063096/, last accessed 2021-04-02.

[3] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang,

Lu Zhang, and Bing Xie. 2016. An empirical comparison of compiler

testing techniques. In Proceedings of the 38th International Conference

on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016,

Laura K. Dillon, Willem Visser, and Laurie Williams (Eds.). ACM, 180ś

190. https://doi.org/10.1145/2884781.2884878

[4] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu

Zhang, Dan Hao, and Lu Zhang. 2020. A Survey of Compiler Testing.

ACM Comput. Surv. 53, 1 (2020), 4:1ś4:36. https://doi.org/10.1145/

3363562

[5] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-KeenWong, Xiaoli Z.

Fern, Eric Eide, and John Regehr. 2013. Taming compiler fuzzers.

In ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-

Juergen Boehm and Cormac Flanagan (Eds.). ACM, 197ś208. https:

//doi.org/10.1145/2491956.2462173

[6] Alastair Donaldson. 2019. GraphicsFuzz pull request: Fix issue where

the reducer was replacing a dead code injection with its body. https:

//github.com/google/graphicsfuzz/pull/599, last accessed 2021-04-02.

[7] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thom-

son. 2017. Automated testing of graphics shader compilers. PACMPL

1, OOPSLA (2017), 93:1ś93:29. https://doi.org/10.1145/3133917

[8] Alastair F. Donaldson, Hugues Evrard, and Paul Thomson. 2020.

Putting Randomized Compiler Testing into Production (Experience

Report), See [16], 22:1ś22:29. https://doi.org/10.4230/LIPIcs.ECOOP.

2020.22

[9] Freedesktop.org. 2021. The Mesa 3D Graphics Library. https://www.

mesa3d.org/, last accessed 2021-04-02.

[10] Google. 2020. SwiftShader GitHub repository. https://github.com/

google/SwiftShader, last accessed 2021-04-02.

[11] Google. 2021. Protocol Buffers. https://developers.google.com/

protocol-buffers, last accessed 2021-04-02.

[12] GPUOpen Drivers. 2020. LLVM-Based Pipeline Compiler GitHub

repository. https://github.com/GPUOpen-Drivers/llpc, last accessed

2021-04-02.

[13] GraphicsFuzz project authors. 2021. GraphicsFuzz. https://github.

com/google/graphicsfuzz, last accessed 2021-04-02.

[14] GraphicsFuzz project authors. 2021. Script for extracting crash signa-

tures. https://github.com/google/graphicsfuzz/blob/master/gfauto/

gfauto/signature_util.py, last accessed 2021-04-02.

[15] The Khronos Vulkan Working Group. 2019. Vulkan 1.1.141

- A Specification (with all registered Vulkan extensions). The

Khronos Group. https://www.khronos.org/registry/vulkan/specs/1.1-

extensions/pdf/vkspec.pdf, last accessed 2021-04-02.

[16] Robert Hirschfeld and Tobias Pape (Eds.). 2020. 34th European Confer-

ence on Object-Oriented Programming, ECOOP 2020, November 15-17,

2020, Berlin, Germany (Virtual Conference). LIPIcs, Vol. 166. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik.

[17] John Kessenich, Boaz Ouriel, and Raun Krisch (Eds.). 2019. SPIR-V

Specification, Version 1.5, Revision 2, Unified. The Khronos Group. https:

//www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf, last ac-

cessed 2021-04-02.

[18] Khronos Group. 2020. glslang GitHub repository. https://github.com/

KhronosGroup/glslang, last accessed 2021-04-02.

[19] Khronos Group. 2020. Khronos Vulkan, OpenGL, and OpenGL ES Con-

formance Tests GitHub repository. https://github.com/KhronosGroup/

VK-GL-CTS, last accessed 2021-04-02.

[20] Khronos Group. 2020. SPIR-V Tools GitHub repository. https://github.

com/KhronosGroup/SPIRV-Tools, last accessed 2021-04-02.

[21] Andrei Lascu, Matt Windsor, Alastair F. Donaldson, Tobias Grosser,

and JohnWickerson. 2021. Dreaming upMetamorphic Relations: Expe-

riences from Three Fuzzer Tools. In Proceedings of the 1st International

Workshop on Metamorphic Testing, MET@ICSE 2021, Online, June 2,

2021. To appear.

[22] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation

via equivalence modulo inputs. In ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’14, Edinburgh,

United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav

Pingali (Eds.). ACM, 216ś226. https://doi.org/10.1145/2594291.2594334

[23] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep

compiler bugs via guided stochastic program mutation. In Proceed-

ings of the 2015 ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOP-

SLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30,

2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 386ś399.

https://doi.org/10.1145/2814270.2814319

[24] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom.

Reason. 43, 4 (2009), 363ś446. https://doi.org/10.1007/s10817-009-9155-

4

[25] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F.

Donaldson. 2015. Many-core compiler fuzzing. In Proceedings of the

36th ACM SIGPLAN Conference on Programming Language Design and

Implementation, Portland, OR, USA, June 15-17, 2015, David Grove and

Steve Blackburn (Eds.). ACM, 65ś76. https://doi.org/10.1145/2737924.

2737986

[26] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random

testing for C and C++ compilers with YARPGen. Proc. ACM Program.

Lang. 4, OOPSLA (2020), 196:1ś196:25. https://doi.org/10.1145/3428264

[27] Martin Liška. 2021. C-Vise. https://github.com/marxin/cvise, last

accessed 2021-04-02.

[28] LLVM Project. 2021. libFuzzer ś a library for coverage-guided fuzz

testing. http://llvm.org/docs/LibFuzzer.html, last accessed 2021-04-02.

