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Abstract
We propose a new cyclic proof system for automated, equa-

tional reasoning about the behaviour of pure functional pro-

grams. The key to the system is the way in which cyclic

proofs and equational reasoning are mediated by the use

of contextual substitution as a cut rule. We show that our

system, although simple, already subsumes several of the

approaches to implicit induction variously known as “in-

ductionless induction”, “rewriting induction”, and “proof by

consistency”. By restricting the form of the traces, we show

that global correctness in our system can be verified incre-

mentally, taking advantage of the well-known size-change

principle, which leads to an efficient implementation of proof

search. Our CycleQ tool, implemented as a GHC plugin,

shows promising results on a number of standard bench-

marks.
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1 Introduction
An advantage of pure functional programming is the ease

with which one can reason about the behaviour of programs.

Interesting properties can often be proven using only a com-

bination of induction and equational reasoning.

However, as is well known, inductive theorem proving is

challenging. The incompleteness of typical inductive theories
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and the non-analyticity of their induction rules excludes

a general algorithmic solution [12]. Moreover, even if we

restrict our attention to what we might loosely imagine are

the cases we care about, namely those functional programs

that occur in practice, the situation is still extremely complex.

Functional programmers employ a variety of inductive

and mutually inductive datatypes and rarely restrict them-

selves to functions defined by structured recursion schemes.

Hence, not only do we need induction principles for each

datatype, but we should expect that these schemes can be

nested, combined for mutual induction, or generalised to

account for non-structural recursion.

Despite this, there are already several tools that have

shown success at automatically proving equational prop-

erties of functional programs. However, to the best of our

knowledge, none have a smooth treatment of the more com-

plicated induction schemes that are frequently required in

practice. For example, proofs that require mutual induction

are not supported by default in either HipSpec [14], Isa-

Planner [20] or Zeno [45], and reasoning about mutually

recursive functions is described in the ACL2 manual as be-

ing “a bit awkward” [32]. Moreover, in several of these tools,

mutually inductive datatypes are simply not supported.

Using induction schemes that are tailored to specific con-

jectures is important; although automatic lemma discovery

techniques can sometimes compensate, they have a number

of weaknesses such as limited applicability, over general-

isation, and scalability for complex formulas [26]. Hence,

although lemma discovery is crucial in all but the simplest

inductive proofs, any improvement to the underlying induc-

tive proof system, reducing the burden on lemma generation

heuristics, is worthwhile.

In this paper, we propose a novel cyclic proof system for
equational reasoning and an accompanying algorithm for ef-

ficient proof search, which we have implemented as a plugin

for GHC — CycleQ. The system seamlessly supports com-

plex forms of inductive argument, such as nested or mutual

induction, and is agnostic about lemma discovery techniques

(which we leave aside as an orthogonal concern).

1.1 Cyclic Proofs and Equational Reasoning
Cyclic proofs occupy a part of non-wellfounded proof theory,

in which infinite proof trees are required to be regular, e.g.

representable as a finite graph [6, 46]. Unsound arguments
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𝑛 � 𝑛

Var 𝑣 � Var 𝑣

mapT id (Var 𝑣) � (Var 𝑣)
Cst 𝑐 � Cst 𝑐

mapT id (Cst 𝑐) � (Cst 𝑐)

(0) 𝑒1 � 𝑒1

mapE id 𝑒1 � 𝑒1

(0) 𝑒2 � 𝑒2

mapE id 𝑒2 � 𝑒2

App (mapE id 𝑒1) (mapE id 𝑒2) � App 𝑒1 𝑒2
mapT id (App 𝑒1 𝑒2) � App 𝑒1 𝑒2

mapT id 𝑡 � 𝑡

MkE (mapT id 𝑡) 𝑛 � MkE 𝑡 𝑛

mapE id (MkE 𝑡 𝑛) � MkE 𝑡 𝑛

0: mapE id 𝑒 � 𝑒

Figure 1. A cyclic proof of mapE id 𝑒 � 𝑒 .

are excluded by requiring a global correctness condition on

the infinite paths, such as inclusion in a particular 𝜔-regular

language. The regularity restrictionmakes cyclic proofs quite

well behaved, and there has recently been a number of works

exploring the theoretical and practical advantages of this

form of circular reasoning [6, 8, 9, 16–18, 25, 34, 47, 49, 52].

On the practical side, one of the major driving forces has

been the potential to improve state-of-the-art automated

reasoning. Cyclic proof systems appear to better capture the

exploratory nature of goal-directed proof search, especially

with respect to “inductive” reasoning. A particular advantage

is the ability to avoid committing to either a fixed menu of

induction schemes or a fixed choice of induction variables

in advance. Rather, systems can justify a circular argument

post hoc through an appeal to infinite descent bespoke to

the proof structure discovered by the search.

For example, consider a mutually inductive definition of

two types comprising annotated syntax trees
1
in Haskell:

data Term a data Expr a

= Var a = MkE (Term a) Nat

| Cst Nat

| App (Expr a) (Expr a)

We can define two functions: mapT and mapE, that express
the functoriality of these type constructors and conjecture

that the relevant laws hold. Fig. 1 shows the cyclic proof

obtained by our system for the identity law for mapE. Here,
and elsewhere, the cycle is presented by labelling a node

in the proof tree with a number, e.g. labelling the root 0,

and using this label elsewhere as a premise without further

justification. Equations are given using the symbol � to em-

phasize that they are regarded as unordered (i.e. the left- and

right-hand sides are interchangeable). See Example 3.2 and

the following remark for a fuller description of this notation.

Without a proper treatment of mutual induction, an in-

ductive theorem prover would have to guess, heuristically,

a strengthening of the inductive property, e.g. adding the

conjunct mapT id 𝑡 � 𝑡 to the original goal. In our cyclic

1
A typical annotation is the line and column numbers marking their prove-

nance in some source code, but here we use a single natural number for

simplicity.

system, however, the two cycles depicted using label 0 fall

out naturally from equational reasoning, and the fact that

each involves a decrease, i.e. that the proof is globally correct,

is easily verified.

A key consideration in the design of an automated cyclic

proof system is how to control the formation of cycles in the

proof. Technically, it is sound to form cycles whenever proof

search discovers a node of the proof tree that is logically

stronger than an ancestor and for which the newly formed

cycle would satisfy the global correctness condition. Since,

in general, we cannot expect there to be any syntactical

relationship between the node and its ancestor, the formation

of cycles is closely related to the use of cuts in the proof.

Indeed Tsukada and Unno [52] have demonstrated that many

techniques developed for efficient software model checking

can be viewed as the introduction of cuts into cyclic proofs

to discharge proof obligations earlier.

In Brotherston, Gorogiannis and Petersen’s state-of-the-

art CyclistFO prover, cycles are formed by a restricted kind

of cut in which the node follows from its ancestor by a com-

bination of weakening and instantiation [9]. However, the

authors note that the lack of a more general cut rule and

the lack of native support for equational reasoning causes

their system to have difficulty with heavily-equational goals,

such as the commutativity of addition: 𝑥 + 𝑦 = 𝑦 + 𝑥 . They

conjecture that a cyclic proof could be obtained if the lemma

𝑥 + S 𝑦 = S (𝑥 + 𝑦) were supplied as a hint.

In fact, the cyclic proof system that we develop in this

paper can prove the commutativity of addition automatically,

without any externally supplied lemma such as the one above.

The synthesized proof is given in Fig. 4, but we defer its

discussion until later.

Our system consists of four rules: the reflexivity of equal-

ity, evaluation of program expressions, reasoning by cases,

and substitution of equals for equals. The key is the way that

cyclic proof and equational reasoning are mediated through

the use of (contextual) substitution as a cut rule.

𝑀 � 𝑁 𝐶 [𝑁\ ] � 𝑃(Subst)
𝐶 [𝑀\ ] � 𝑃
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Nil � Nil

𝑦 � 𝑦

(0) take (len 𝑧𝑠) (Cons 𝑧 𝑧𝑠) � take (len 𝑧𝑠) (Cons 𝑧 𝑧𝑠)
butLast (Cons 𝑧 𝑧𝑠) � take (len 𝑧𝑠) (Cons 𝑧 𝑧𝑠)

Cons 𝑦 (butLast (Cons 𝑧 𝑧𝑠)) � Cons 𝑦 (take (len 𝑧𝑠) (Cons 𝑧 𝑧𝑠))
0: butLast (Cons 𝑦 𝑦𝑠) � take (len 𝑦𝑠) (Cons 𝑦 𝑦𝑠)

Nil � Nil

Nil � Nil

𝑥 � 𝑥 (0)
Cons 𝑥 (butLast (Cons 𝑦 𝑦𝑠)) � Cons 𝑥 (take (len 𝑦𝑠) (Cons 𝑦 𝑦𝑠))
butLast (Cons 𝑥 𝑥𝑠) � take (len 𝑥𝑠) (Cons 𝑥 𝑥𝑠)

butLast 𝑥𝑠 � take (len 𝑥𝑠 − S Z) 𝑥𝑠

Figure 2. A cyclic proof of butLast 𝑥𝑠 � take (len 𝑥𝑠 − S Z) � 𝑥𝑠 .

We refer to the left-hand premise of this rule as the lemma
and the right-hand premise as the continuation. This rule
says that given a lemma 𝑀 � 𝑁 and a goal 𝐶 [𝑀\ ] � 𝑃

containing an instance of𝑀 , the proof can be continued by

solving 𝐶 [𝑁\ ] � 𝑃 in which the instance of 𝑀 has been

replaced by a matching instance of 𝑁 .

Although, in principle, the choice of equation comprising

the lemma may be completely unrelated to the rest of the

proof tree (e.g. it may be supplied by a human or conjectured

by a theory exploration tool), our proof search algorithm is

able to synthesize proofs for 61% of the relevant problems

from the IsaPlanner benchmark suite whilst only choosing

lemmas𝑀 � 𝑁 that already occur as nodes within the same

proof tree, i.e. without the need to invoke any potentially

costly lemma discovery technology. For example, our system

can prove butLast 𝑥𝑠 � take (len 𝑥𝑠 − S Z) � 𝑥𝑠 in ~40ms.

A proof can be seen in Fig. 2. By comparison, HipSpec fails

to prove the same result after ~40 s, an attempt that involved

22 synthesised lemmas, 12 of which failed [42].

The substitution rule can be seen in the two rule applica-

tions of Fig. 1 that have (0) as a premise. Here, the lemma

is chosen to be the node labelled 0 at the root of the tree

and the continuation is simply discharged by reflexivity. The

usage in Fig. 2 is similar. In the proof of the commutativity

of addition Fig. 4, the continuation labelled (2) is much more

complex and contains a nested inductive argument.

1.2 Simulation of Inductionless Induction
It is well known that cyclic proof systems can already simu-

late explicit structural induction schemes, and we addition-

ally show that our system subsumes various kinds of implicit

induction based on Knuth-Bendix completion, such as “in-

ductionless induction” and “proof by consistency”, that were

intensively studied in the 1980s and 1990s, e.g. [10, 19, 21,

23, 29–31, 39].

