
Industrial Deployment of Compiler Fuzzing
Techniques for Two GPU Shading Languages

Alastair F. Donaldson∗†, Ben Clayton∗, Ryan Harrison∗, Hasan Mohsin†, David Neto∗, Vasyl Teliman‡, Hana Watson†
∗Google

†Imperial College London, UK
‡Independent, Ukraine

Abstract—We report on our experience at Google deploying
a variety of coverage-guided and black-box fuzzers to find bugs
in compilers for two graphics shading languages: the WebGPU
Shading Language (WGSL) and Standard Portable Intermediate
Representation (SPIR-V). We discuss the deployment of coverage-
guided fuzzing on ClusterFuzz and OSS-Fuzz using libFuzzer’s
built-in mutators, and a number of custom mutators that exploit
knowledge of the syntax and semantics of WGSL and SPIR-V.
We also discuss the deployment of several black box fuzzers on
ClusterFuzz, including two that are based on new randomised
program generators for WGSL, which we have also used in a
targeted fashion for end-to-end testing of WebGPU implementa-
tions. We discuss a series of insights arising from our experience
that we hope will be valuable to practitioners and researchers
interested in applying fuzzing to industrial problems.

Index Terms—Fuzzing, compilers, graphics shaders, WebGPU,
WGSL, SPIR-V

I. INTRODUCTION

Randomised testing, commonly known as fuzzing, has be-

come a critical defence against defects and vulnerabilities in

software systems, especially systems written in C and C++,

due to the unsafe features that these languages offer.

WebGPU [47] is a new JavaScript API that allows graphics

and compute workloads to be accelerated using client-side

GPUs. To avoid the potential for denial of service or remote

execution attacks arising from untrusted web pages issuing

malicious workloads to end-user GPUs, it is critical that an

in-browser implementation of WebGPU is robust. One of the

most complex components of a WebGPU implementation is

a compiler that translates code written in the new WebGPU

Shading Language (WGSL) into a suitable GPU programming

language supported by the user’s system, thus techniques for

thoroughly testing a WGSL compiler to quickly find and

eliminate potentially exploitable bugs are important.

Separate but related, Google has developed the SwiftShader

software renderer [22], which is used as a fall-back renderer

for implementations of the existing WebGL API [33] (to which

WebGPU has been described as a successor) as well as for

WebGPU. SwiftShader allows in-browser graphics workloads

to be executed by the end user’s CPU, e.g. due to the GPU in

the user’s system being too old to meet the needs of WebGPU.

SwiftShader is a conformant implementation of the Vulkan

GPU programming model [32], in which graphics shaders are

expressed in Standard Portable Intermediate Representation

(SPIR-V) [29], thus SwiftShader incorporates functionality for

processing and optimising SPIR-V programs. Due to its use in

web browsers, SwiftShader may be presented with arbitrary,

malicious graphics shaders.

We report on our experience at Google employing a variety

of fuzzing techniques to find defects in (a) compilers for

WGSL, and (b) tools for optimising and validating SPIR-V.

As both are used to enable WebGL and WebGPU in popular

browsers such as Chrome, Edge and Firefox, bugs in these

components have major potential for negative impact.

After providing necessary background (§II), the paper is

structured as follows:

Deploying coverage-guided fuzzing (§III). We explain how

we have deployed a variety of coverage-guided1 fuzzers to

WGSL and SPIR-V processing tools, as well as the design of

various custom mutators for WGSL.

Deploying black-box fuzzing (§IV). We have written two

specialised program generators for WGSL that allow differen-

tial and validation testing of WGSL compilers, which we have

also deployed on ClusterFuzz, alongside a black-box fuzzer

based on an existing GPU shading language fuzzer.

Summary of bugs found (§V). Deployment of fuzzing on

ClusterFuzz and OSS-Fuzz since 2018 has led to 88 security-

critical issues being reported (86 fixed at time of writing), and

targeted fuzzing of tint and naga has led to the discovery of

58 functional bugs (36 at time of writing).

Insights (§VI). We reflect on take-aways from our experience,

including cases when our early fuzzing efforts informed the

design WGSL or the implementation of the tint compiler, and

the trade-off between the benefits of domain-aware custom

mutators and the effort required to create and maintain them.

Throughout, when we talk about the current status of issues

found by various fuzzers, or say “at time of writing”, this

refers to November 2022.

II. BACKGROUND

A. Coverage-guided fuzzing with libFuzzer and ClusterFuzz

libFuzzer. The libFuzzer tool [36] is an in-process coverage-

guided mutation-based fuzzer for C and C++ software com-

1Throughout, we use coverage to mean branch coverage.

374

2023 IEEE Conference on Software Testing, Verification and Validation (ICST)

978-1-6654-5666-1/23/$31.00 ©2023 IEEE
DOI 10.1109/ICST57152.2023.00042

20
23

 IE
EE

 C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Te
st

in
g,

 V
er

ifi
ca

tio
n

an
d

V
al

id
at

io
n

(I
C

ST
) |

 9
78

-1
-6

65
4-

56
66

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

ST
57

15
2.

20
23

.0
00

42

Authorized licensed use limited to: University of Surrey. Downloaded on February 19,2024 at 12:34:51 UTC from IEEE Xplore. Restrictions apply.

ponents. This style of fuzzing can be viewed as a genetic

algorithm where new tests cases are derived via mutation, and

code coverage serves as the fitness function.

To use libFuzzer, one must write a fuzz target: a function

that receives a buffer of bytes, interprets the byte buffer as an

input to the software under test (SUT), and invokes the SUT

using this input. This fuzz target is then called repeatedly by

libFuzzer using a series of input buffers.

The tool is “mutation-based” because an input buffer is

obtained by mutating some previous input buffer, starting from

a user-provided initial corpus, or with a default initial buffer if

no corpus is given. Inputs are mutated using a number of built-

in mutation operators that work on byte buffers in a domain-

agnostic manner, for example deleting, swapping or changing

bytes, or combining multiple previously-used inputs. If the

input format is text-based, the user can provide a dictionary

of relevant tokens that libFuzzer’s built-in mutators can use,

e.g. allowing them to insert, delete or substitute tokens. In the

genetic programming analogy, dictionaries provide building

blocks analogous to base pairs / genes, while a corpus can

be seen as a set of complete structures, analogous to chromo-

somes / DNA strands, to mutate.

An input is prioritised for further mutation if it leads to new

source code coverage of the SUT; this is what makes libFuzzer

“coverage-guided”.

The fuzz target, SUT and the overall main method (which

performs corpus maintenance, input selection and mutation)

are all linked together into the same executable—this is what

makes libFuzzer an “in-process” fuzzer. To facilitate this, using

libFuzzer requires compiling the SUT using a special flag,

supported by the Clang/LLVM compiler framework.

The oracle [3] used for detecting bugs during fuzzing is the

crash oracle, where a bug is deemed to have been found if the

SUT crashes. When using libFuzzer one typically boosts this

oracle using a sanitiser (e.g. AddressSanitizer, for detecting

buffer overflows [45]). The fuzz target must be designed so

that the (sanitizer-boosted) crash oracle is precise: if the SUT

crashes when invoked by the fuzz target, this must correspond

to a genuine bug, otherwise the use of libFuzzer will raise false

alarms. If the SUT is only supposed to deal gracefully with

inputs that satisfy certain preconditions, the fuzz target must

take responsibility for discarding inputs that do not satisfy

these preconditions (or for transforming them so that they do).

We revisit this point in §VI-C, Insight 9.

Custom mutators. The built-in libFuzzer mutators may be

ineffective at yielding interesting valid inputs for the SUT.

To overcome this, the user can provide a custom mutator: a

function that takes a buffer of bytes and returns the byte buffer

in a mutated form [19]. The custom mutator can process the

byte buffer according to the known input format of the SUT

and mutate it accordingly.