[29] David Maciver and Alastair F. Donaldson. 2020. Test-Case Reduction

via Test-Case Generation: Insights from the Hypothesis Reducer (Tool

Insights Paper), See [16], 13:1ś13:27. https://doi.org/10.4230/LIPIcs.

ECOOP.2020.13

[30] David R. MacIver, Zac Hatfield-Dodds, and Many Other Contributors.

2019. Hypothesis: A new approach to property-based testing. Journal

of Open Source Software 4, 43 (2019), 1891. https://doi.org/10.21105/

joss.01891

[31] John Regehr. 2020. Responsible and Effective Bugfinding. https:

//blog.regehr.org/archives/2037, last accessed 2021-04-02.

[32] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and

Xuejun Yang. 2012. Test-case reduction for C compiler bugs. In ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’12, Beijing, China - June 11 - 16, 2012, Jan Vitek, Haibo Lin,

and Frank Tip (Eds.). ACM, 335ś346. https://doi.org/10.1145/2254064.

2254104

[33] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler

bugs via live code mutation. In Proceedings of the 2016 ACM SIG-

PLAN International Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications, OOPSLA 2016, part of SPLASH

2016, Amsterdam, The Netherlands, October 30 - November 4, 2016,

Eelco Visser and Yannis Smaragdakis (Eds.). ACM, 849ś863. https:

//doi.org/10.1145/2983990.2984038

[34] The Khronos Group. 2021. spirv-fuzz source code. https://github.com/

KhronosGroup/SPIRV-Tools#fuzzer, last accessed 2021-04-02.

[35] The LLVM compiler infrastructure. 2021. Clang Static Analyzer. https:

//clang-analyzer.llvm.org/, last accessed 2021-04-02.

1031

https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://www.androidauthority.com/qualcomm-gpu-driver-updates-1063096/
https://www.androidauthority.com/qualcomm-gpu-driver-updates-1063096/
https://doi.org/10.1145/2884781.2884878
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/2491956.2462173
https://github.com/google/graphicsfuzz/pull/599
https://github.com/google/graphicsfuzz/pull/599
https://doi.org/10.1145/3133917
https://doi.org/10.4230/LIPIcs.ECOOP.2020.22
https://doi.org/10.4230/LIPIcs.ECOOP.2020.22
https://www.mesa3d.org/
https://www.mesa3d.org/
https://github.com/google/SwiftShader
https://github.com/google/SwiftShader
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://github.com/GPUOpen-Drivers/llpc
https://github.com/google/graphicsfuzz
https://github.com/google/graphicsfuzz
https://github.com/google/graphicsfuzz/blob/master/gfauto/gfauto/signature_util.py
https://github.com/google/graphicsfuzz/blob/master/gfauto/gfauto/signature_util.py
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/pdf/vkspec.pdf
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/pdf/vkspec.pdf
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf
https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/VK-GL-CTS
https://github.com/KhronosGroup/VK-GL-CTS
https://github.com/KhronosGroup/SPIRV-Tools
https://github.com/KhronosGroup/SPIRV-Tools
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3428264
https://github.com/marxin/cvise
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://doi.org/10.21105/joss.01891
https://doi.org/10.21105/joss.01891
https://blog.regehr.org/archives/2037
https://blog.regehr.org/archives/2037
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2983990.2984038
https://github.com/KhronosGroup/SPIRV-Tools#fuzzer
https://github.com/KhronosGroup/SPIRV-Tools#fuzzer
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/

PLDI ’21, June 20ś25, 2021, Virtual, Canada A.F. Donaldson, P. Thomson, V. Teliman, S. Milizia, A. Perez Maselco, and A. Karpiński

[36] The LLVM compiler infrastructure. 2021. How to submit an LLVM bug

report. https://llvm.org/docs/HowToSubmitABug.html, last accessed

2021-04-02.

[37] David B. Whalley. 1994. Automatic Isolation of Compiler Errors. ACM

Trans. Program. Lang. Syst. 16, 5 (1994), 1648ś1659. https://doi.org/10.

1145/186025.186103

[38] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Find-

ing and understanding bugs in C compilers. In Proceedings of the

32nd ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011,

Mary W. Hall and David A. Padua (Eds.). ACM, 283ś294. https:

//doi.org/10.1145/1993498.1993532

[39] Michal Zalewski. 2014. Technical łwhitepaperž for afl-fuzz. https:

//lcamtuf.coredump.cx/afl/technical_details.txt, last accessed 2021-04-

02.

[40] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating

Failure-Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183ś200.

https://doi.org/10.1109/32.988498

[41] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha

Just, Adrian Schröter, and Cathrin Weiss. 2010. What Makes a Good

Bug Report? IEEE Trans. Software Eng. 36, 5 (2010), 618ś643. https:

//doi.org/10.1109/TSE.2010.63

1032

https://llvm.org/docs/HowToSubmitABug.html
https://doi.org/10.1145/186025.186103
https://doi.org/10.1145/186025.186103
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/TSE.2010.63
https://doi.org/10.1109/TSE.2010.63

	Abstract
	1 Introduction
	2 Transformation-Based Compiler Testing
	2.1 Example-Driven Overview
	2.2 Formal Treatment
	2.3 Design Principles

	3 Design and Implementation of spirv-fuzz
	3.1 SPIR-V Background
	3.2 Overview of the Tool and Transformations
	3.3 Transformation Design
	3.4 Test-case Reduction
	3.5 Test-case Deduplication

	4 Controlled Experiments
	4.1 Bug-Finding Ability (RQ1)
	4.2 Quality of Test-Case Reduction (RQ2)
	4.3 Effectiveness of Test-Case Deduplication (RQ3)

	5 Using spirv-fuzz in the Wild
	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