On the surface, these approaches seem quite distinct from

cyclic proofs; rather than proving a conjecture by induction,

they posit it as an axiom and attempt to show that the result-

ing theory is consistent. In order to connect the approaches,

we use term rewriting induction, in the sense of Reddy [40],

as a stepping stone, which is already known to subsume

proof by consistency. The key is to observe that the uncon-

strained use of hypotheses in Reddy’s system gives rise to

the structure of cyclic preproofs and that global correctness

is guaranteed by construction as progress proceeds by rewrit-

ing and equations are orientated by a fixed (well-founded)

reduction order.

Term rewriting approaches to induction share some of the

advantages of cyclic proofs. They support mutual induction,

for example, and do not require a fixed induction scheme

in advance. However, our analysis also highlights a disad-

vantage by comparison with our cyclic system: rewriting

approaches require that any equations discovered by the

proof search be orientable with respect to the fixed reduc-

tion order. Systems are not only very sensitive to the choice

of the order in practice, but this requirement also precludes

theorems like the above commutativity of addition, the sym-

metry of which is inherently unorientable. For a critique see

the 1988 POPL paper of Garland and Guttag [22].

1.3 The CycleQ Theorem Prover
Since our proof system is quite simple, it is straightforwardly

amenable to a goal-directed proof-search algorithm. How-

ever, a naïve implementation will quickly run into perfor-

mance difficulties.

One source is in the number of nodes that are candidates

for cycles. As mentioned previously, the formation of cycles

is enabled by the (Subst) rule restricted to employ only

existing nodes of the current proof tree as the lemma𝑀 � 𝑁 .

However, the number of eligible lemmas to consider will

consequently grow with the size of the proof.

The number of eligible lemmas can be drastically reduced

by using a number of further restrictions motivated by redun-

dancies we identify in the structure of proofs. For example,

if a lemma is itself justified by the (Subst) rule, we can

use its premise directly as contexts and substitutions are

composable.

Another bottleneck is in the verification of the global cor-

rectness condition. This source of inefficiency was already

identified for the Cyclist prover, where a large proportion
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of the overall proof time is spent checking the global cor-

rectness of proof trees that turn out to be unsound [47]. In

this work, we avoid a similar problem by restricting our

attention to variable-based traces and exploiting the incre-

mental nature of goal-directed proof search. We annotate

the proof graph with an abstract domain representing the

𝜔-regular language of paths — Lee, Jones and Ben-Amram’s

size-change graphs [35]. Encoding the information directly

in the proof graph allows the global correctness argument

to be updated as each node is uncovered, and thus, unsound

cycles are represented explicitly so that proof search can be

terminated as soon as one is detected. Furthermore, there is

no recomputation of soundness for shared proof fragments.

We implemented our approach as a plugin for GHC called

CycleQ. It currently supports a small subset of Haskell, in-

cluding top-level recursive functions, algebraic datatypes,

and polymorphism. Our evaluation on a number of bench-

marks shows that it performs well on standard and mutual

induction problems and can sometimes prove more complex

goals that would typically require lemmas in other systems.

Contributions. Our main contributions are as follows:

• We identify contextual substitution as the appropriate

means for introducing cycles into an equational proof,

presenting a simple proof system based on this mechanism.

• We show that, when targeting proofs about functional

programs, our system subsumes approaches to implicit

induction, known variously as “inductionless induction”,

“proof by consistency” and “rewriting induction”.

• We show that, by restricting to variable traces, the global

correctness condition of cyclic proof reduces to Lee, Jones

and Ben-Amram’s size-change principle. This approach

leads directly to an efficient and incremental procedure
for detecting and verifying cycles based on size-change

graphs.

• We identify several natural restrictions on contextual sub-

stitution that allow it to play the role of an efficient match-

ing function for detecting potential cycles. Our evalua-

tion on a number of benchmarks shows that it performs

well on standard and mutual induction problems and can

sometimes prove more complex goals that would typically

require lemmas in other systems.

Outline. The remainder of the paper is structured as fol-

lows. In Section 2, we introduce necessary preliminaries and,

in Section 3, we present our simple cyclic proof system for

equational reasoning. In Section 4, we show that the system

already subsumes Reddy’s system of rewriting induction. In

Section 5, we develop the heuristics necessary for making the

formation of cycles efficient, and we show that size-change

termination can be used to enable an incremental approach

to checking the global correctness condition. A description

of our implementation and its evaluation comprise Section 6,

and we conclude in Section 7 with a discussion of related

work.

2 Preliminaries
For the purpose of this formalism, we will consider a higher-

order rewriting system and its induced equational theory.

Although the intended application of our work is functional

programs, this setting is more general and facilitates direct

comparison with rewriting induction (Section 4).

In this section, we will cover some definitions from term

rewriting used throughout the paper.

We assume a fixed signature consisting of a finite set of
algebraic datatypes 𝐷 and function symbols Σ.
For the types of our formal system, we use simple types

built over 𝐷 , i.e. 𝜏, 𝜎 B 𝑑 ∈ 𝐷 | 𝜏 → 𝜎 . The order of a type
is defined as follows:

ord(𝑑) B 0

ord(𝜏 → 𝜎) B max{ord(𝜏) + 1, ord(𝜎)}

Each function symbol is assigned a type, written 𝑓 : 𝜏 ∈ Σ.
Furthermore, function symbols are partitioned into a set of

constructors Σcon (e.g. Cons, Nil, Zero, Succ), which are re-

quired to be at most first-order, and defined functions Σdef

(e.g. map, add). We write Σcon (𝑑) for the set of constructors
whose return type is 𝑑 .

Terms are generated from application, function symbols

Σ, and variables drawn from some countable set.

𝑀, 𝑁 F 𝑥 | 𝑓 ∈ Σ | 𝑀 𝑁

As usual, we associate applications to the left.

A type environment, typically Γ or Δ, is a set of variable-
type pairs, written 𝑥 : 𝜏 . We will write Γ, Δ (or Γ, 𝑥0 :

𝜏0, . . . , 𝑥𝑛 : 𝜏𝑛) for the disjoint union of two environments.

The judgement Γ ⊢ 𝑀 : 𝜏 , defined by usual typing rules,

asserts that𝑀 is a well-typed term of type 𝜏 for the environ-

ment Γ.
In what follows, we will restrict our attention to well-

typed terms, but we omit the rules for simple typing, which

are standard.

Terms give rise to a natural set of (one-hole) contexts,
generically written 𝐶 [·], which we define as:

𝐶 [·] F · | 𝐶 [·] 𝑀 | 𝑀 𝐶 [·]

where𝑀 ranges over terms. We write 𝐶 ◦ 𝐷 for their com-

position, where (𝐶 ◦ 𝐷) [𝑋 ] B 𝐶 [𝐷 [𝑋 ]] for all terms 𝑋 .

A term𝑀 is subterm of 𝑁 , written𝑀 ⊴ 𝑁 , if there exists

a context 𝐶 such that 𝐶 [𝑀] = 𝑁 . When the witness 𝐶 is

non-trivial, i.e. not ·, we write𝑀 ◁ 𝑁 .

Lemma 2.1. ⊴ is a well-founded, partial order.

Lemma 2.2. The relation on contexts 𝐷 ⊑ 𝐶 defined as the
existence of some context 𝐸 such that 𝐶 = 𝐷 ◦ 𝐸 is a partial
order. Furthermore, if two unrelated contexts𝐶 and𝐷 are equal
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for terms 𝑀 and 𝑁 , i.e. 𝐶 [𝑀] = 𝐷 [𝑁 ], then 𝑀 ⊴ 𝐷 [𝑋 ] for
any term 𝑋 .

Substitutions, typically \ , are partial functions from vari-

ables to terms with the usual action 𝑀\ on terms 𝑀 . We

write \1 ◦ \0 for the composition of substitutions, defined as

𝑥 ↦→ (\0 (𝑥))\1.
A stable order on terms ≤ is a partial order such that

𝑀\ ≤ 𝑁\ follows from𝑀 ≤ 𝑁 for any substitution \ .

A rewrite rule is a pair of terms, written 𝑀 → 𝑁 such

that 𝑀 is of the form 𝑓 𝑀0 · · · 𝑀𝑛 where 𝑓 ∈ Σdef, each

𝑀𝑖 doesn’t contain any defined function symbols, and both

Γ ⊢ 𝑀 : 𝑑 and Γ ⊢ 𝑁 : 𝑑 for some type environment Γ and a

datatype 𝑑 .

For a set of rewrite rules 𝑅, we define the one-step reduc-
tion as𝐶 [𝑀\ ] →𝑅 𝐶 [𝑁\ ] whenever𝑀 → 𝑁 ∈ 𝑅. We write

𝑀 →∗
𝑅
𝑁 for the reflexive-transitive closure of this relation.

A term𝑀 is in 𝑅-normal form when there does not exist

a term 𝑁 such that𝑀 →𝑅 𝑁 . We write𝑀 ↓𝑅 for the term 𝑁

that is a normal form such that𝑀 →∗
𝑅
𝑁 .

Remark 2.1 (Assumptions). We will assume some fixed set

of rules 𝑅 such that the induced relation →∗
𝑅
is:

• Complete, in the sense that, no closed first-order term

headed by a defined function symbol is in normal form.

That is, for any term ∅ ⊢ 𝑓 𝑀0 · · · 𝑀𝑛 : 𝑑 with 𝑓 ∈ Σdef,

there exists some 𝑁 such that 𝑓 𝑀0 · · · 𝑀𝑛 →𝑅 𝑁 .

• And both weakly normalising and confluent so that [·] ↓𝑅
is a well-defined function on terms.

It is easy to ensure that the rewriting system correspond-

ing to a functional program is complete and is often guaran-

teed by compilers. Pure functional programs are also conflu-

ent. On the other hand, the assumption that the program is

weakly normalising is not without loss of generality. How-

ever, it has been observed that problems of non-termination

are relatively rare in comparison to those of functional cor-

rectness. It is also worth noting that although undecidable,

practical algorithms exist for verifying this property.

Example 2.1. The reduction relation →𝑅 induced by the

following program clearly satisfies the assumptions of Re-

mark 2.1.

add Zero y = y

add (Succ x) y = Succ (add x y)

map f Nil = Nil

map f (Cons x xs) = Cons (f x) (map f xs)

An equation, generically 𝜙 or𝜓 , is an unordered pair of

terms 𝑀 and 𝑁 such that Γ ⊢ 𝑀, 𝑁 : 𝑑 for a type environ-

ment Γ and datatype 𝑑 . Equations are written as Γ ⊢ 𝑀 � 𝑁 ,

or equivalently Γ ⊢ 𝑁 � 𝑀 . When clear from the context,

we will omit the type enironment.

A (ground) instance of an equation Γ ⊢ 𝑀 � 𝑁 is a

subsitution 𝛼 , such that, ∅ ⊢ 𝛼 (𝑥) : 𝜏 for all 𝑥 : 𝜏 ∈ Γ. An

equation Γ ⊢ 𝑀 � 𝑁 is satisfied by an instance, written

𝛼 ⊨ 𝑀 � 𝑁 , if 𝑀𝛼 ↓𝑅 = 𝑁𝛼 ↓𝑅 . If it is satisfied by all such

instances, then we say it is valid and write ⊨ 𝑀 � 𝑁 .