ClusterFuzz and OSS-Fuzz. ClusterFuzz refers to both

an open source project from Google providing a software

framework for continuous fuzzing [16] (using various fuzzers

including libFuzzer), as well as Google’s large-scale internal

TABLE I
SHADING LANGUAGES FOR VARIOUS GRAPHICS APIS

Graphics API Shading language Acronym
WebGPU WebGPU Shading Language WGSL
Vulkan Standard Portable Intermediate

Representation
SPIR-V

Direct3D High Level Shading Language HLSL
Metal Metal Shading Language MSL
OpenGL ES OpenGL Shading Language GLSL

deployment of this framework [2]. Google also provides a

fuzzing service for the open source community based on the

ClusterFuzz framework, called OSS-Fuzz [21].

ClusterFuzz takes care of managing fuzzing jobs that

run indefinitely, with functionality for automatically reduc-

ing bug-triggering test cases, determining whether bugs are

reproducible, de-duplicating bug reports, auto-reporting non-

duplicate bugs that reliably reproduce, bisecting revision his-

tories to try to pinpoint the change that introduced a bug, and

re-running bug-triggering test cases as changes are pushed to

the SUT, auto-closing issues that appear to have been fixed.

B. The WGSL and SPIR-V languages and tool ecosystems

WebGPU, WGSL, and WGSL compilers. WebGPU is an

emerging standard for graphics programming on the web [47],

exposed as a JavaScript API. A web page using WebGPU

makes a number of JavaScript calls to create buffers for

communication between host and GPU, copy memory to and

from these buffers, and run either a graphics or compute

pipeline—comprising one or more shader programs—on the

GPU. A shader is a massively parallel program that reads

from an input buffer and either renders to a framebuffer,

or writes the computed result to an output buffer.2 At the

heart of WebGPU is a new graphics shading language, the

WebGPU Shading Language (WGSL) [46]. WGSL shares

many similarities with other high level shading languages such

as the OpenGL Shading Language (GLSL) from the Khronos

Group [28], and Microsoft’s High Level Shading Language

(HLSL) [39], but has been tailored specifically to meet the

needs of the WebGPU API.

An implementation of WebGPU in a web browser must

leverage a graphics API native to the host system. These native

APIs have no knowledge of WGSL. Instead, each expects

shaders to be presented in a particular shading language: SPIR-

V [29] for Vulkan (used on Android/Linux), HLSL [39] for

Direct3D (used on Windows), the Metal Shading Language

(MSL) [1] for Metal (used on iOS/OSX), and the OpenGL

Shading Language (GLSL) [28] for OpenGL ES (used on

some older Android devices). Table I provides a summary

of these shading language acronyms. A portable WebGPU

implementation must thus include a shader compiler with a

WGSL front end, and back-ends for each of SPIR-V, HLSL

and MSL. (If older devices are to be supported, a back-end

2This covers two important kinds of shaders: fragment and compute shaders;
a graphics pipeline features various other shader stages such as vertex shaders.

375

Authorized licensed use limited to: University of Surrey. Downloaded on February 19,2024 at 12:34:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Illustration of a WebGPU implementation built on top of a native
graphics API

TABLE II
SUMMARY OF VARIOUS SHADER TRANSLATION TOOLS

Translator Relevant front-ends Relevant back-ends
tint WGSL, SPIR-V HLSL, MSL, SPIR-V, WGSL
naga WGSL, SPIR-V, GLSL HLSL, MSL, SPIR-V, WGSL
glslang GLSL SPIR-V
spirv-opt SPIR-V SPIR-V

for GLSL may also be needed, but for brevity we henceforth

do not discuss support for OpenGL ES.)

Figure 1 gives an overview of how a WebGPU imple-

mentation is structured, with details of current open source

implementations. The Dawn project from Google [18], written

in C++, provides a WebGPU implementation for Chromium-

based browsers (including Chrome and Edge), and features the

tint shader compiler. The wgpu project [43], written in Rust,

provides a WebGPU implementation for Firefox, and features

the naga shader compiler.

The tint and naga translators also provide pathways for in-

gesting code in other shading languages and emitting WGSL:

tint has a SPIR-V front-end and naga has front-ends for SPIR-

V and GLSL. This is to make it easier for graphics developers

to port their existing shader assets to WGSL. The tint and

naga entries of Table II summarise the front-end and back-

end languages for these tools that are relevant for the current

paper (we discuss glslang and spirv-opt below).

The non-WGSL front-ends for these tools do not form part

of a WebGPU implementation and thus will not be invoked

from inside a web browser. While it is important to test them

to improve their reliability, they are lower-priority for fuzzing

compared with the WGSL front-ends.

SwiftShader and SPIRV-Tools. As discussed in §I, Swift-

Shader is a CPU implementation of Vulkan that serves as a

fall-back renderer in Chromium-based web browsers when the

client-side GPU is too old to meet the needs of WebGL or

WebGPU. SwiftShader directly supports execution of shaders

written in Vulkan’s SPIR-V shading language, and can be used

to execute GLSL shaders by first translating them to SPIR-V

using the glslang tool from the Khronos Group [30].

Before executing a SPIR-V shader, SwiftShader pushes

the shader through spirv-opt, the SPIR-V optimiser, which

performs a number of target-agnostic optimisations that make

the SPIR-V code simpler to process. For example, SwiftShader

uses spirv-opt to fully inline all function calls so that the

SwiftShader execution engine can assume all shaders are call-

free (this works because the Vulkan dialect of SPIR-V does not

allow recursion [32, VUID-StandaloneSpirv-None-04634]).

The spirv-opt tool is part of SPIRV-Tools, a collection of

tools for working with SPIR-V [31]. Another tool in this

collection is spirv-val, which is currently used as part of the

tint compiler to check whether code emitted by its SPIR-V

back-end is valid. Due to their security-related importance as

part of the front-end of SwiftShader and the validation stage of

tint, we have focused significant attention of using fuzzing to

find bugs in spirv-opt and spirv-val. For thoroughness, we have

also applied fuzzing to spirv-as and spirv-dis, an assembler and

disassembler for SPIR-V that form part of SPIRV-Tools.

The final two rows of Table II complete the picture of

shader translation tools discussed in this paper, with entries

for glslang and spirv-opt.

III. COVERAGE-GUIDED FUZZING

We discuss our experience writing libFuzzer targets and

various sorts of custom mutators to target the tint WGSL

compiler, and the SPIRV-Tools suite of tools.

A. Fuzz targets and standard mutators

Fuzz targets for SPIRV-Tools. For SPIRV-Tools, a set of

libFuzzer targets were deployed starting from August 2018.

These comprised fuzz targets for the optimiser (spirv-opt),
validator (spirv-val), and assembler/disassembler tools (spirv-

as/spirv-dis). These fuzz targets treat their input buffer as

SPIR-V binary, with the exception of the spirv-as fuzz tar-

get, which treats its input buffer as a textual representation

of SPIR-V assembly. These fuzz targets were deployed on

ClusterFuzz until the end of August 2021, but were moved to

OSS-Fuzz in September 2021 for reasons discussed in §VI-A.

Fuzz targets for tint. Fuzzing with libFuzzer was deployed

for tint from the start of the project in March 2020. Recall

from §II-B that tint has two front-ends, for WGSL and SPIR-

V, and four back-ends, for SPIR-V, MSL, HLSL and WGSL.

Initially 10 main fuzz targets were deployed:

• X-reader, for X ∈ {WGSL, SPIR-V}, and

• X-reader-Y -writer, for X ∈ {WGSL, SPIR-V} and Y ∈
{SPIR-V,HLSL,MSL,WGSL}.

Each of the WGSL-reader[-Y -writer] fuzz targets treats its

input as a WGSL string and attempts to parse the string

and (if successful) type-check the resulting AST. The reader-

only fuzz targets stop at this point, while the reader-writer

376

Authorized licensed use limited to: University of Surrey. Downloaded on February 19,2024 at 12:34:51 UTC from IEEE Xplore. Restrictions apply.

fuzz targets go further by applying a number of backend-

sanitising transformations to the AST and emitting target code

in the associated output language. The SPIR-V-reader[-Y -

writer] fuzz targets work similarly, accepting SPIR-V binary

instead of WGSL text.

For a given input language X and output language Y ,

the X-reader-Y -writer fuzz target exercises at least the func-

tionality of the X-reader fuzz target. The purpose of the

X-reader fuzz targets is to ease bug triage. If ClusterFuzz

reports a bug triggered by, say, the WGSL-reader fuzz target,

this bug must pertain to WGSL parsing or type-checking,

rather than code generation. For similar reasons, we deployed

separate fuzz targets per tint back-end, so that a bug found by,

say, the WGSL-reader-MSL-writer fuzz target cannot pertain

to the generation of output in a language other than MSL.

Furthermore, a bug found by one fuzz target can be checked

against other fuzz targets during triage. For example, a crash

found by the WGSL-reader-HLSL-writer fuzz target can be

checked against the WGSL-reader fuzz target. If the crash

still occurs, the issue is likely related to WGSL parsing or

type-checking (exercised by both fuzz targets). Otherwise, the

other WGSL-reader-Y -writer fuzz targets can be checked, to

see whether the crash is specific to HLSL code generation, or

related to back-end-agnostic transformations.

We also developed a number of more fine-grained fuzz

targets. For example, tint provides functionality to clone an

abstract syntax tree (AST). Knowing from experience that

cloning code can be error-prone, we deployed a special fuzz

target that parses its input into an AST and—if the AST is

confirmed to be well-typed—clones it.

B. Custom mutators

The built-in, domain-agnostic mutators that libFuzzer uses

by default tend to lead to highly malformed inputs. These can

be effective in triggering crashes and vulnerabilities in error

handling code, but are less likely to exercise type-checking,

AST transformation and code generation functionality. We

thus designed a number of custom mutators geared towards

generating well-formed or almost-well-formed programs.

Regex-based mutator. We designed a lightweight custom

mutator based on matching and replacing patterns of text

in a piece of WGSL-like code. Our goals for this custom

mutator were threefold. First, it should be fast to develop

and easy to maintain. Second, it should have a much higher

chance of preserving the well-formedness of a WGSL shader

compared to libFuzzer’s default domain-agnostic mutators.

Third, it should have a good chance of generating interesting

“almost-valid” test cases: WGSL shaders that are invalid either

due to being ill-typed or syntactically correct, but subtly so.

In these regards, our regex-based mutator is similar to the

Universal Mutator tool [23], [24], which we discuss further in

§VII, though it was conceived of and developed independently.

Given a (possibly invalid) piece of WGSL, presented as a

text buffer, the regex mutator applies a mutation operator cho-

sen uniformly at random from the set of operators summarised

in Table III. Various heuristics are used to decide whether a

given index into the input buffer is probably part of a function

or loop body. For example, to look for a program point that is

probably part of a loop, the “Insert break/continue” mutation

operator uses the following regex:

[ˆa-zA-Z_0-9](for|while|loop)[ˆ\{]*\{

The ‘[ˆa-zA-Z_0-9](for|while|loop)’ part

matches a region of text starting with one of the WGSL loop

keywords. The ‘[ˆ\{]*\{’ part matches any text up to and

including the first occurrence of the ‘{’ character following

this; this is likely to be the opening brace corresponding to

the body of a loop associated with the previous keyword.

The regex mutator then examines the remainder of the

input looking for a corresponding ‘}’ character, ignoring all

balanced pairs of ‘{’ and ‘}’ characters that occur in-between.

If found, this is likely to signify the end of the loop body.

Matching schemes such as this are easy to implement. While

having obvious disadvantages, such being confounded by text

that occurs in comments, they have the advantage that they

can be applied to invalid WGSL-like inputs. This means that

if an almost-valid WGSL-like input achieves extra coverage, it

might be possible to mutate this input into a form that achieves

even more coverage, something that would not be possible if

the mutator took a more principled approach that assumed

syntactically correct inputs.

AST-based mutator. Nevertheless, we did also design a more

principled mutator that produces well-formed programs by

construction, by carefully mutating the abstract syntax tree

(AST) of a well-formed WGSL program. This mutator rejects

invalid inputs. For an input that is successfully parsed to a

well-typed AST, the mutator randomly applies one of the

operators summarised in Table IV to the AST.

The “Change binary operator” and “Change unary operator”

mutations of Table IV can be viewed as principled versions

of the “Replace operator” mutation of Table III. To illustrate

the differences, the regex mutator might identify an arbitrary

occurrence of ‘-’ and change it to ‘|’ (bitwise-or). This would:

have no semantic effect if the occurrence of ‘-’ occurs in a

code comment; yield an invalid program if ‘-’ occurs in a

context where one floating-point expression is being subtracted

from another (because ‘|’ cannot be applied to floating-point

expressions); and also yield an invalid program if ‘-’ occurs

as a unary operator (because ‘|’ cannot be used as a unary

operator). In contrast, the AST-based mutator only considers

mutating genuine operator occurrences appearing in the AST,

and only considers well-typed replacements.

Similarly, while “Delete statement” in Table IV may seem

related to “Delete interval” in Table III, the difference is that

the AST-based mutator’s “Delete statement” operator carefully

looks for a statement that can be deleted without making the

program become invalid (for example, it will not delete a

variable declaration if this would invalidate statements that

refer to the declared variable), while “Delete interval” is

much more aggressive: it has a reasonably high probability

377

Authorized licensed use limited to: University of Surrey. Downloaded on February 19,2024 at 12:34:51 UTC from IEEE Xplore. Restrictions apply.

TABLE III
TEXT-LEVEL MUTATION OPERATORS SUPPORTED BY OUR REGEX-BASED MUTATOR

Mutation name Example before Example after Notes
Swap intervals A; B; C; A; C; B; An interval is the portion of text between a pair of (not-

necessarily successive) ‘;’ tokens; A and B denote arbitrary
fragments of code

Delete interval A; B; C; A; C; Similar
Duplicate
interval

A; B; C; A; B; A; C; Similar

Replace identifier a = b + c; a = b + angle; The replacement identifier (angle here) is chosen based on
identifiers mined from the file

Replace literal x = 42; x = -1; The replacement literal (-1 here) is chosen based on literals
mined from the file

Insert return A; B; A; return ...; B; If it looks like the enclosing function is non-void, a literal is
suggested

Replace operator x + y x * y The mutator does not attempt to respect the argument types
of operators

Insert
break/continue

A; B; A; break; B; Only applied if it appears that the code fragment is in a loop

Replace function
call with built-in

foo(x) sin(x) The parentheses after foo make it likely to be a function
invocation

Add swizzle v = w.x; v = w.xxy.x; The application of ‘.x’ to ‘w’ suggests that it is vector

TABLE IV
AST-LEVEL MUTATION OPERATORS SUPPORTED BY OUR AST-BASED MUTATOR

Mutation name Example before Example after Notes
Change binary operator expr1 ◦ expr2 expr1 �� expr2 Binary operators ◦ and �� are type-compatible
Change unary operator ◦expr �� expr Unary operators ◦ and �� are type-compatible
Insert unary operator expr ◦expr Unary operator ◦ can be applied to expressions of the type of expr
Delete statement stmt1; stmt2; stmt2 stmt1 does not declare variables that are later used, and removal of

stmt1 does not lead to a syntactically infinite loop or a function that
no longer returns a value

Replace identifier expr expr[x/y] Identifier x occurs in expr, and identifier y is also in scope and has
the same type as x

Fig. 2. Fuzz target for testing WGSL compilation via a SPIR-V shader

of yielding an invalid program, but may also chance upon an

interesting interval deletion that happens to preserve validity

(such as deleting all code from mid-way through one loop

body to mid-way through the next, in a manner that happens to

lead to all uses of variables referring to suitable declarations).