Note that the satisfaction relation, · ⊨ ·, and by extension

validity, is well-defined as normalisation is a function and

syntactic equality is a symmetric relation.

3 Cyclic Proofs
An infinitary proof generalises traditional finite derivation

trees to possibly infinite ones. Such proofs are not necessarily

sound; the standard approach is, therefore, to first define

preproofs, which are later refined by a global condition to

ensure the argument is well-founded [7].

Cyclic proofs are a subclass of infinitary proofs whose

derivation trees are regular, i.e. there are only finitely many

distinct subtrees. Such proofs can be represented as finite

but incomplete derivation trees where unjustified premises

called “buds” refer to other vertices called “companions” [6].

We will, however, present the cycles of a preproof directly.

Definition 3.1. A (cyclic) preproof is a tuple 𝑃 = (𝑉 , 𝑒, 𝑟, 𝑝)
where𝑉 is a finite set of vertices, typically an initial segment

of the natural numbers, such that, for each vertex 𝑣 ∈ 𝑉 :

• There is an associated equation 𝑒 (𝑣), inference rule from
Fig. 3 𝑟 (𝑣), and a finite sequence of vertices 𝑝 (𝑣) ∈ 𝑉 ∗

called the premises. We write 𝑝𝑖 (𝑣) for the 𝑖th element of

𝑝 (𝑣) starting with 𝑝0
• And

𝑒 (𝑝0 (𝑣)) . . . 𝑒 (𝑝𝑛 (𝑣))
𝑒 (𝑣)

is a well-formed instance of the rule 𝑟 (𝑣).
The underlying graph of a preproof 𝑃 = (𝑉 , 𝑒, 𝑟, 𝑝) is a

graph 𝐺 (𝑃) = (𝑉 , 𝐸), over the same set of vertices, where:

𝐸 B {(𝑣, 𝑝𝑖 (𝑣)) | 𝑣 ∈ 𝑉 , 𝑝𝑖 (𝑣) is defined}

Note that when a premise appears as part of a cycle, it

needn’t be a direct ancestor. In particular, a cousin node may

be used as a lemma by the (Subst) rule.

Remark 3.1 (Rules in Fig. 3 defining equational preproofs).

1. The rules are named according to their goal-orientated

use. Hence (Reduce) refers to the reduction of a goal

to the premise.

2. In this light, we will refer to the left- and right-hand

premises the (Subst) rule as the lemma and continu-
ation respectively. The reason behind this convention

will later become apparent when discussing our proof

search algorithm Section 6.

3. As the usual rules of transitivity, congruence, and in-

stantiation are instances of (Subst), they are trivially

derivable. Symmetry follows immediately from the use

of unordered equations. In particular, any combination

of these rules can be used to form cycles.
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(Refl)
Γ ⊢ 𝑀 � 𝑀

Γ ⊢ 𝑀 ′ � 𝑁 ′
(Reduce) (𝑀 →∗

𝑅
𝑀 ′, 𝑁 →∗

𝑅
𝑁 ′)

Γ ⊢ 𝑀 � 𝑁

Δ ⊢ 𝑀 � 𝑁 Γ ⊢ 𝐶 [𝑁\ ] � 𝑃(Subst)
Γ ⊢ 𝐶 [𝑀\ ] � 𝑃

∀𝑘 ∈ Σcons (𝑑) Γ,Δ ⊢ 𝑀 [𝑘 𝑥0 · · · 𝑥𝑛/𝑥] � 𝑁 [𝑘 𝑥0 · · · 𝑥𝑛/𝑥](Case)
Γ, 𝑥 : 𝑑 ⊢ 𝑀 � 𝑁

Figure 3. The inference rules for preproofs

4. In the rule (Case), there are as many equations in the

premises as there are constructors of the datatype 𝑑 .

A trivial example of a preproof can be constructed by using

substitution to rewrite any equation according to itself, thus

assuming the exact equation which is to be proved.

Example 3.2. Let 𝑉 = {0, 1}, let 𝑒 (0) and 𝑒 (1) be the equa-
tions Cons 𝑥 𝑥𝑠 � Nil and Nil � Nil, let 𝑟 (0) and 𝑟 (1) be the
rules (Subst) and (Refl), and let 𝑝 (0) = [0, 1] and 𝑝 (1) = [].
Then (𝑉 , 𝑒, 𝑟, 𝑝) is a preproof satisfying Definition 3.1.

Remark 3.2 (Representing preproofs).

1. Here, and in what follows, we will depict preproofs

as a set of finite trees with labelled vertices and “back

edges” that reference those labels. For example, the

preproof of Example 3.2 would be presented as follows:

(0)

(Refl)
Nil � Nil(Subst)

0: Cons 𝑥 𝑥𝑠 � Nil

2. To keep proofs compact, we shall also omit vertices

justified by (Reduce).

Although this example clearly illustrates that preproofs

are not necessarily sound arguments, they are, however,

locally sound in the sense that the premises of an inference

rule justify its conclusion. This property is witnessed by

relating instances of a vertex to those of its premises, which is

sufficient for concluding that the vertex’s equation is satisfied

for that instance.

Definition 3.3. Let (𝑉 , 𝑒, 𝑟, 𝑝) be a cyclic preproof with

vertex 𝑣 ∈ 𝑉 . Then for any instance of 𝑒 (𝑣), 𝛼 , a preceding
instance is a pair (𝑖, 𝛽), where 𝑝𝑖 (𝑣) is a premise and 𝛽 is an

instance of 𝑒 (𝑝𝑖 (𝑣)) such that one of the following conditions
is met depending on the rule 𝑟 (𝑣):

• (Case) where 𝑥 : 𝑑 is the variable upon which case

analysis is performed. In this case, if (𝛼 (𝑥)) ↓𝑅 is of the

form 𝑘 𝑀0 · · · 𝑀𝑛 and 𝑝𝑖 (𝑣) is the premise associated

with the constructor 𝑘 using fresh variables 𝑥0, . . . , 𝑥𝑛 ,

then (𝑖, 𝛽) is a preceding instance where 𝛽 is defined

as follows:

𝛽 (𝑦) B
{
𝑀𝑖 𝑦 = 𝑥𝑖

𝛼 (𝑦) 𝑦 ≠ 𝑥

• (Subst) with substitution \ . In this case, (0, 𝛼 ◦ \ )
and (1, 𝛼) are preceding instances for the lemma and

continuation respectively.

• Otherwise, there is a unique premise, for which (0, 𝛼)
is a preceding instance.

The following lemma states the important property that

preceding instances must witness — the contrapositive of

local soundness (i.e. from an invalid conclusion, one can

derive an invalid premise).

Lemma 3.1. Let (𝑉 , 𝑒, 𝑟, 𝑝) be a cyclic preproof with vertex
𝑣 ∈ 𝑉 . If 𝛼 is an instance of 𝑒 (𝑣) such that 𝛼 ⊭ 𝑒 (𝑣), then there
exist a preceding instance (𝑖, 𝛽) where 𝛽 ⊭ 𝑒 (𝑝𝑖 (𝑣)).

There are two direct corollaries of this lemma. The first is

that the equation of each vertex in a cyclic preproof is valid

if all of its premises are:

Corollary 3.2 (Local soundness). Let (𝑉 , 𝑒, 𝑟, 𝑝) be a cyclic
preproof with vertex 𝑣 ∈ 𝑉 . If the equation of each premise is
valid, i.e. ⊨ 𝑒 (𝑝𝑖 (𝑣)) when 𝑝𝑖 (𝑣) is defined, then ⊨ 𝑒 (𝑣).

However, Lemma 3.1 also implies that we can extract an

infinite sequence of invalid equations from any invalid equa-

tion in a cyclic preproof. This process also gives us the cor-

responding instances that are not satisfied.

If a parallel sequence of terms can be constructed from

these instances that is infinitely decreasing according to

some well-founded order, we have shown there are no in-

valid equations. To this end, a global condition is placed upon

cyclic preproofs based on the notion of a trace. A trace is

another sequence of terms intuitively capturing any depen-

dency between the instances of a conclusion and its premise.

Definition 3.4. A path through a preproof 𝑃 = (𝑉 , 𝑒, 𝑟, 𝑝)
is a finite or infinite sequence of vertices (𝑣𝑖 ) such that, for

each 𝑖 ∈ N, 𝑣𝑖+1 is a premise of 𝑣𝑖 , i.e. there is some 𝑗 such

that 𝑣𝑖+1 = 𝑝 𝑗 (𝑣𝑖 ).

Definition 3.5. Let ≤ be a stable, well-founded order. A

≤-trace along a path (𝑣𝑖 ) is a finite or infinite sequence of
terms (𝑇𝑖 ) where 𝑇𝑖+1 is constrained according to the rule

𝑟 (𝑣𝑖 ):
• (Case) where 𝑥 : 𝑑 is the variable upon which case

analysis is performed. If 𝑣𝑖+1 is the premise associated

with constructor 𝑘 using fresh variables 𝑥0, . . . , 𝑥𝑛 ,

then 𝑇𝑖+1 ≤ 𝑇𝑖 [𝑘 𝑥0 · · · 𝑥𝑛/𝑥].
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(Refl)
S 𝑥 ′ � S 𝑥 ′

(2)

(Refl)
S (add 𝑦 ′ (S 𝑥 ′)) � S (add 𝑦 ′ (S 𝑥 ′))

(Subst)
S (S (add 𝑦 ′ 𝑥 ′)) � S (add 𝑦 ′ (S 𝑥 ′))

(Case)
2: S (add 𝑦 𝑥 ′) � add 𝑦 (S 𝑥 ′)

(Refl)
Z � Z

(1)

(Refl)
S 𝑦 ′ � S 𝑦 ′

(Subst)
S 𝑦 ′ � S (add 𝑦 ′ Z)

(Case)
1: 𝑦 � add 𝑦 Z

(0) (2)(Subst)
S (add 𝑥 ′ 𝑦) � add 𝑦 (S 𝑥 ′)

(Case)
0: add 𝑥 𝑦 � add 𝑦 𝑥

Figure 4. A cyclic proof that addition is commutative.

• (Subst) with substitution \ . If 𝑣𝑖+1 is the lemma, then

𝑇𝑖+1\ ≤ 𝑇𝑖 and if 𝑣𝑖+1 is the continuation, then𝑇𝑖+1 ≤ 𝑇𝑖 .

• Otherwise, 𝑇𝑖+1 ≤ 𝑇𝑖

When there is a strict inequality in the above definition,

we say that 𝑣𝑖 is a progress point.

Remark 3.3 (Progress points). Part of our intention with

this work is to relate rewriting induction to cyclic proofs.

It is, therefore, not possible to build a specific relationship

between derivations and progress points, as is done in e.g.

Brotherston’s work [7], because different rules will entail

a progress point for different orderings. For example, our

implementation is based on the substructural order where

progress points are marked by the (Case) rule, but a re-

duction order would also use (Reduce) and (Subst) as in
Section 4.

Lemma 3.3. Let (𝑉 , 𝑒, 𝑟, 𝑝) be a preproof with vertex 𝑣 ∈
𝑉 , let 𝛼 be an instance of 𝑒 (𝑣), and let (𝑖, 𝛽) be a preceding
instance. If𝑇0, 𝑇1 is a trace for the path 𝑣, 𝑝𝑖 (𝑣), then𝑇1𝛽 ≤ 𝑇0𝛼

and, in particular, 𝑇1𝛽 < 𝑇0𝛼 , if 𝑣 is a progress point.

The aforementioned lemma shows how a trace, as previ-

ously defined, leads to a monotonic sequence of terms by

closing those terms according to a sequence of preceding

instances that emerges as a consequence of Lemma 3.1. If

every path has a trace, then we can construct an infinitely

decreasing sequence of terms for any sequence of invalid

equations generated by Lemma 3.1. Thus we define a proof

as a preproof that satisfies the following global correctness
condition.

Definition 3.6. A ≤-(cyclic) proof is a preproof such that,

for every infinite path (𝑣𝑖 ), there is a suffix, i.e. (𝑣𝑖+𝑘 ) for
some 𝑘 ∈ N, which has a ≤-trace with infinitely many

progress points.

Because our definition of a trace and its progress points is

highly generic, it is undecidable if a sufficient set of traces

exists or not. This is a significant difference from proofs by

structural induction, whose validity is effectively a syntactic

well-formedness condition. Although undesirable, we will, in

practice, restrict the space of traces according to a particular

application as in Section 5. In particular, our implementation

only checks for traces composed solely of variables, which is

decidable. However, we chose not to overfit the declarative

system as alternative restrictions are equally valid. This point

is discussed further under related work.

Example 3.7 (Commutativity of addition). Fig. 4 displays a

preproof for the commutativity of addition. Note that there

are implicit applications of the (Reduce) rule in the S-case of
the root node, i.e. the rewriting of add (S 𝑥) 𝑦 to S (add 𝑥 ′ 𝑦)
in it’s left parent. And similarly throughout.

To show that this is also a ⊴-proof, we must consider

every infinite path and show they each have a suffix with an

infinitely progressing trace. There are three cycles we must

consider:

• One passing through 0 by following the continuation

in case associated with the S constructor, for which

the trace 𝑥, 𝑥 ′, 𝑥, 𝑥, . . . is sufficient. The decrease 𝑥 ′◁
𝑥 [𝑆 𝑥 ′/𝑥] marks a progress point.

• One passing through 1 by following the lemma in the

case associated with the Z constructor, for which the

trace 𝑦, 𝑦 ′, 𝑦, 𝑦, . . . is similarly sufficient.

• And finally, one passing through 2 by following the

lemma in case associated with the S constructor, for

which the trace 𝑦, 𝑦 ′, 𝑦, 𝑦, . . . is also sufficient.

These traces are informally depicted as coloured lines in the

preproof diagram with progress points marked by circles,

following [34].

Theorem 3.4 (Global soundness). Let ≤ be a stable well-
founded order. If (𝑉 , 𝑒, 𝑟, 𝑝) is a ≤-proof with some vertex
𝑣 ∈ 𝑉 , then ⊨ 𝑒 (𝑣).

Remark 3.4 (A refinement of global correctness). Allowing
for traces that only cover a certain suffix of a path is particu-

larly useful in the context of cyclic proofs, as paths must be

ultimately periodic. It is, therefore, only necessary to find a

trace for every cycle. Note, however, cycles may overlap, and

so it is not sufficient to assign a single term to each vertex.
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4 Rewriting Induction
As discussed in the introduction, automating traditional

inductive proofs is highly non-trivial, and many alterna-

tives have thus been proposed. One such well-developed

line of work is proof by consistency or inductionless induc-

tion [23, 30, 39]. Musser observed that if an equation can be

consistently added to a strongly complete theory, it is true of

its least model. The consistency of an equational theory, in

this case that ⊬ False = True, can then be verified by con-

verting the theory into a confluent and terminating rewrite

system by using the Knuth-Bendix algorithm [33].

Rewriting induction, due to Reddy, highlights its core

mechanisms [40]. The principal idea behind rewriting induc-

tion is to perform induction using a well-founded ordering

that includes the reduction relation — a “reduction” order. A

reduction order is more flexible than the substructural order

in that more terms are related. Furthermore, unlike the use

of a structural induction scheme, this approach can be easily

extended to mutually inductive datatypes as there is no need

to invent a complementary induction hypothesis.

For this section, we shall assume ≤ is a reduction order .
That is, a well-founded stable order such that each rewrite

rule𝑀 → 𝑁 ∈ 𝑅 is strictly decreasing, i.e. 𝑁 < 𝑀 .

The decreasing order ≺ is defined as the transitive clo-

sure of the relation < ∪ ◁.

Lemma 4.1. ≺ is a reduction order.

A serious complication of rewriting induction, however,

is that all lemmas (including equations that play the role

of induction hypotheses) must also be orientated according

to the reduction order. Properties such as the commutativ-

ity of addition are, therefore, difficult to prove. Although

there are extensions that allow for unoriented equations,

the increase in complexity detracts from the advantage of

rewriting induction — its simplicity [2].

Furthermore, rewriting induction is highly sensitive to

the choice of order and choosing an order in advance is a

non-trivial task. For example, if the term add (add 𝑥 𝑦) 𝑧
is less than add 𝑥 (add 𝑦 𝑧), then it is impossible to prove

addition is associative without externally supplied lemmas.

Our cyclic proof system allows for both unoriented equa-

tions and is ambivalent to the choice of order, overcoming

these limitations. However, it is worth reiterating that we

have not provided a method for verifying the global condi-

tion, which is required in the general case.

Definition 4.1. The most significant inference rule con-

cerns the expansion of an equation:

Expand𝐶 (𝐶 [𝑓 𝑀0 . . . 𝑀𝑛] = 𝑁 ) B
{𝐶 [𝐿]\ = 𝑁\ | 𝑓 𝑁0 · · ·𝑁𝑛 → 𝐿 ∈ 𝑅, \ = mgu(𝑀, 𝑁 )}

following the presentation used in [2].

This operator is used to perform case analysis of the vari-

ables, which are instantiated with constructors. However,

a critical part of this definition is that a reduction step has

occurred, and the left-hand side is, therefore, strictly smaller.

In other words, it marks a progress point for a reduction

order.

Definition 4.2 (Rewriting induction). The inference rules
of rewriting induction manipulate pairs (𝐸, 𝐻 ) of oriented
equations 𝐸 (denoted 𝑀 = 𝑁 , in contrast to 𝑀 � 𝑁 ) to be

proven, and rewrite rules 𝐻 that supplement the original

set 𝑅. The judgement ⊢ (𝐸, 𝐻 ) is inductively defined by the

rules of Fig. 5.

Note that although the rules from𝐻 must comply with the

reduction order, they needn’t be orthogonal to 𝑅 or behave

like a functional program. For example, add (add 𝑥 𝑦) 𝑧 →
add 𝑥 (add 𝑦 𝑧) is valid despite there already being rules that
govern the reduction of add.

Theorem 4.2 (Soundness). If ⊢ (𝐸, ∅) is a rewriting induc-
tion derivation, then every equation in 𝐸 is valid [40].

4.1 Translation to Cyclic Proof
Rewriting induction allows for previously seen equations

to be used as hypotheses. This circularity is not unsound as

hypotheses are only introduced through a strict decrease.

We will show that rewriting induction proofs can be trans-

lated into our cyclic proof system and, therefore, can be seen

as a form of cyclic proof search, see Theorem 4.3. Further-

more, as rewriting induction subsumes inductionless induc-

tion, a line of work that adapts the Knuth-Bendix completion

procedure to perform saturation based proofs by consistency,

our system also subsumes that approach [40].

We will construct a cyclic proof by induction over a rewrit-

ing induction derivation. Cyclic proofs discharge their hy-

pothesis globally rather than locally, and thus we need to

allow for undischarged hypotheses when reasoning locally

in this manner. We first define this generalisation of cyclic

proofs as follows:

Definition 4.3. A partial proof is a tuple (𝑉 , 𝐻, 𝑒, 𝑟, 𝑝)
where 𝑉 and 𝐻 are disjoint finite sets of vertices such that:

• For each 𝑣 ∈ 𝑉 ∪ 𝐻 , there is an associated equation

𝑒 (𝑣).
• For each 𝑣 ∈ 𝑉 , there is inference rule from Fig. 3

𝑟 (𝑣), and list of vertices 𝑝 (𝑣) ∈ (𝑉 ∪ 𝐻 )∗ called the

premises. We write 𝑝𝑖 (𝑣) for the 𝑖th element of 𝑝 (𝑣)
starting with 𝑝0.

• And

𝑒 (𝑝0 (𝑣)) . . . 𝑒 (𝑝𝑛 (𝑣))
𝑒 (𝑣)

is a well-formed instance of the rule 𝑟 (𝑣).
Furthermore, partial proofs must also satisfy the global

condition that for every path (𝑣𝑖 ), there is a suffix, i.e. (𝑣𝑖+𝑘 )
for some 𝑘 ∈ N, which has a ⪯-trace with infinitely many

progress points.

We will refer to the elements of 𝐻 as hypotheses.
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(End)
⊢ (∅, 𝐻 )

⊢ (𝐸, 𝐻 )(Delete)
⊢ (𝐸 ∪ {𝑀 = 𝑀}, 𝐻 )

⊢ (𝐸 ∪ {𝑀 ′ = 𝑁 }, 𝐻 )(Simplify) (𝑀 →∗
𝑅∪𝐻 𝑀 ′)

⊢ (𝐸 ∪ {𝑀 = 𝑁 }, 𝐻 )
⊢ (𝐸 ∪ Expand𝐶 (𝑀 = 𝑁 ), 𝐻 ∪ {𝑀 → 𝑁 })

(Expand) (𝑁 < 𝑀)
⊢ (𝐸 ∪ {𝑀 = 𝑁 }, 𝐻 )

Figure 5. Inference rules of rewriting induction.

Intuitively, a partial proof is a proof where the hypotheses

𝐻 may be used as premises but needn’t be justified by an

instance of an inference rule themselves. Note that when 𝐻

is empty, we have a cyclic proof.

Theorem 4.3. If ⊢ (𝐸, 𝐻 ) is rewriting induction derivation,
then there exists a partial proof (𝑉 ′, 𝐻 ′, 𝑒, 𝑟 , 𝑝) where 𝐸 ⊆
{𝑒 (𝑣) | 𝑣 ∈ 𝑉 } and 𝐻 = {𝑒1 → 𝑒2 | 𝑒1 � 𝑒2 ∈ 𝐻 ′, 𝑒2 ⪯ 𝑒1},
i.e. the rewrite rules of 𝐻 are orientations of equations in 𝐻 ′.

Remark 4.1. Rewriting induction and related approaches do

not typically require a confluent rewrite system. Therefore,

this theorem only shows that our system subsumes rewriting

induction when confluence is taken as an assumption, which

is the case for our intended application. It is also worth

noting that we only require confluence when defining the

semantics of terms; we are confident that the proof system

could be made sound for non-confluent rewrite systems.

Cyclic proofs, for a generic sequent calculus, have been

shown to subsume traditional structural induction [6]. Al-

though this result is not directly applicable to our system,

which is specialised to unconditional equational reasoning,

we conjecture that an analogous argument could be made

with unconstrained usage of the (Subst) rule. For examples

of the translation from structural induction to proofs in our

calculus, see the long version of this paper [28].