A SPIR-V-based mutator for WGSL. Recall from §II-B

and Table II that tint features a front-end for SPIR-V in

addition to WGSL. Because SPIR-V is a more mature lan-

guage than WGSL, there exist a number of off-the-shelf tools

for transforming SPIR-V programs. These tools—spirv-opt,
spirv-fuzz and spirv-reduce—ship as part of the SPIRV-Tools

project [31]. In addition to its default modes, the spirv-opt
optimiser (see §II-B) exposes its optimisation passes as a

library such that any pass can be applied in isolation. For

Fig. 3. Custom mutator that leverages SPIRV-Tools

instance, spirv-opt has an “eliminate-local-single-store” pass

that will (according to the help option of the tool) “Replace

stores and loads of function scope variables that are only stored

once”. A pass such as this can be seen as a custom SPIR-V

to SPIR-V mutator. Likewise, two other tools, spirv-fuzz and

spirv-reduce, feature transformations that can be exposed at

a fine level of granularity: spirv-fuzz implements a number

of semantics-preserving transformations on SPIR-V programs

(as part of a metamorphic approach to compiler testing [14]),

while spirv-reduce, a test case reducer for SPIR-V, implements

various simplifying transformations.

378

Authorized licensed use limited to: University of Surrey. Downloaded on February 19,2024 at 12:34:51 UTC from IEEE Xplore. Restrictions apply.

We built a special fuzz target and custom mutator for testing

tint’s WGSL support via SPIR-V, as illustrated in Figures 2

and 3. The fuzz target, illustrated in Figure 2, treats its

input as a SPIR-V binary. It uses tint to transform this into

WGSL textual form, and then invokes tint again to turn the

WGSL text into the desired output format. The SPIRV-Tools-

based custom mutator is illustrated in Figure 3. Because the

fuzz target accepts SPIR-V binary, the mutator accepts and

returns SPIR-V binary. It randomly selects between applying

a transformation offered by spirv-opt, spirv-fuzz or spirv-

reduce and, for the chosen tool, applies one of its available

transformations at random.

The intention of this fuzz target and custom mutator is to

test tint’s support for translating WGSL into various target

languages. As a by-product, the fuzz target also tests tint’s
support for translating SPIR-V into WGSL, and the custom

mutator indirectly tests spirv-opt, spirv-fuzz and spirv-reduce
(as it may crash due to bugs in these tools). In the long

term this is positive, because thorough testing of all these

components is ultimately desirable. However, in the short term

it presents a problem, as discussed further in §VI-A, Insight 6

and §VI-B, Insight 8, because bugs in these components have

much lower priority for fixing compared with bugs in tint’s
WGSL-handling code.

C. Expanding input corpora

From its deployment in August 2018 until August 2021, the

SPIRV-Tools fuzz targets described in §III-A were deployed

with an initial corpus comprising a single, relatively simple

SPIR-V program. Even with this trivial corpus, fuzzing did

lead to the discovery of some defects. Revisiting the fuzzers

to enhance this corpus fell by the wayside for a number of

years. In August 2021, this initial corpus was augmented

with 87 SPIR-V examples derived from shaders from the

GraphicsFuzz project (OpenGL shaders compiled to SPIR-V

using the glslang tool; see §II-B). We discuss the impact of

this in §VI-A, Insight 6.

From the start of the tint project in March 2020 until

July 2021, the tint fuzz targets were deployed with no initial
corpus. One reason for this is that the WGSL language was in

complete flux when the tint project started: a concrete syntax

for the language was being developed, and the tint developers

were getting started on designing an intermediate represen-

tation and back-end code generators based on a provisional

input format. Writing a corpus for this input format that was

expected to be subject to major change was not a priority. We

revisit this point in §VI-A, Insight 3.

In July 2021, by which time the WGSL language had taken

substantial shape, we improved the tint build system so that

every WGSL shader included as a regression test in the tint
repository is included in the initial corpus of every fuzz target

that accepts WGSL input, and similarly for SPIR-V regression

tests and SPIR-V-consuming fuzz targets. At time of writing

these corpora are populated from 3,095 WGSL test shaders

and 1,750 SPIR-V test shaders. It is possible that these corpora

are now larger than is desirable for a coverage-guided fuzzing

effort, and may benefit from corpus distillation [26].

The WGSL fuzz targets based on libFuzzer’s built-in muta-

tors also utilise a dictionary that includes all WGSL keywords,

operators and symbols.

IV. BLACK-BOX FUZZING

We discuss two novel program generation tools for WGSL

that we have used to test tint and naga in a targeted fashion,

as well as the deployment of these and other black-box fuzzers

on ClusterFuzz for additional testing of tint.

A. Targeted black-box fuzzing via program generation tools

Coverage-guided fuzzing using libFuzzer can be excellent

for finding crash bugs, but is less effective at detecting deeper

functional errors due to the limited nature of the crash oracle.

We thus decided to investigate the use of differential test-
ing [38] to allow finding miscompilation bugs in WGSL

compilers—cases where the compiler generates semantically

invalid code without crashing in the process. Differential test-

ing of compilers was popularised by the Csmith project [49],

which generates random C programs that are, by construction,

free from undefined behaviour. A generated program can

then be compiled using multiple compilers that agree on

implementation-defined behaviour, and the output obtained by

running the associated executables can be compared. A mis-

match indicates that (at least) one compiler has miscompiled

the program, which can be investigated.

Two undergraduate students at Imperial College London

worked on program generators for WGSL, leading to the

wgslsmith [40], [41] and wgslgenerator [48] tools.

The focus of wgslsmith is specifically on differential test-

ing to find miscompilation bugs. In order for the results

of differential testing to be meaningful, the tool puts in

place mechanisms to defend against undefined behaviour. We

distinguish between fundamental undefined behaviour, where

a shader may legitimately exhibit nondeterminism according

to the WGSL specification (such as due to accessing arrays

out-of-bounds), and current undefined behaviour, where a

program should compute an unambiguous result according

to the WGSL language specification, but may deviate from

this due to current known limitations of WGSL compilers. To

illustrate current undefined behaviour, WGSL mandates that

the expression e1/e2 should yield e1 in the case where e2
evaluates to 0. However, at time of writing, WGSL compilers

do not emit target code to enforce this behaviour, compiling a

division expression to an associated division instruction in the

target shading language, all of which regard division by zero

as an undefined behaviour or error.

Taking inspiration from Csmith, wgslsmith works around

undefined behaviour by using “safe math” wrapper functions

to avoid issuing operations that would lead to fundamental or

current undefined behaviour. As WGSL compilers mature, so

that current undefined behaviour becomes less of a problem,

the use of these wrapper functions can be reduced.

379

Authorized licensed use limited to: University of Surrey. Downloaded on February 19,2024 at 12:34:51 UTC from IEEE Xplore. Restrictions apply.

Our wgslgenerator tool currently assumes that WGSL com-

pilers are not subject to current undefined behaviour; i.e.

it generates programs that assume the semantics of WGSL

is respected and does not take measures to avoid current

implementation limitations in tint and naga. For this reason

we have mainly used wgslgenerator to detect cases where tint
and naga produce invalid code, because the results obtained by

full-blown differential testing are confounded by these current

implementation limitations.

Both wgslsmith and wgslgenerator share common infras-

tructure for (a) validating generated shaders using appropriate

per-target-language validation tools (e.g. spirv-val for SPIR-

V), and (b) executing valid shaders on top of the Dawn and

wgpu APIs (see Figure 1). This allows differential testing

between tint and naga, by comparing results obtained via

Dawn vs. wgpu, as well as differential testing between dif-

ferent back-ends, e.g. by comparing the results obtained via

Dawn’s Direct3D back-end vs. Dawn’s Vulkan back-end.