5 Detecting and Verifying Cycles
Our proof system is designed to be used in a goal-orientated

manner. It is necessary to form cycles to produce a finite

proof, and subsequently, verify that the global condition has

been met. In this section, we discuss these high-level aspects

of our proof search algorithm.

There exists a generic cyclic theorem prover for sequent

calculi — the Cyclist system [9]. It is generic in that it sup-

ports an arbitrary set of inference rules. Given this setup,

it would be possible to naïvely enumerate derivations of

the goal formula and create cycles just when formulas are

repeated.

Sequents discovered earlier in proof search are intuitively

simpler in that they apply to a more general instance. For ex-

ample, consider the (Case) rule where only certain instances

of the conclusion will be relevant to each premise. Therefore,

it will often be necessary to generalise an equation to relate

it to an ancestor.

However, it is desirable to avoid generalisation as part of

normal proof search, as the space is often intractable and not

guaranteed to lead to a cycle [37]. The Cyclist framework

is thus parameterised by a “matching function” that detects

when cycles can be formed. The matching function for first-

order logic is a combination of weakening and substitution.

For separation logic, the matching function is the frame rule.

The capacity of the Cyclist framework for equational rea-

soning is known to be limited. For example, the commuta-

tivity of addition cannot be automatically proven without

the lemma add 𝑥 (S 𝑦) � S (add 𝑥 𝑦). Our observation is

that the existing matching functions are too restrictive for

equational reasoning.

The usual rules for equational reasoning, i.e. the congru-

ence axioms, are intractable due to the vast number of in-

termediate equations they create [3]. However, we cannot

simply avoid such equational reasoning in cyclic proofs as

they are often needed to form cycles. We thus propose the

substitution of equals as an alternative matching function,

appearing in our proof system as the (Subst) rule. This way
of closing cycles resembles the use of hypotheses as rewrite

rules in rewriting induction.

Algorithmically, (Subst) is only used as a matching func-

tion in a goal-directed manner. The task of generating useful

lemmas is a non-trivial and orthogonal concern [26]. For

a given goal equation Γ ⊢ 𝑀 � 𝑁 , any subterms that are

instances of the left- or right-hand side of an existing node

are considered and the goal is rewritten accordingly, leaving

the continuation premise as a new subgoal. Thus the lemma,

i.e. the first premise of (Subst), is always an equation that

has already appeared in the tree, acting somewhat like an

induction hypothesis.

There is a significant novelty in using (Subst) as a match-

ing function not present in the Cyclist system — it doesn’t

completely close a branch of the derivation tree into a cycle

but leaves a new subgoal, i.e. the continuation, which must

also be solved.

5.1 Refining Substitution
While substitution is an appropriate technique for detecting

cycles, it can also create many redundancies when searching

for proofs that lead to performance issues. Therefore, we

only consider a subset of available lemmas for substitution
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Δ ⊢ 𝑀 � 𝑁 ′
(Reduce)

Δ ⊢ 𝑀 � 𝑁

Γ ⊢ 𝑄 � 𝑃 ′
(Reduce)

Γ ⊢ 𝐶 [𝑁\ ] � 𝑃
(Subst)

Γ ⊢ 𝐶 [𝑀\ ] � 𝑃 ⇝
Δ ⊢ 𝑀 � 𝑁 ′

Γ ⊢ 𝑄 � 𝑃 ′
(Reduce)

Γ ⊢ 𝐶 [𝑁 ′\ ] � 𝑃
(Subst)

Γ ⊢ 𝐶 [𝑀\ ] � 𝑃

Λ ⊢ 𝑀 � 𝑁 Δ ⊢ 𝐷 [𝑁\ ] � 𝑃 ′
(Subst)

Δ ⊢ 𝐷 [𝑀\ ] � 𝑃 ′ Γ ⊢ 𝐶 [𝑃 ′𝜎 ] � 𝑃
(Subst)

Γ ⊢ 𝐶 [ (𝐷 [𝑀\ ])𝜎 ] � 𝑃 ⇝
Λ ⊢ 𝑀 � 𝑁

Δ ⊢ 𝐷 [𝑁\ ] � 𝑃 ′ Γ ⊢ 𝐶 [𝑃 ′𝜎 ] � 𝑃
(Subst)

Γ ⊢ 𝐶 [ (𝐷 [𝑁\ ])𝜎 ] � 𝑃
(Subst)

Γ ⊢ 𝐶 [ (𝐷 [𝑀\ ])𝜎 ] � 𝑃

Figure 6. Redundancy of unreduced lemmas & Reassociation of nested substitution.

in our implementation. These are determined by the rule

used to justify the lemma:

• (Refl) Clearly, no useful lemma is justified by reflexivity

as the continuation is identical to the goal.

• (Reduce) We also do not consider lemmas justified by

reduction. This restriction follows naturally from the rea-

sonable strategy that we ought to reduce a goal as far as

possible before further reasoning. Suppose we have a goal

𝐶 [𝑀\ ] � 𝑃 and a candidate lemma𝑀 � 𝑁 that is justified

by (Reduce). As the goal is assumed to be in normal form,

we know that 𝑀 is also in normal form. Thus there is a

premise 𝑀 � 𝑁 ′
where 𝑁 →∗

𝑅
𝑁 ′

. We can apply this

lemma directly, to leave the continuation 𝐶 [𝑁 ′\ ] � 𝑃 . Of

course, this is distinct from the continuation that we would

arrive at if we used the unreduced lemma, i.e. 𝐶 [𝑁\ ] � 𝑃 .

However, if we normalise this original continuation to

𝑄 � 𝑃 ′
, then, by confluence, the new continuation must

also normalise to 𝑄 � 𝑃 ′
, and we can proceed as normal.

The comparison between these proofs can be seen in Fig. 6.

• (Subst) If a lemma is itself justified by (Subst), we can

use the secondary lemma directly as contexts and substi-

tutions are composable. Here we are observing that the

order in which lemmas are applied is associative. However,

choosing one of these as the canonical form, i.e. associating

nested instances into the continuation, increases perfor-

mance because the roles of the lemma and continuation

are not symmetric — we wish to reduce the number of

choices for the former. This argument can also be seen in

Fig. 6.

• Therefore, only those lemmas justified by (Case) are con-
sidered for substitution.

In the proof that addition is commutative, for example,

there are 16 vertices but only 3 instances of the (Case), a
significant reduction that mitigates the cost of verifying

cycles.

5.2 Verifying Cycles
Our global condition on paths is undecidable in general. If

we restrict our attention to traces comprising variables and

the substructural order, it becomes decidable. Informally,

this captures the space of typical proofs where induction

concerns an explicit variable.

A comparable result was first shown by reduction to Büchi

automata in the original work on cyclic proofs for first-order

logic with inductive definitions [6]. Two𝜔-regular languages

are extracted from a preproof: the path language and the

trace language. It can then be checked whether the path

language is included in the trace language, i.e. every path

has an infinitely progressing trace.

Unfortunately, checking the inclusion of Büchi automata

is doubly exponential in the number of vertices, as it involves

complementing the automata [38]. This procedure becomes

onerous if several candidate proofs, the majority of which

may be unsound, need to be checked throughout the proof

search. In the Cyclist theorem prover, soundness checking

could take a significant proportion of the proof time [47].

This approach to verifying cyclic proofs fails to take advan-

tage of the incremental nature of the goal-orientated proof

search, where proofs share a common prefix. Furthermore,

as soon as a cycle that does not satisfy the global condition is

detected, there is no advantage to completing the proof. In-

stead, we annotate the proof graph with an abstract domain

representing the 𝜔-regular language of paths — size-change

graphs, originally developed for termination analysis [35].

The workload is performed as each node is uncovered so

that the soundness condition is represented explicitly.

Definition 5.1. Let 𝑒 (𝑣) = Γ ⊢ 𝜙 and 𝑒 (𝑣 ′) = Γ′ ⊢ 𝜙 ′
be

two vertices in a preproof (𝑉 , 𝑒, 𝑟, 𝑝). A size-change graph
between 𝑣 and 𝑣 ′ is a labelled bipartite graph between Γ and

Γ′, i.e. a set of triples (𝑥, 𝑦, 𝑙) ∈ Γ × Γ′ × {≃, ≲} where

the labels mark equality or a decrease which are possible

progress points.

We write 𝐺 : 𝑣 → 𝑣 ′ for such a size-change graph, 𝑥 ≃
𝑦 ∈ 𝐺 if (𝑥, 𝑦, 𝑙) ∈ 𝐺 for any 𝑙 , and 𝑥 ≲ 𝑦 ∈ 𝐺 if, specifically,

(𝑥, 𝑦, ≲) ∈ 𝐺 . Labels from a simple lattice with ≲ > ≃.
Definition 5.2 (Composition of size-change graphs). Given
two size-change graphs 𝐺 : 𝑣 → 𝑣 ′ and 𝐺 ′

: 𝑣 ′ → 𝑣 ′′, then
there is a size-change graph 𝐺 ′ ◦𝐺 : 𝑣 → 𝑣 ′′ defined as:

𝐺 ′ ◦𝐺 B {(𝑥, 𝑧, 𝑙 ⊔ 𝑙 ′) | (𝑥, 𝑦, 𝑙) ∈ 𝐺, (𝑦, 𝑧, 𝑙 ′) ∈ 𝐺 ′}
That is, there is an edge 𝑥 ≃ 𝑧 whenever there exists

a variable 𝑦 and edges 𝑥 ≃ 𝑦 ∈ 𝐺 and 𝑦 ≃ 𝑦 ∈ 𝐺 ′
. It is

decreasing if either edge is decreasing.

The following definition associates a canonical size-change

graph with each edge in a preproof. Intuitively, an edge
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𝑥 ≃ 𝑦 ∈ 𝐺 (𝑣, 𝑣′) indicates that 𝑥, 𝑦 is a valid trace passing

from 𝑣 to 𝑣 ′, and that it is a progress point if 𝑥 ≲ 𝑦 ∈ 𝐺 (𝑣, 𝑣′) .

Definition 5.3 (The size-change graph of an edge). Let

(𝑉 , 𝑒, 𝑟, 𝑝) be a preproof. For each edge (𝑣, 𝑣 ′) ∈ 𝐸 of the

underlying graph, 𝐺 (𝑣, 𝑣′) : 𝑣 → 𝑣 ′ is defined as follows:

• If 𝑟 (𝑣) is an instance of (Subst) with substitution \

and 𝑣 ′ is the lemma, then there is a non-decreasing

edge 𝑥 ≃ 𝑦 ∈ 𝐺 (𝑣, 𝑣′) for all other variables such that

𝑥 = \ (𝑦).
• If 𝑟 (𝑣) is an instance of (Case) and the variable being

analysed is 𝑥 , then there is a decreasing edge 𝑥 ≲ 𝑦

for each fresh variable 𝑦 introduced into 𝑣 ′ and a non-

decreasing edge 𝑧 ≃ 𝑧 for all variables.

• Otherwise, the size-change graph is simply the iden-

tity: 𝑧 ≃ 𝑧 for all variables in both environments.