B. Black-box fuzzers on ClusterFuzz

The ClusterFuzz infrastructure is mainly concerned with the

deployment of coverage-guided fuzzing (based on libFuzzer

and related approaches). However, it also provides a black-
box fuzzing mode [10]. To use this mode, one simply uploads

an input generator as a pre-built binary. The entry point to

this input generator must be a specially-named Python script

that ClusterFuzz can invoke with command line arguments

to request the generation of a specified number of inputs.

ClusterFuzz then repeatedly invokes the input generator to

obtain sets of inputs, and invokes the SUT on these inputs.

Just like when fuzzing using libFuzzer, bugs are found via the

(sanitizer-boosted) crash oracle (see §II-A).

We deployed ClusterFuzz black-box fuzzers that use

wgslsmith and wgslgenerator to generate WGSL shaders

(see §IV-A). We also deployed a fuzzer that leverages the

spirv-fuzz tool [31] to generate a set of SPIR-V shaders

(as described in [14]), which are then converted to WGSL

using tint. In all cases, ClusterFuzz feeds a generated WGSL

shader into an entry point that invokes each WGSL-reader-

Y -writer fuzz target (see §III-A) in turn (where Y ∈ {SPIR-

V,HLSL,MSL,WGSL}), aiming to expose crashes in the tint
functionality that these fuzz targets exercise.

V. SUMMARY OF BUGS FOUND

A. Issues filed by fuzzers deployed on ClusterFuzz / OSS-Fuzz

Table V provides a summary of the status of all issues filed

by the fuzzers that we have deployed on ClusterFuzz and OSS-

Fuzz, as of 27 October 2022. This includes all issues filed

via the use of coverage-guided fuzzers (§III) and black-box

fuzzers deployed on ClusterFuzz (§IV-B), but excludes bugs

found via targeted use of black-box fuzzers (§IV-A).

Under the Fuzzer(s) column, ‘WGSL-reader[-Y -writer]’

and ‘SPIR-V-reader[-Y -writer]’ refer to the standard fuzz

targets for testing tint’s support for WGSL and SPIR-V,

respectively, discussed in §III-A; ‘WGSL-misc’ refers to the

collection of fine-grained fuzz targets for WGSL mentioned

briefly in §III-A; ‘Regex-based fuzzer’, ‘AST-based fuzzer’

and ‘SPIRV-Tools-based fuzzer’ refer to the fuzz targets that

use the custom mutators discussed in §III-B; ‘wgslsmith’,

‘wgslgenerator’ and ‘spirv-fuzz’ refer to the black-box fuzzers

deployed on ClusterFuzz discussed in §IV-B; and ‘spirv-opt-
fuzzer’, ‘spirv-val-fuzzer’ and ‘spirv-as/spirv-dis-fuzzer’ refer

to the fuzz targets for SPIRV-Tools discussed in §III-A.

For each group of fuzzers the table notes the component(s)

that are tested, whether the fuzzer is coverage-guided or black-

box, and in the former case whether it uses default or custom

mutators. The # Issues column records the total number of

issues ClusterFuzz/OSS-Fuzz has auto-filed for these fuzzers,

with (resolved) recording how many have been resolved for

any reason—this is largely due to related bugs being fixed,

but in some cases is due to the issue having been flagged as

a duplicate or marked as “won’t fix” e.g. because it relates to

a bug in a custom mutator that is low priority for fixing in its

own right. The # Repro. column records how many of the total

number of issues are found by ClusterFuzz/OSS-Fuzz to be

reliably reproducible; we mark in bold the cases where some

issues are not reliably reproducible. The # Security column

records how many of the total issues are reproducible security

issues; that is, ClusterFuzz/OSS-Fuzz has marked flagged them

as being potentially security-critical (e.g. because they trigger

buffer overflows), and the (fixed) column reports how many

of these security issues have been fixed.

The data under # Issues and (resolved) should only be seen

as giving ball-park figures for the bug-finding ability of the

fuzzers we have deployed and the priority of filed issues for

fixing. First, the data are subject to problems of duplication

(e.g. resource-exhaustion bugs are hard to de-duplicate and

thus may be reported by multiple fuzzers) and false alarms

(e.g. due to configuration problems in fuzz targets, and bugs

in custom mutators). Second, the fuzzers were deployed at

different points in time, so that fuzzers deployed early had

more chance to detect “low hanging fruit” issues compared

with fuzzers deployed later.

Bugs found using default mutators vs. custom mutators.
The first four rows of Table V show that the straightforward

fuzz targets for WGSL support in tint, and the specialised

fuzz targets for checking particular aspects of WGSL support

(such as testing of cloning functionality, discussed in §III-A),

led to a higher issue rate compared with fuzz targets using

the regex- and AST-based mutators. We have not delved into

the reasons for this in depth, but our hypotheses include:

these fuzz targets were deployed on ClusterFuzz before the

fuzz targets that use custom mutators; the overhead of custom

mutators means that fuzz targets that use default mutation

have higher throughput; although the custom mutators have the

benefit of focusing testing on mid- and back-end functionality

by generating valid or almost-valid inputs, they miss out, in

return, on finding front-end bugs via extremely malformed

inputs; and overlap between the bug-finding ability of various

fuzz targets, combined with the higher throughput of fuzz

targets that use default mutators, may mean that the latter get

380

Authorized licensed use limited to: University of Surrey. Downloaded on February 19,2024 at 12:34:51 UTC from IEEE Xplore. Restrictions apply.

TABLE V
SUMMARY OF THE NUMBER OF ISSUES OPENED BY EACH GROUP OF FUZZERS THAT WE DEPLOYED ON CLUSTERFUZZ AND OSS-FUZZ

Fuzzer(s) Component(s) tested Nature of fuzzer Mutator # Issues (resolved) # Repro. # Security (fixed)
WGSL-reader[-Y -writer] tint (WGSL) Coverage-guided Default 64 64 64 2 2
WGSL-misc tint (WGSL) Coverage-guided Default 105 105 105 17 17
Regex-based fuzzer tint (WGSL) Coverage-guided Custom 32 32 28 6 6
AST-based fuzzer tint (WGSL) Coverage-guided Custom 19 17 18 5 5
wgslsmith tint (WGSL) Black-box N/A 1 1 1 1 1
wgslgenerator tint (WGSL) Black-box N/A 2 2 2 0 0
spirv-fuzz tint (WGSL) Black-box N/A 2 2 2 1 1
SPIRV-Tools-based fuzzer tint (SPIR-V + WGSL) Coverage-guided Custom 58 41 43 3 2
SPIR-V-reader[-Y -writer] tint (SPIR-V) Coverage-guided Default 119 107 119 21 21
spirv-opt-fuzzer spirv-opt Coverage-guided Default 259 246 254 26 25
spirv-val-fuzzer spirv-val Coverage-guided Default 24 23 24 2 2
spirv-as/spirv-dis-fuzzer spirv-as and spirv-dis Coverage-guided Default 19 18 17 4 4
All All components 704 658 677 88 86

credit for quickly discovering easy-to-find bugs.

With respect to reproducible security issues, custom mu-

tators show more promise. Fuzzers based on standard fuzz

targets led to the reporting of 2 security-related issues out of

64 reports, while 6 out of 32 and 5 out of 19 issues reported

by fuzz targets using the regex-based mutator and AST-based

mutator, respectively, were security-related.

B. Bugs found via targeted black-box fuzzing

While the results for deployment of black-box fuzzing on

ClusterFuzz shown in Table V are rather disappointing, we

had significant success using wgslsmith and wgslgenerator in

a targeted manner to find bugs in tint and naga. Via wgslsmith
we were able to find and report 11 bugs in tint, of which 9

have been fixed so far, and 18 bugs in naga, of which 9 have

been fixed so far. Using wgslgenerator we were able to find

and report 6 bugs in tint, of which 3 have been fixed so far,

and 23 bugs in naga (or wgpu more generally), of which 15

have been fixed so far. The major advantage of our targeted

use of black-box fuzzing compared with deployment of black-

box fuzzing on ClusterFuzz is that the targeted approach uses

a stronger oracle. We discuss this further in §VI-C, Insight 11.