The composition of these size-change graphs provides

traces for general paths. And, by taking a generalisation of

the transitive closure, we represent the space of possible

infinite traces.

Definition 5.4. The closure of a preproof 𝑃 = (𝑉 , 𝑒, 𝑟, 𝑝)
is a set of size-change graphs, cl(𝑃), such that

• For each edge (𝑣, 𝑣 ′) ∈ 𝐸, 𝐺 (𝑣, 𝑣′) ∈ cl(𝑃)
• If 𝐺 : 𝑣 → 𝑣 ′ ∈ cl(𝑃) and 𝐺 ′

: 𝑣 ′ → 𝑣 ′′ ∈ cl(𝑃), then
𝐺 ′ ◦𝐺 ∈ cl(𝑃)

Lemma 5.1. Suppose 𝑃 = (𝑉 , 𝑒, 𝑟, 𝑝) is a preproof with a
path 𝑣0, . . . , 𝑣𝑛 for some 𝑛 > 0, then there is a size-change
graph 𝐺 : 𝑣0 → 𝑣𝑛 ∈ cl(𝑃) such that whenever 𝑥 ≃ 𝑦 ∈ 𝐺

there is a trace 𝑥, . . . , 𝑦 for this path, which has a progress
point if 𝑥 ≲ 𝑦 ∈ 𝐺 .

As any infinite sequence of nodes is ultimately periodic, it

is sufficient to look for decreasing edges in the size-change

graphs representing cycles in the closure.

Theorem 5.2. A cyclic preproof 𝑃 = (𝑉 , 𝑒, 𝑟, 𝑝) is a proof if
every𝐺 : 𝑣 → 𝑣 ∈ cl(𝑃) such that𝐺 = 𝐺 ◦𝐺 has a decreasing
edge 𝑥 ≲ 𝑥 for some variable 𝑥 .

6 Implementation and Empirical
Evaluation

We implemented a prototype cyclic equational reasoning

tool as a plugin for GHC 9.0.2 — CycleQ. It currently sup-

ports a small subset of Haskell, including top-level recursive

functions, algebraic datatypes, and polymorphism. The user

adds equations to their program using the following syntax,

and the plugin will attempt to prove them at compile-time,

optionally outputting a cyclic proof graph if successful.

mapId :: List a -> Equation

mapId xs = map id xs ≡ xs

The tool performs a bounded depth-first search using the

inference rules from Fig. 3, in addition to a rule for function

extensionality and decomposition of datatype constructors:

∀𝑖 ≤ 𝑛 𝑀𝑖 � 𝑁𝑖

𝑘 𝑀1 · · · 𝑀𝑛 � 𝑘 𝑁1 · · · 𝑁𝑛

Although this rule is derivable from (Subst), we distinguish
it because it is not intended as a mechanism for creating

cycles and can be applied eagerly, in a goal-directed manner,

without incurring the cost associated with lemma generation.

Where more than one rule is applicable to a goal, the rules

are prioritised as follows: reduction, reflexivity, congruence,

function extensionality, subst, case analysis. Once applied,

the tool never backtracks past the first three as they always

simplify the goal without loss of generality. Furthermore,

case analysis always selects a variable preventing further

(non-strict) reduction, much like needed narrowing [1].

6.1 Evaluation
There are very few implementations of cyclic proof systems,

and their performance with equational goals is not well un-

derstood. The Cyclist system [9], which is certainly the

most developed, is known to have difficulty with equational

reasoning and has issues with the verification of cycles [47].

The primary objective of this evaluation is to demonstrate

that our system, although simple, is reasonably efficient,

avoiding a bottleneck in cycle verification.

We tested the tool against a standard benchmark suite

of 85 induction problems concerning natural numbers, lists,

and trees, originally used to test the IsaPlanner tool [20].

Since none of these concern mutual induction explicitly,

we also designed a small number of problems around the

representation of annotated, mutually recursive syntax trees,

as shown in the introduction. The results were obtained as

an average of 10 runs on a 2.20GHz Intel® Core™ i5–5200U

with 4 cores and 7.5GB RAM.

The number of IsaPlanner benchmark problems solved in

a given time bound is plotted in Fig. 7. The tool was able

to solve 44 of the problems (13 were not in scope as they

concerned conditional equations), with 40 of those solvable

in under 100ms. The average time for solvable IsaPlanner

benchmarks was 129ms. All the mutual induction problems

were solved in 5.3ms on average.

6.2 Limitations
Although the tool performs efficiently on those 44 bench-

mark problems that it is able to solve, this number is rela-

tively small. By comparison: HipSpec proved 80, Zeno 82,

CVC4 80, ACL2 74, Inductive Horn Clause Solving 68, Isa-

Planner 47, and Dafny 45 (as reported by [14, 53]).

However, the following analysis shows that the problems

CycleQ could not solve are attributable to two features that

it lacks: conditional equations and lemma discovery, both of

which are essentially orthogonal to cyclic reasoning. Hence,

we expect that our tool can incorporate these features in
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Figure 7. Summary of IsaPlanner benchmarks

future work, which would allow for a more meaningful com-

parison.

First, many of the benchmark problems are themselves

conditional equations. Hence they simply fall outside of the

scope of our system.

Some further 23 benchmarks, although not themselves

conditional equations, require conditional equations inter-

nally in their proof. Problem 4 is a typical example —

S (count 𝑥 𝑥𝑠) � count 𝑥 (𝑥 : 𝑥𝑠). This can be solved by

performing case analysis on the equality predicate, by as-

suming 𝑥 == 𝑦 � False or 𝑥 == 𝑦 � True. Our system does

not currently have a mechanism for hypothetical reasoning

of this form. Since 𝑥 may take infinitely many values in each

case, and none of these enable a cycle, there is no other way

to progress with the proof.

As far as we are aware, there is no reason why our system

could not be extended in this direction (for example, by

formulating the proof system using a judgement with an

antecedent), but we felt it would overcomplicate the paper

without adding any interesting new ideas. These problems

account for all those that Dafny solved that our tool did not.

The second reason some problems were unsolved is that

they require lemmas, which was the case for the 4 remaining

problems [42]. Specifically, property 47 is provable by our

system when it is given the commutativity of max and 54, 65,
and 69 when given the commutativity of add. Most compara-

ble tools incorporate some form of lemma discovery, which

is very powerful but orthogonal to this work. It is worth

noting, however, that CycleQ solved a number of the bench-

mark problems designed to test strengthening and lemma

discovery, despite not having a specialised tactic for either.

We look to incorporate a theory exploration system into our

solver as future work, after which a direct comparison will

be more insightful.

A couple of problems took significantly longer to solve.

And, unsurprisingly, these required the construction of larger

proofs. There are several factors to which this could be at-

tributed: the branching factor of proof search, the increased

number of lemmas, or the cost of verifying the global correct-

ness condition. In any case, we believe theory exploration

could be used to mitigate this by allowing for smaller, more

compositional proofs.

7 Related Work and Conclusion
As inductive definitions are ubiquitous in computer science,

and functional programming in particular, a lot of work

has been dedicated to developing tools that automate or

aid equational reasoning over these structures. However,

as proof systems for inductive definitions don’t admit cut

elimination, most research is aimed at “lemma” discovery [12,

26].

One technique for generating lemmas is to generalise

the current goal by identifying common subterms, as im-

plemented by ACL2 [5]. The heuristic was later refined by

the Zeno tool that checks for counterexamples to prevent

over generalisation, a common problem with the original

method [45]. It seems likely that the exploratory nature of

cyclic proofs could be used to suggest generalisations from

failed proofs without over-generalisation.

Proof planning was developed as a way to better control

heuristics in automated reasoning tools [11]. It gave rise to

Clam system and IsaPlanner [13, 20, 27]. A lemma discovery

strategy based on “rippling”, a form of rewriting used in proof

planning, was to construct a lemma from a failed proof [24].

However, the required higher-order unification became a

bottleneck to the technique’s success [13, 20, 27].

A radically different approach to lemma discovery is the-

ory exploration [14]. Instead of attempting to construct suit-

able lemmas analytically, theory exploration generates ran-

dom lemmas and attempts to prove them in an incremental

manner. It is currently the state-of-the-art lemma discovery

strategy, although it is hampered by scalability [26].

HipSpec is a tool that couples theory exploration with

a traditional first-order theorem prover [15, 43]. As with

the other approaches discussed so far, it ultimately relies on

induction schema and thus cannot handle mutual induction.

We plan to integrate a theory exploration strategy into our

tool, thus combining powerful lemma discovery with mutual

induction.

The difficulties with induction has motivated a long line of

work in inductionless induction [23, 30, 39]. While initially

popular, as it can take advantage of general equational rea-

soning and rewriting techniques, the development of prac-

tical tools was limited [54]. However, the SPIKE theorem

prover was based on this work and has since adopted a form

of cyclic proof, but the relationship with our system is not

completely clear [4, 48].

Circular coinduction is a similar technique but for equa-

tions about coinductive structure [44]. Analogous to the
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“expand” operator in rewriting induction, the “derivative” of

an equation is taken before it can be used as a hypothesis,

where encodes the possible coinductive observations.

Although originally ill-suited to inductive theorem prov-

ing, many tools have successfully been built upon SMT

solvers [36, 41, 50]. More recently, induction has been incor-

porated into Horn clause solvers which, historically, struggle

with domains such as non-linear arithmetic or some complex

kinds of algebraic datatype [53].

Cyclic proofs have previously received attention for their

application to program verification. Specifically, a cyclic

proof system for separation logic has been given that au-

tomatically verifies that a program terminates [8, 51]. Cyclic

proof systems have recently been shown to subsume generic

model-checking algorithms such as: lazy-abstraction with

interpolants, property-directed reachability, and maximal

conservativity for infinite game solving [52]. As with the

generic cyclic theorem prover Cyclist, it is the choice of

“matching-function” or “cut” that determines exactly how

the verification algorithm operates outside of the usual rea-

soning on the abstract domain. Cyclic proofs have also been

applied to program synthesis for pointer manipulating pro-

grams [25].

The cost of verifying cycles has long been identified as

a bottleneck of any tool based on cyclic proofs. In Brother-

ston’s thesis, he proposed an alternative approach — “trace

manifolds” [7]. A trace manifold is a set of trace segments

that can be stitched together to construct a trace for any

given path. The trace segments are uniquely assigned, sim-

plifying the space of traces significantly but excluding some

complex cycles that might require different traces for the

same path segment. An alternative approach based on nor-

malising the forms of cycles has been proposed and shown

to be significantly more efficient [47, 49]. The algorithm is

polynomial. However, there is no characterisation of exactly

what patterns of cycles it is able to verify.
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A Proofs for Section 2 (Preliminaries)
Proof.

Reflexivity. Clearly,𝑀 ⊴ 𝑀 witnessed by the trivial context.

Antisymmetry. Suppose𝑀 ⊴𝑁 and 𝑁 ⊴𝑀 . That is,𝐶 [𝑀] = 𝑁 and 𝐷 [𝑁 ] = 𝑀 . In particularly, we have that 𝑁 = 𝐶 [𝐷 [𝑁 ]].
It follows that both 𝐶 and 𝐷 are trivial. Thus,𝑀 = 𝑁 as required.