VI. INSIGHTS

We discuss insights arising from our experience, related to

the timeliness of applying fuzzing (§VI-A), use of custom

mutators (§VI-B), and oracle-related issues (§VI-C). Some

of these insights are already well known to engineers and

researchers who have worked with fuzzing in practice, but

we believe there is value in bringing them to the attention of

readers who have less experience working with fuzzing, and

discussing them explicitly in our context for those who do.

A. Timeliness of applying fuzzing

Insight 1: Early fuzzing can inform language design

An innovative feature of WGSL is the notion of abstract
numeric values. Similar to constants in Go [15], abstract

numeric types allow compile-time constant expressions to be

evaluated at 64-bit precision and then concretised to various

lower-precision numeric types when they are used in dynamic

contexts. The WGSL specification lists the scenarios where an

abstract numeric value needs to be concretised. The WGSL-

reader-MSL-writer fuzz target triggered a code generation

error due to an abstract vector being indexed using statically-

unknown value. The WGSL specification did not mandate that

the abstract vector should be concretised in such a scenario.

In response to the fuzzer-reported bug [5] a member of the

tint development team opened a WGSL specification issue [9]

which led to the language specification being fixed to account

for this missing case [42].

Insight 2: Fuzzing can drive implementation choices

WGSL features constant array expressions, which can either

enumerate the values of an array, or specify that array elements

should default to 0. An early implementation of constant

propagation in tint handled array constants on an element-by-

element basis. Our fuzzers quickly identified a problem with

this implementation by synthesising a shader that declared a

huge, default-initialised array, causing a memory-out in tint’s
constant propagation routine. In response, the tint developers

provided a more nuanced implementation that handles default-

initialised structures efficiently [8].

Insight 3: Fuzzing can be useful even before an input format

has been finalised

As discussed in §III-C, our tint fuzzers were initially not

provided with a corpus of input examples. This was in part

because, at that time, the WGSL language was too unstable

for reliable examples to be available. Although the bug-

finding ability of our fuzzers exhibited a step-change when

we introduced an input corpus, our fuzzers nevertheless found

a number of important bugs by starting from a default buffer.

Thus “our input format is not finalised yet” should not be seen

as an excuse for delaying the deployment of fuzzers.

Insight 4: A changing input format creates a fuzzer mainte-

nance burden

As a counterpoint to Insight 3, wgslsmith and wgslgenerator
(§IV-A) had to cope with the syntax of WGSL undergoing

relatively frequent changes. The tint and naga compilers

381

Authorized licensed use limited to: University of Surrey. Downloaded on February 19,2024 at 12:34:51 UTC from IEEE Xplore. Restrictions apply.

sometimes took a while to catch up with changes to the

language specification, leading to scenarios where these tools

did not quite agree on certain syntactic points. To allow differ-

ential testing we had to implement workarounds to transform a

generated WGSL shader into separate tint- and naga-friendly

forms before compiling and executing it. If we had been less

eager and designed these tools after the language had fully

stabilised, we would have saved on engineering effort (at the

cost of missing out on early bug discovery).

Related to this: while coverage-guided fuzz targets are

re-built by ClusterFuzz and OSS-Fuzz each time the SUT

changes, black-box fuzzers are manually uploaded as binary

archives (see §IV-B). If the input format for the SUT changes,

a black-box fuzzer may now yield inputs that are deemed

invalid and hence no longer deeply exercise the SUT. There

is no easy way to know that this has happened, meaning that

black-box fuzzers must be manually re-built and re-deployed

from time to time. It may thus be more fruitful to deploy

black-box fuzzers on ClusterFuzz once the input format of a

project has reached maturity.

Insight 5: Fuzzing too early may waste time by flagging

already-known issues

While our targeted use of black-box fuzzing to find bugs in

tint and naga via differential and validation testing led to the

discovery of some subtle issues, there are several cases where

it merely highlighted known issues that were already on the

road-maps of developers of these projects. For example, our

fuzzers highlighted several already-known cases where built-

in functions of WGSL had not yet been implemented, and

highlighted the already-known fact that tint and naga were

not yet taking measures to enforce WGSL semantics for edge

case behaviours, such as division by zero.

Insight 6: Bugs found by fuzzers in low-priority components

can be a distraction

Prior to our introduction of strong corpora for our fuzzers (see

§III-C), all fuzz targets were running on ClusterFuzz as part of

the Chromium testing process. From time to time this would

lead to discovery of security issues in non-critical components

of SPIRV-Tools, and in the tint SPIR-V front-end, which is

also non-critical. However, this happened sufficiently rarely

that there was sufficient engineering bandwidth for them to

be promptly fixed. The introduction of strong corpora led to a

flood of issues being discovered in non-critical components

of SPIRV-Tools, and in tint’s support for SPIR-V. Among

these were a number of security issues that were automatically

tagged as Chromium release blockers. While these issues have

all now been fixed, it was important for the development team

to be able to focus on issues that directly affected WGSL

support in tint, without being distracted by SPIR-V issues

being flagged as release-blocking. For this reason, in August

2021 we moved all SPIR-V-related fuzzers to OSS-Fuzz so

that they still run on Google’s ClusterFuzz infrastructure, but

do not lead to Chromium release-blocking bug reports.

B. Experience with custom mutators

Insight 7: There is a trade-off between the effectiveness of

a custom mutator and the effort required for its creation and

maintenance

The three custom mutators we have designed (see §III-B)

discovered several bugs, including a number of security issues

(see Table V). Of these mutators, we argue that the regex-

based fuzzer has been the most worthwhile. It was simple

to implement (not requiring any compiler construction exper-

tise), and has provided a good return on investment. Adding

additional mutation operators is a relatively straightforward

process as these operators are based on string manipulation.

In contrast, the implementation of each mutation operator in

the AST fuzzer was akin to writing a simple compiler pass,

which is a non-trivial task.

Insight 8: Bugs in custom mutator code can be a source of

false alarms

The SPIRV-Tools-based mutator and associated fuzz target

has the potential to provide the most bang-for-buck, since

(a) it leverages existing technology—spirv-opt, spirv-fuzz and

spirv-reduce—making it relatively cheap to build, and (b) it

simultaneously tests tint’s support for SPIR-V and WGSL, as

well as exercising various components of SPIRV-Tools during

the mutation process. However, as discussed in Insight 6,

bugs in tint’s SPIR-V front-end have lower priority for fixing

compared with WGSL-related bugs (see Figure 2). Worse still,

crashes in the custom mutator itself arising from bugs in

spirv-fuzz, spirv-reduce and stand-alone spirv-opt optimisation

passes may leaded to ClusterFuzz auto-reporting bugs that

have even lower priority for fixing (see Figure 3).

More generally, a risk of deploying custom mutators in

an in-process fuzzer such as libFuzzer is that one cannot

immediately distinguish between crashes stemming from the

custom mutators vs. crashes stemming from the fuzz target

itself. We have suggested to the ClusterFuzz team that it might

be worth detecting when crashes originate from a custom

mutator and handling them differently so that they are not

considered to be release blockers [17].

In the # Repro. column of Table V we have highlighted

cases where the number of reproducible issues is lower than

the total number of issues in the # Issues column. All three

fuzzers that use custom mutators suffer from unreproducible

issue reports, due to custom mutator crashes.

C. Test oracles

Insight 9: Fuzz targets must be carefully engineered to avoid

false alarms

Recall from §II-A that to work effectively, a libFuzzer fuzz

target must be designed so that a crash in the fuzz target

really does correspond to a bug in the SUT. The tint compiler

features various sanitising transformations that can be applied

to an AST. In production, the Dawn engine (see §II-B and

Figure 1) will apply these transformations in a specific manner,

depending on the underlying native graphics API that is

382

Authorized licensed use limited to: University of Surrey. Downloaded on February 19,2024 at 12:34:51 UTC from IEEE Xplore. Restrictions apply.

being targeted. We had several false alarms where our fuzz

targets would apply sanitising transformations in unexpected

orders that will never be used in productions, leading to false

alarm bug reports. As an example, one issue report features

a comment from a possibly exasperated developer: “Looks

like yet another case of the fuzzers not running all necessary

transforms before invoking the backend.” [6]. This highlights

the point that fuzz targets must be designed with care in order

for the crash oracle to yield meaningful bug reports.

Insight 10: It may be necessary to make modifications to the

SUT to accommodate fuzzing, or to accept some number of

false alarms

SPIR-V allows loops to be annotated with a hint requesting

that they be fully unrolled, if a compiler can deduce a static

bound on the number of times the loop will iterate. By design,

spirv-opt honours such requests. The spirv-opt fuzz target

merrily produced a program featuring a loop with a static

bound of more than 1 million iterations, annotated with this

unrolling hint. This led to OSS-Fuzz auto-reporting an out of

memory error [7].

As this does not actually correspond to a bug in spirv-opt,
nor a real-world usage scenario, the spirv-opt developers were

reluctant to change the tool’s production behaviour for the sake

of pacifying a fuzzer. As a compromise, we modified spirv-

opt so that when it is compiled as part of a fuzz target, loops

with more than 100 iterations will not be unrolled [11]. This

pacified the fuzzer for a while, but eventually it synthesised an

example featuring a nest of loops with each loop exhibiting a

double-digit iteration count, leading to a similar issue report.

This highlights the fact that when applying fuzzing to

complex real-world software it is hard to avoid bug reports

that, in a domain-specific sense, are false alarms.

Insight 11: Advanced oracles for fully automated fuzzing

present interesting future challenges

Recall from §V that while our targeted application of

wgslsmith and wgslgenerator led to a large number of bugs

being discovered, their deployment on ClusterFuzz as black-

box fuzzers led to very few bug reports. This is due to a

difference in test oracles: ClusterFuzz merely checks whether

tint crashes, while in our targeted use of these program gen-

erators we (a) used various back-end-specific tools to validate

the output generated by tint, and (b) used differential testing to

cross-check tint-generated code against naga-generated code,

as well as to cross-check the behaviour of code generated by

multiple tint back-ends.

Integrating these more advanced oracles into coverage-

guided fuzzing is hindered by practical and conceptual chal-

lenges. Practically, using target-specific validation tools re-

quires these to be available on the machines used for fuzzing.

In the case of tint’s MSL back-end, for example, validation

requires the use of a Metal shader validator that would not

be easy to deploy on ClusterFuzz’s standard Docker image.

Conceptually, differential testing is good for identifying that

one of the systems being compared is wrong, but cannot

automatically pinpoint which is the culprit. It is not clear how

automatic bug triage—a big selling point of ClusterFuzz—

could be adapted to effectively shed light on the root cause of

issues found using differential testing.

VII. RELATED WORK

Compiler fuzzing in the domain of graphics has been

explored previously via the GraphicsFuzz (formerly GL-

Fuzz) [12] and spirv-fuzz [14] tools, including an experience

report on the use of GraphicsFuzz [13]. These approaches aim

to find miscompilation bugs via metamorphic testing [4], [44].

These tools build on ideas from equivalence modulo inputs
testing [34], generating families of equivalent programs via

semantics-preserving transformations. We have used spirv-fuzz
as the basis of a ClusterFuzz black-box fuzzer (see §IV-B)

and as part of a custom mutator (see §III-B), but these uses

of the tool do not exploit the fact that it applies semantics-

preserving mutations; we merely exploit the fact that it applies

some form of mutation in an attempt to generate programs that

may uncover crash bugs in tint.
The wgslsmith and wgslgenerator tools were inspired by

the Csmith generator of C programs [49]. In the domain of

GPU computing, program generation has also been used to

test OpenCL and CUDA compilers [27], [35].

Our regex-based mutator is similar to the Universal Mutator

tool [23], [24], which as been applied in the context of

compiler fuzzing [25]. The interval deletion mutations of our

regex-based fuzzer were inspired by the structureshrink test

case reducer [37], which considers deleting regions of an input

that are delimited by particular character sequences.

VIII. CONCLUSIONS

We have described our experience applying a variety of

fuzzing techniques, included coverage-guided fuzzing with

and without custom mutators, and black-box fuzzing, to test

compilers and processing tools for the WGSL and SPIR-

V graphics shading languages. These include security-critical

components that ship as part of WebGPU and WebGL imple-

mentations in modern browsers. Our deployment of fuzzing

has led to the discovery and fixing of a large number of

potentially security-critical issues.

An important direction for future work is to bridge the

gap between targeted black-box fuzzing—where differential

testing provides a strong oracle—and scalable fuzzing on Clus-

terFuzz and OSS-Fuzz. The former can lead to the discovery

of more intricate functional bugs than the latter, but currently

requires a human in the loop for bug triage and reporting.

Another direction is to use Google’s new FuzzTest project [20]

to reduce the amount of custom code that needs to be written

to interpret input byte buffers in a structured manner.

ACKNOWLEDGEMENTS

Thanks to Paul Thomson for his valuable feedback on an

earlier draft of this work. This work was partly supported by

the EPSRC IRIS Programme Grant (EP/R006865/1).

383

Authorized licensed use limited to: University of Surrey. Downloaded on February 19,2024 at 12:34:51 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Apple, “Metal Shading Language Specification,” 2022, https://developer.
apple.com/metal/Metal-Shading-Language-Specification.pdf, last ac-
cessed 2022-10-23.

[2] A. Arya and O. Chang, “ClusterFuzz: Fuzzing at Google scale,” in
Black Hat Europe 2019, 2019, https://i.blackhat.com/eu-19/Wednesday/
eu-19-Arya-ClusterFuzz-Fuzzing-At-Google-Scale.pdf, last accessed
2022-10-23.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo,
“The oracle problem in software testing: A survey,” IEEE Trans.
Software Eng., vol. 41, no. 5, pp. 507–525, 2015. [Online]. Available:
https://doi.org/10.1109/TSE.2014.2372785

[4] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A new
approach for generating next test cases,” The Hong Kong University of
Science and Technology, Tech. Rep. HKUST-CS98-01, 1998.

[5] Chromium, “Issue auto-reported by ClusterFuzz, revealing problem re-
lated to abstract vectors,” 2022, https://bugs.chromium.org/p/chromium/
issues/detail?id=1345468, last accessed 2022-11-03.

[6] ——, “Issue auto-reported by ClusterFuzz that turned out to be due
to a misconfigured fuzz target,” 2022, https://bugs.chromium.org/p/
chromium/issues/detail?id=1314938, last accessed 2022-11-03.

[7] ——, “Issue auto-reported by OSS-Fuzz that turned out to relate to
a loop with many iterations being fully unrolled,” 2022, https://bugs.
chromium.org/p/oss-fuzz/issues/detail?id=39010, last accessed 2022-11-
03.

[8] B. Clayton, “Change list to Dawn project,” 2022, https://dawn-review.
googlesource.com/c/dawn/+/94942, last accessed 2022-11-03.

[9] ——, “Github issue: specification needs to clarify behavior of indexing
of abstract composite type with runtime value,” 2022, https://github.com/
gpuweb/gpuweb/issues/3210, last accessed 2022-11-03.

[10] ClusterFuzz, “Blackbox fuzzing,” 2023, https://google.github.io/
clusterfuzz/setting-up-fuzzing/blackbox-fuzzing/, last accessed 2023-
01-28.

[11] A. F. Donaldson, “SPIRV-Tools pull request: Avoid unrolling large loops
while fuzzing,” 2022, https://github.com/KhronosGroup/SPIRV-Tools/
pull/4835, last accessed 2022-11-03.