Transitivity. If𝑀 ⊴ 𝑁 and 𝑁 ⊴ 𝐿, we have that𝐶 [𝑀] = 𝑁 and 𝐷 [𝑁 ] = 𝐿 thus 𝐷 [𝐶 [𝑀]] = 𝐿. Therefore,𝑀 ⊴ 𝐿 as required.

Well-foundedness. Let 𝑁 be some term. We shall show by induction that there are only finitely many terms such that

𝑀 ⊴ 𝑁 :

• If 𝑁 is a variable 𝑥 , then clearly the only term𝑀 such that 𝐶 [𝑀] = 𝑥 for some 𝐶 [·] is 𝑥 .
• If 𝑁 is a function symbol, the argument is analogous.

• If 𝑁 is an application 𝑅 𝐿. Suppose𝐶 [𝑀] = 𝑁 for some term𝑀 . We shall show that𝑀 is from a finite set by case analysis

of 𝐶 [·]:
– If is trivial, then𝑀 = 𝑁 .

– If 𝐶 [·] is of the form 𝑅 𝐶 ′[·] and, by induction,𝑀 is from a finite set.

– Or it is of the form 𝐶 ′[·] 𝐿 and the same argument applies.

As the finite union of finite sets is also finite, there are only finitely many such𝑀 .

It immedaitely follows that ⊴ is well-founded. □

Proof.

Reflexivity. Clearly, 𝐶 ⊑ 𝐶 witnessed by the trivial context.

Antisymmetry. Suppose𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶 . That is,𝐶 = 𝐷 ◦ 𝐸 and 𝐷 = 𝐶 ◦ 𝐹 . In particularly, we have that𝐶 = 𝐶 ◦ 𝐸 ◦ 𝐹 . It
follows that both 𝐸 and 𝐹 are trivial. Thus, 𝐶 = 𝐷 as required.

Transitivity. If 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐸, we have that 𝐶 = 𝐷 ◦ 𝐹 and 𝐷 = 𝐸 ◦𝐺 thus 𝐶 = 𝐸 ◦𝐺 ◦ 𝐹 . Therefore, 𝐶 ⊑ 𝐸 as required.

Unrelated Context. Let𝐶 and𝐷 be two context unrelated by the partial order but such that𝐶 [𝑀] = 𝐷 [𝑁 ] for any two terms

𝑀 and 𝑁 . In particular, neither context can be trivial. We shall show by induction on the structure of the term𝐶 [𝑀] (= 𝐷 [𝑁 ]),
that𝑀 is a subterm of 𝐷 [𝑋 ] for all terms 𝑋 .

• Suppose it is a variable, constructor, or function symbol. Then both 𝐶 and 𝐷 must be trivial and thus related. This case,

therefore, holds vacuously.

• Suppose it is an application 𝐿 𝑅. Then there four subcases to consider:

– If𝑀 = 𝐿 𝑅 or 𝑁 = 𝐿 𝑅, then either 𝐶 or 𝐷 are trivial and so this case is also holds vacuously.

– If 𝐶 [·] = 𝐿 𝐶 ′[·] and 𝐷 [·] = 𝐿 𝐷 ′[·], then we have two contexts that are also unrelated. Otherwise, if 𝐶 ′ = 𝐷 ′ ◦ 𝐸 for

some 𝐸, we’d have that𝐶 = 𝐷 ◦ 𝐸 (and similarly if 𝐷 ′ = 𝐶 ′ ◦ 𝐸). Furthermore,𝐶 ′[𝑀] = 𝐷 ′[𝑁 ]. And, by induction,𝑀 is

a subterm of 𝐷 ′[𝑋 ] for all terms 𝑋 . It therefore follows that 𝑋 is a subterm of 𝐷 [𝑀] as required.
– When 𝐶 [·] = 𝐶 ′[·] 𝑅 and 𝐷 [·] = 𝐷 ′[·] 𝑅 the proof is analogous.

– If 𝐶 [·] = 𝐿 𝐶 ′[·] and 𝐷 [·] = 𝐷 ′[·] 𝑅, then we have that 𝐶 [𝑀] = 𝐿 𝐶 ′[𝑀] = 𝐷 ′[𝑁 ] 𝑅 = 𝐷 [𝑁 ] and, in particular, that

𝐿 = 𝐷 ′[𝑁 ] and 𝑅 = 𝐶 ′[𝑀]. As 𝑅 is clearly a subterm of 𝐷 [𝑋 ] for all terms 𝑋 , we are done.

– When 𝐶 [·] = 𝐶 ′[·] 𝑅 and 𝐷 [·] = 𝐿 𝐷 ′[·] the proof is analogous.
□

B Proofs for Section 3 (Cyclic Proofs)
Proof. Consider the possible inference rules 𝑟 (𝑣):

• (Refl) Suppose the conclusion Γ ⊢ 𝑀 � 𝑀 is not satisfied by some ground instance 𝛼 . Then 𝑀𝛼 ↓𝑅 ≠ 𝑀𝛼 ↓𝑅 , which
immediately gives us a contradiction.

• (Reduce) Suppose 𝛼 ⊭ 𝑀 � 𝑁 , i.e. 𝑀𝛼 ↓𝑅 ≠ 𝑁𝛼 ↓𝑅 . We have that, 𝑀𝛼 →∗
𝑅
𝑀 ′𝛼 and 𝑁𝛼 →∗

𝑅
𝑁 ′𝛼 . And, therefore,

𝑀 ′𝛼 ↓𝑅 ≠ 𝑁 ′𝛼 ↓𝑅 by cofluence. Hence 𝛼 ⊭ 𝑀 ′ � 𝑁 ′
. As (0, 𝛼) is a preceding instance we are done.

• (Subst) Suppose the lemma ⊢ 𝑀 � 𝑁 is satisfied by 𝛽 = 𝛼 ◦\ , i.e.𝑀𝛽 ↓𝑅 = 𝑁𝛽 ↓𝑅 , but the conclusion ⊢ 𝐶 [𝑀\ ] � 𝑃 is not

satisfied by 𝛼 . We have that𝑀𝛽 ↓𝑅 = 𝑁𝛽 ↓𝑅 and, therefore, that𝐶 [𝑀\ ]𝛼 ↓𝑅 = 𝐶 [𝑁\ ]𝛼 ↓𝑅 . It follows that 𝛼 ⊭ 𝐶 [𝑁\ ] � 𝑃

and hence the preceding instance (𝛼, 1) meets the requirements. On the other hand, if the lemma ⊢ 𝑀 � 𝑁 is not

satisfied by 𝛽 , then we are immediately done as this is also a preceding instance.
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• (Case) Suppose ⊢ 𝑀 � 𝑁 is not satisfied by 𝛼 . As 𝑅 is complete, the term assigned to 𝑥 under 𝛼 must normalise to

a term of the form 𝑘 𝑀0 · · · 𝑀𝑛 for some 𝑘 . Let 𝑝𝑖 (𝑣) be the premise associated the constructor 𝑘 . We claim that the

preceding instance (𝛽, 𝑖), where

𝛽 (𝑦) B
{
𝑀𝑖 𝑦 = 𝑥𝑖

𝛼 (𝑦) 𝑦 ≠ 𝑥
,

meets the requirements. As 𝑀 [𝑘 𝑥0 · · · 𝑥𝑛/𝑥]𝛼1↓𝑅 = 𝑀𝛼0↓𝑅 , which is not equal to 𝑁 [𝑘 𝑥0 · · · 𝑥𝑛/𝑥]𝛼1↓𝑅 = 𝑁𝛼0↓𝑅 ,
we have that 𝛽 ⊭ 𝑒 (𝑝𝑖 (𝑣)) as required.

□

Proof. Suppose, for the purpose of contradiction, that 𝑒 (𝑣) is invalid. Let 𝛼 be an instance that it does not satisfy. Then, by the

Lemma 3.1, there is a preceding instance (𝑖, 𝛽) such that 𝛽 ⊭ 𝑒 (𝑝𝑖 (𝑣)). However, as this equation is assumed to be valid, we

have a contradiction. It follows that 𝑒 (𝑣) is valid. □

Proof. Consider the possible cases that define a preceding instance:

• If 𝑟 (𝑣) is (Reduce), then 𝛽 is 𝛼 and 𝑇1 ≤ 𝑇0. Thus by stability 𝑇1𝛽 ≤ 𝑇0𝛼 as required.

• If 𝑟 (𝑣) is (Subst) and 𝑖 = 1, i.e. 𝑝𝑖 (𝑣) is the continuation, then the same argument applies.

• If 𝑟 (𝑣) is (Subst) and 𝑖 = 0, i.e. 𝑝𝑖 (𝑣) is the lemma, then 𝛽 = 𝛼 ◦ \ . From the definition of a trace, we have that 𝑇1\ ≤ 𝑇0.

Thus 𝑇1\𝛼 ≤ 𝑇0𝛽 by stability, which is equivalent to 𝑇1𝛼 ≤ 𝑇0𝛼 as required.

• Finally, if 𝑟 (𝑣) is (Case), then 𝛽 maps the fresh variables 𝑥𝑖 to the arguments of (𝛼 (𝑥)) ↓𝑅 = 𝑘 𝑀0 · · · 𝑀𝑛 . From the

definition of a trace, we have that 𝑇1 ≤ 𝑇0 [𝑘 𝑥0 · · · 𝑥𝑛/𝑥]. And so by satibility, 𝑇1𝛽 ≤ 𝑇0𝛼 , as required.

Clearly, each of the preceding cases generalises to strict inequality. □

Proof. Suppose, for the purpose of contradiction, that 𝑒 (𝑣) is invalid. Let 𝛼 be an instance that it does not satisfy. We construct

a path and an infinite sequence of instances by induction:

• Let 𝑣0 = 𝑣 and 𝛼0 = 𝛼 .

• Suppose 𝑣𝑖 and 𝛼𝑖 are defined such that 𝛼𝑖 ⊭ 𝑒 (𝑣𝑖 ). Then, by Lemma 3.1, there exists a preceding instance ( 𝑗, 𝛽) and let

𝑣𝑖+1 = 𝑝 𝑗 (𝑣𝑖 ) and 𝛼𝑖+1 = 𝛽 .

There exists some 𝑘 ∈ N and a trace (𝑇𝑖 ) for the path (𝑣𝑖+𝑘 ) by Definition 3.6. Consider the ground instances (𝑇𝑖𝛼𝑖+𝑘 ). It
follows from Lemma 3.3 that this sequence is monotonic with respect to ≤. Furthermore, there are infinitely many progress

points, i.e. 𝑖 such that𝑇𝑖+1𝛼𝑖+𝑘+1 < 𝑇𝑖𝛼𝑖+𝑘 . If we consider the subsequence of progress points, then we have a strictly decreasing

chain. By assumption the that ≤ is well-foundned, this gives us a contradiction. Thus ⊨ 𝑒 (𝑣) as required. □

C Proofs for Section 4 (Rewriting Induction)
Proof.

Well-foundedness. ≺ is equivalent to < ∪ ◁ ∪ (< ◦ ◁) and, therefore, well-founded [40].