[12] A. F. Donaldson, H. Evrard, A. Lascu, and P. Thomson, “Automated
testing of graphics shader compilers,” PACMPL, vol. 1, no. OOPSLA,
pp. 93:1–93:29, 2017. [Online]. Available: https://doi.org/10.1145/
3133917

[13] A. F. Donaldson, H. Evrard, and P. Thomson, “Putting randomized
compiler testing into production (experience report),” in 34th
European Conference on Object-Oriented Programming, ECOOP 2020,
November 15-17, 2020, Berlin, Germany (Virtual Conference), ser.
LIPIcs, R. Hirschfeld and T. Pape, Eds., vol. 166. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020, pp. 22:1–22:29. [Online].
Available: https://doi.org/10.4230/LIPIcs.ECOOP.2020.22

[14] A. F. Donaldson, P. Thomson, V. Teliman, S. Milizia, A. P. Maselco,
and A. Karpinski, “Test-case reduction and deduplication almost for
free with transformation-based compiler testing,” in PLDI ’21: 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
S. N. Freund and E. Yahav, Eds. ACM, 2021, pp. 1017–1032.
[Online]. Available: https://doi.org/10.1145/3453483.3454092

[15] Go, “The Go programming language specification: Constants,” 2022,
https://go.dev/ref/spec#Constants, last accessed 2022-11-03.

[16] Google, “ClusterFuzz,” 2022, https://google.github.io/clusterfuzz/, last
accessed 2022-10-23.

[17] ——, “ClusterFuzz GitHub issue about bugs in custom mutators,” 2022,
https://github.com/google/clusterfuzz/issues/2827, last accessed 2022-
11-03.

[18] ——, “Dawn, a WebGPU implementation,” 2022, https://dawn.
googlesource.com/dawn/+/refs/heads/main/README.md, last accessed
2022-10-24.

[19] ——, “Fuzzing forum: Structure-aware fuzzing with libFuzzer,”
2022, https://github.com/google/fuzzing/blob/master/docs/
structure-aware-fuzzing.md, last accessed 2022-10-23.

[20] ——, “FuzzTest,” 2022, https://github.com/google/fuzztest, last accessed
2022-11-03.

[21] ——, “OSS-Fuzz,” 2022, https://google.github.io/oss-fuzz/, last ac-
cessed 2022-10-23.

[22] ——, “Swiftshader, CPU-based vulkan implementation,” 2022, https:
//swiftshader.googlesource.com/SwiftShader, last accessed 2022-10-23.

[23] A. Groce, “Univeral mutator,” 2022, https://github.com/agroce/
universalmutator, last accessed 2022-10-27.

[24] A. Groce, J. Holmes, D. Marinov, A. Shi, and L. Zhang, “An
extensible, regular-expression-based tool for multi-language mutant
generation,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM, 2018, pp.
25–28. [Online]. Available: https://doi.org/10.1145/3183440.3183485

[25] A. Groce, R. van Tonder, G. T. Kalburgi, and C. L. Goues, “Making
no-fuss compiler fuzzing effective,” in CC ’22: 31st ACM SIGPLAN
International Conference on Compiler Construction, Seoul, South Korea,
April 2 - 3, 2022, B. Egger and A. Smith, Eds. ACM, 2022, pp.
194–204. [Online]. Available: https://doi.org/10.1145/3497776.3517765

[26] A. Herrera, H. Gunadi, L. Hayes, S. Magrath, F. Friedlander,
M. Sebastian, M. Norrish, and A. L. Hosking, “Corpus distillation for
effective fuzzing: A comparative evaluation,” 2019. [Online]. Available:
https://arxiv.org/abs/1905.13055

[27] B. Jiang, X. Wang, W. K. Chan, T. H. Tse, N. Li, Y. Yin, and Z. Zhang,
“Cudasmith: A fuzzer for CUDA compilers,” in 44th IEEE Annual
Computers, Software, and Applications Conference, COMPSAC 2020,
Madrid, Spain, July 13-17, 2020. IEEE, 2020, pp. 861–871. [Online].
Available: https://doi.org/10.1109/COMPSAC48688.2020.0-156

[28] Khronos Group, “The OpenGL ES shading language, version
3.20.6,” 2019, https://registry.khronos.org/OpenGL/specs/es/3.2/GLSL\
ES\ Specification\ 3.20.pdf, last accessed 2022-10-24.

[29] ——, “A complete registry of all official SPIR-V specifications,” 2022,
https://www.khronos.org/registry/SPIR-V/, last accessed 2022-10-23.

[30] ——, “glslang GitHub repository,” 2022, https://github.com/
KhronosGroup/glslang, last accessed 2022-06-30.

[31] ——, “SPIRV-Tools repository, including spirv-opt and spirv-val,” 2022,
https://github.com/KhronosGroup/SPIRV-Tools, last accessed 2022-06-
30.

[32] ——, “Vulkan 1.3 - a specification (with all registered Vulkan
extensions),” 2022, https://www.khronos.org/registry/vulkan/specs/1.
3-extensions/html/vkspec.html, last accessed 2022-10-23.

[33] ——, “WebGL 2.0 specification,” 2022, https://registry.khronos.org/
webgl/specs/latest/2.0/, last accessed 2022-10-23.

[34] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, M. F. P. O’Boyle and K. Pingali, Eds.
ACM, 2014, pp. 216–226. [Online]. Available: https://doi.org/10.1145/
2594291.2594334

[35] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core
compiler fuzzing,” in Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015, D. Grove and S. Blackburn,
Eds. ACM, 2015, pp. 65–76. [Online]. Available: https://doi.org/10.
1145/2737924.2737986

[36] LLVM Compiler Infrastructure, “libFuzzer – a library for coverage-
guided fuzz testing,” 2022, http://llvm.org/docs/LibFuzzer.html, last ac-
cessed 2022-10-23.

[37] D. MacIver, “Structureshrink,” 2022, https://github.com/DRMacIver/
structureshrink, last accessed 2022-11-03.

[38] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998. [Online]. Available:
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf

[39] Microsoft, “Reference for HLSL,” 2019, https://docs.microsoft.com/
en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-reference, last ac-
cessed 2022-10-23.

[40] H. Mohsin, “wgslsmith,” 2022, https://github.com/wgslsmith/wgslsmith,
last accessed 2022-10-25.

[41] ——, “WGSLsmith: a random generator of WebGPU shader
programs,” Master’s thesis, Imperial College London, 2022, https:
//www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/
computing/public/2122-ug-projects/2122-individual-projects/
WGSLsmith---a-Random-Generator-of-WebGPU-shader-programs.
pdf, last accessed 2022-10-25.

[42] D. Neto, “Github pull request: wgsl: indexing X by non-const-expr index
requires X to be concrete,” 2022, https://github.com/gpuweb/gpuweb/
pull/3497, last accessed 2022-11-03.

[43] Rust Graphics Mages, “The wgpu project,” 2022, https://github.com/
gfx-rs/wgpu, last accessed 2022-10-24.

384

Authorized licensed use limited to: University of Surrey. Downloaded on February 19,2024 at 12:34:51 UTC from IEEE Xplore. Restrictions apply.

[44] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[45] The Clang Team, “Clang documentation,” 2022, https://clang.llvm.org/
docs/, last accessed 2022-10-23.

[46] W3C, “WebGPU Shading Language W3C working draft,” 2022, https:
//www.w3.org/TR/WGSL/, last accessed 2022-10-23.

[47] ——, “WebGPU, W3C Working Draft,” 2022, https://www.w3.org/TR/
webgpu/, last accessed 2022-10-23.

[48] H. Watson, “wgslgenerator,” 2022, https://github.com/hanawatson/
wgslgenerator, last accessed 2022-10-25.

[49] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, M. W. Hall and
D. A. Padua, Eds. ACM, 2011, pp. 283–294. [Online]. Available:
https://doi.org/10.1145/1993498.1993532

385

Authorized licensed use limited to: University of Surrey. Downloaded on February 19,2024 at 12:34:51 UTC from IEEE Xplore. Restrictions apply.