Stability. Suppose𝑀 ≺ 𝑁 . Therefore, there exists some 𝑛 ∈ N such that𝑀 (< ∪ ◁)𝑛𝑁 . We shall show that𝐶 [𝑀\ ] ≺ 𝐶 [𝑁\ ]
by induction on 𝑛.

• If𝑀 < 𝑁 , then clearly 𝐶 [𝑀\ ] ≺ 𝐶 [𝑁\ ].
• If𝑀 < 𝑅 and 𝑅 ≺ 𝑁 , then 𝐶 [𝑀\ ] < 𝐶 [𝑅\ ] by induction 𝐶 [𝑅\ ] ≺ 𝐶 [𝑁\ ] and 𝐶 [𝑀\ ] ≺ 𝐶 [𝑁\ ] as required.
• The ◁ case are analogous.

Thus ≺ is well-founded, stable, and compatible with 𝑅 as it subsumes <, □

Proof. We shall proceed by induction over the deriviation of ⊢ (𝐸, 𝐻 ).
• (End) There exists a partial proof with no vertices and a set of hypotheses for each equation in 𝐻 .

• (Delete) By induction, we have a partial proof (𝑉 , 𝐻, 𝑒, 𝑟, 𝑝) that corresponds to a derivation of ⊢ (𝐸, 𝐻 ). Let 𝑣 ∉ 𝑉 ∪𝐻

be a fresh vertex. Then define 𝑒 ′(𝑤) as𝑀 � 𝑀 when𝑤 = 𝑣 and 𝑒 ′(𝑤) = 𝑒 (𝑤) otherwise. Similarly, extend 𝑟 and 𝑝 such

that 𝑟 ′(𝑣) is (Refl) and 𝑝 ′(𝑣) = []. Then the preproof ({𝑣} ∪ 𝑉 , 𝐻, 𝑒 ′, 𝑟 ′, 𝑝 ′) has the correct structure. Furthermore,

there are no additional infinite paths, so we are done.

• (Simplify) By induction, we have a partial proof 𝑃 = (𝑉 , 𝐻, 𝑒, 𝑟, 𝑝) with some vertex 𝑣 ∈ 𝑉 such that 𝑒 (𝑣) = 𝑀 ′ � 𝑁

where 𝑀 →∗
𝑅∪𝐻 𝑀 ′

. We shall now, by induction over the length of this reduction sequence, construct a partial proof

𝑃 ′ = (𝑉 ∪𝑉 ′, 𝐻, 𝑒 ′, 𝑟 ′, 𝑝 ′) with some vertex 𝑣 ′ ∈ 𝑉 ∪𝑉 ′
such that 𝑒 ′(𝑣 ′) = 𝑀 � 𝑁 .

– Suppose𝑀 = 𝑀 ′
, then we are immediate done with 𝑃 ′ = (𝑉 ∪ ∅, 𝐻, 𝑒, 𝑟, 𝑝).
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– Suppose 𝑀 →𝑅 𝑀 ′
, and there is a partial proof 𝑃 = (𝑉 , 𝐻, 𝑒, 𝑟, 𝑝) where 𝑒 (𝑣) = 𝑀 ′ � 𝑁 for some 𝑣 ∈ 𝑉 . Let

𝑣 ′ ∉ 𝑉 ∪ 𝐻 be a fresh vertex. Then defined 𝑒 ′(𝑤) as 𝑀 � 𝑁 when 𝑤 = 𝑣 ′ and 𝑒 ′(𝑤) = 𝑒 (𝑤) otherwise. Similarly,

extend 𝑟 and 𝑝 such that 𝑟 ′(𝑣 ′) is (Reduce) and 𝑝 ′(𝑣 ′) = [𝑣]. Then the preproof 𝑃 ′ = (𝑉 ∪ ({𝑣 ′}), 𝐻, 𝑒 ′, 𝑟 ′, 𝑝 ′) has
the correct structure. Furthermore, any infinite path has a suffix that is an infinite path in the partial proof 𝑃 , and thus

a trace with infinitely many progres points.

– Suppose 𝑀 →𝐻 𝑀 ′
, and there is a partial proof 𝑃 = (𝑉 , 𝐻, 𝑒, 𝑟, 𝑝) where 𝑒 (𝑣) = 𝑀 ′ � 𝑁 for some 𝑣 ∈ 𝑉 . Let

𝑣 ′ ∉ 𝑉 ∪𝐻 be a fresh vertex. Then defined 𝑒 ′(𝑤) as𝑀 � 𝑁 when𝑤 = 𝑣 ′ and 𝑒 ′(𝑤) = 𝑒 (𝑤) otherwise. Similarly, extend

𝑟 and 𝑝 such that 𝑟 ′(𝑣 ′) is (Subst) and 𝑝 ′(𝑣 ′) = [ℎ, 𝑣] where 𝑒 (ℎ) ∈ 𝐻 is the hypotheses used. Then the preproof

𝑃 ′ = (𝑉 ∪ ({𝑣 ′}), 𝐻, 𝑒 ′, 𝑟 ′, 𝑝 ′) has the correct structure. Furthermore, any infinite path has a suffix that is an infinite

path in the partial proof 𝑃 , and thus a trace with infinitely many progres points.

• (Expand) In this case, we have a partial proof 𝑃 = (𝑉 , 𝐻 ∪ {ℎ}, 𝑒, 𝑟 , 𝑝) where 𝑒 (ℎ) = 𝑀 � 𝑁 and, for each equation

𝜙 ∈ Expand𝐶 (𝑀 = 𝑁 ), there is some vertex 𝑣 ∈ 𝑉 such that 𝑒 (𝑣) = 𝜙 . From which, we must construct a partial proof

𝑃 ′ = (𝑉 ∪ {ℎ} ∪ 𝑉 ′, 𝐻, 𝑒 ′, 𝑟 ′, 𝑝 ′) where 𝑒 ′(ℎ) = 𝑀 � 𝑁 . Let 𝐸 ⊆ 𝑉 be a set of vertices that covers the equations

Expand(𝑀 = 𝑁 ).
As the head of rewrite rules are of the form 𝑓 𝑀0 . . . 𝑀𝑛 where each𝑀𝑖 is built solely from constructors and the rules

are complete, there exists a finite tree built from (Case) and (Reduce) from ℎ to the vertices that cover the equations

from Expand𝐶 (𝑀 = 𝑁 ), let 𝑉 ′
be those internal nodes and extend 𝑟 ′ and 𝑝 ′

accordingly. Furthermore, any path from

𝑣 to a vertex from 𝑣 ′ ∈ 𝐸 can be assigned a trace 𝑇, . . . , 𝑇\ if 𝑒 (𝑣 ′) = 𝐶 [𝐿]\ � 𝑁\ for some 𝑓 𝑁0 · · ·𝑁𝑛 → 𝐿 ∈ 𝑅 and

\ = mgu(𝑀, 𝑁 ).
Suppose there is a infinite path in the partial proof 𝑃 ′

that doesn’t have a suffix in 𝑃 . Without loss of generality, it must

start at ℎ, proceeds to a specific case 𝑣 ∈ 𝐸, and then cycle back to ℎ, which is used as a lemma in 𝑃 by the (Simplify) case.
For this path, we consider the trace𝑀, . . . , 𝑀\, 𝐿, . . . , 𝑀 , which has infinitely many progress points as𝑀\ →𝑅 𝐶 [𝐿]\
must be included in ≺.

□

(Refl)
[ ] � [ ]

(Imp)
map id 𝑥𝑠 � 𝑥𝑠 ⇒ map id 𝑥𝑠 � 𝑥𝑠

(Refl)
map id 𝑥𝑠 � 𝑥𝑠 ⇒ 𝑥 : 𝑥𝑠 � 𝑥 : 𝑥𝑠(Subst)

map id 𝑥𝑠 � 𝑥𝑠 ⇒ 𝑥 : map id 𝑥𝑠 � 𝑥 : 𝑥𝑠(Ind)
map id 𝑥𝑠 � 𝑥𝑠

Figure 8. A classical inductive proof that map id 𝑥𝑠 � 𝑥𝑠 .

(Refl)
map id [ ] � map id [ ]

(0)

(Refl)
𝑥 : 𝑥𝑠 ′ � 𝑥 : 𝑥𝑠 ′(Subst)

𝑥 : map id 𝑥𝑠 ′ � 𝑥 : 𝑥𝑠 ′(Case)
0: map id 𝑥𝑠 � 𝑥𝑠

Figure 9. A cyclic proof that map id 𝑥𝑠 � 𝑥𝑠 .

Example C.1. Fig. 8 shows a traditional inductive proof that map id 𝑥𝑠 � 𝑥𝑠 . This can be mechanically translated to a cyclic

proof from our proof system, see Fig. 9, with the simple trace 𝑥𝑠, 𝑥𝑠 ′, . . . that corresponds to doing induction over 𝑥𝑠 .

D Proofs for Section 5 (Detecting and Verifying Cycles)
Proof. Let us proceed by induction on the length of the path.

• If 𝑛 = 0, then we are done.

• If 𝑛 = 1, then (𝑣0, 𝑣1) ∈ 𝐸. The size-change graph 𝐺 (𝑣0, 𝑣1) from Definition 5.3 is clearly sufficient.

• Suppose 𝐺 : 𝑣0 → 𝑣𝑛−1 and (𝑣𝑛−1, 𝑣𝑛) ∈ 𝐸. Then there is a size-change graph 𝐺 (𝑣𝑛−1, 𝑣𝑛) . Consider the size-change graph
𝐺 ′ = 𝐺 (𝑣𝑛−1, 𝑣𝑛) ◦ 𝐺 . Suppose 𝑥 ≃ 𝑦 ∈ 𝐺 ′

, then 𝑥 ≃ 𝑧 ∈ 𝐺 and 𝑧 ≃ 𝑦 ∈ 𝐺 ′
. By induction, there is a trace 𝑥, . . . , 𝑧 for

the path 𝑣0, . . . , 𝑣𝑛−1. It follows from ??, that 𝑥, . . . , 𝑧, 𝑦 is a trace for the extended path to 𝑣𝑛 . Furthermore, we have a

decreasing edge if either 𝑧 ≲ 𝑦 ∈ 𝐺 ′
or 𝑥 ≲ 𝑧 ∈ 𝐺 . In either case, the trace clearly has a progress point.

□
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Proof. Let (𝑣𝑖 ) be a path through 𝑃 . As 𝑉 is finite, this path is ultimately periodic. That is, there exists some 𝑘 and 𝑗 such that

𝑣𝑖+𝑘+1 = 𝑣𝑖 for all 𝑖 ≥ 𝑗 . In which case, consider the corresponding size-change graph 𝐺 : 𝑣 𝑗 → 𝑣 𝑗 ∈ cl(𝑃) such that 𝐺 = 𝐺 ◦𝐺 .

By assumption, it has a decreasing edge 𝑥 ≲ 𝑥 for some variable 𝑥 . It follows from Lemma 5.1 that there is a trace 𝑥, . . . , 𝑥

for the path 𝑣 𝑗 , . . . , 𝑣 𝑗+𝑘 , which has a progress point. Thus the infinite trace that cycles through this fintie trace satisfies the

global condition for the path (𝑣𝑖 ) as required. □
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