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Preface

This volume contains the papers presented at SEFM 2023, the 21st International
Conference on Software Engineering and Formal Methods, held on November 6-10,
2023 in Eindhoven, The Netherlands.

The SEFM conference series aims to bring together researchers and practitioners
from academia, industry and government, to advance the state of the art in formal
methods, to facilitate their uptake in the software industry, and to encourage their
integration within practical software engineering methods and tools.

Following the call for papers, there were 53 announced submissions of which 12
were retracted or not submitted in time. The 41 submissions that remained were each
Single blind reviewed independently by at least three reviewers, and this was followed
by a lively online discussion amongst the reviewers. The SEFM submissions were
judged on their originality and quality. Only submissions that were unpublished, and
not submitted concurrently for publication elsewhere were considered. Based on the
reviewing results, the Programme Committee decided to accept 18 regular research
papers and one tool paper for presentation at the conference and publication in this
volume. The editors thank the members of the Programme Committee and the addi-
tional reviewers for their reviews and discussions. We also thank all authors for their
submissions, whether accepted or not, and hope that they will keep contributing to
future editions of this conference series.

This year, for the first time, SEFM invited the authors of accepted papers to submit
their associated artefacts for evaluation against the EAPLS badging scheme. The
artefact evaluation serves to enable future researchers to effectively build on and
compare with previous work. The Artefact Evaluation Committee awarded the Avail-
able badge to eleven artefacts, the Reusable badge to six artefacts, and the Functional
badge to five artefacts. We thank the members of the Artefact Evaluation Committee,
chaired by Mario Pereira and Flip van Spaendonck, for their work.

The programme also includes the following three invited talks: Mira Mezzini
(Technische Universitit Darmstadt) reported on “Safe and Secure Programming
Abstractions for Decentralized Software”; Reiner Hahnle (Technische Universitit
Darmstadt) spoke on “Context-aware Trace Contracts”; and Burcu Ozkan (Delft
University of Technology) gave a talk titled “Randomized Testing of Distributed
Systems”. We thank the three invited speakers for their insights.

Associated with the main SEFM 2023 conference there were three workshops:
OpenCERT 2023, CIFMA 2023, and DataMod 2023. We thank all organisers of these
associated events for contributing to the success of SEFM. The proceedings of these
events will appear in a separate LNCS volume.

We would like to thank the Steering Committee and their chair Antonio Cerone for
their guidance and support. The event was only possible thanks to the SEFM Organ-
ising Committee members Jeroen Keiren and Thomas Neele, and the webmaster,
Thomas Neele, for all their help with planning and organising the conference. Finally,
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we would like to thank NWO (the Dutch Research Council) for sponsoring this event,
Springer’s Lecture Notes in Computer Science team for their support and sponsorship,
and EasyChair for providing the reviewing infrastructure.

November 2023 Carla Ferreira
Tim A. C. Willemse
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Randomized Testing of Distributed Systems
(Abstract)

Burcu Kulahcioglu Ozkan

Delft University of Technology, Delft, The Netherlands
b. ozkan@tudelft.nl

Abstract. Distributed systems are prone to concurrency bugs due to the non-
determinism in the interleavings of concurrent events. Detecting and diagnosing
concurrency bugs in distributed systems is critical since unforeseen interleavings
of concurrent messages, network, or process faults can result in unexpected,
erroneous system behavior. However, concurrency bugs are hard to detect as
they are triggered only in some subtle interleavings of the events.

Random testing offers a practical way of searching for bugs in large dis-
tributed systems. While naive random stress testing is unlikely to discover rare
bugs, our recent randomized testing methods present effective testing algo-
rithms. The effectiveness of our methods lies in the mathematical characteri-
zation of concurrency bugs and sampling test cases from the set of executions
that are likely to produce a buggy execution.

A significant advantage of our testing techniques is that they provide theo-
retical guarantees on the probability of detecting a bug.

Transferring the theoretical insight of formal methods and verification into the
design of testing methods further improves the bug detection guarantees of
randomized testing. Incorporating state space reduction strategies from model
checking reduces the sample set of executions to explore, resulting in a higher
probability of detecting bugs. Besides generic strategies, exploiting ideas from
the verification of specific systems can lead to efficient testing of these systems.
Our recent works exploit theoretical insights from the verification of distributed
consensus algorithms, which are at the core of distributed databases and
blockchain systems, to develop efficient methods for testing their implementa-
tions.

This talk overviews the key ideas in our randomized testing techniques for
detecting concurrency bugs in distributed systems.

Keywords: Software testing - Concurrency - Distributed systems
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Herding CAT's

Reiner Hiahnle!, Marco Scaletta!®™) | and Eduard Kamburjan?

! Technical University of Darmstadt, Darmstadt, Germany
{reiner.hahnle,marco.scaletta}@tu-darmstadt.de
2 University of Oslo, Oslo, Norway
eduard@ifi.uio.no

Abstract. We illustrate the usage of context-aware trace contracts (for
short: CATs) by way of an example. CATs are a systematic approach to
specify non-procedure local behavior. Technically, they consist of sym-
bolic expressions specifying the assumed behavior of the callers before a
procedure enters its contract, the behavior a procedure guarantees, and
the behavior expected to happen in the continuation after termination.
This generalizes state-based, Hoare-style specification triples.

1 Introduction

Specification contracts are pivotal for deductive verification to scale [5], because
they permit to verify a large program by tackling one procedure at a time.
Given a procedure m, a state contract [7,8] is a pair (Pre, Post), where Pre is
an expression specifying the execution states under which m enters the contract
and Post specifies the execution states m must guarantee upon termination.

In many scenarios, however, notably in concurrent execution, state contracts
are insufficient. For example, how to specify that at some point in time before m
was called a certain action took place? Often, this is achieved with ad hoc ghost
variables, leading to bloated and hard-to-read contracts. It is even more difficult
to specify that after a call to m the callers must take some action, for example, a
cleanup. To enable systematic specification of such non-procedure local properties
it is desirable to have a generalized notion of contract that permits to specify
the context wherein a procedure enters into a contract.

The technical basis for context-aware contracts is a recent generalization of
state contracts to trace contracts [2]. Trace contracts generalize a pre-/post-
condition pair (Pre,Post) to a symbolic trace 0, permitting to specify a set of
execution traces a procedure m is expected to adhere to. This makes it possible
to specify events taking place during execution of some code, hence, specification
elements are not limited to the start or finish, as state contracts are.

Contezt-aware trace contracts (CATs, for short) [6] build upon trace con-
tracts and specify the non-local behavior of a procedure m as a triple consisting
of (i) a symbolic trace 6,, specifying the assumptions on the context, before
m enters into its contract, (ii) a symbolic trace 6, specifying the guarantee m
gives about its internal behavior, and (iii) a symbolic trace 0., specifying the
expected continuation of the call context after m terminates.

Cm

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 3-8, 2023.
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We illustrate the usage of CATs informally by way of an example taken from
the well-known Casino Case Study! used, for example, in [1,4]. We refer to [6] for
the formal definition of CATs, the deduction system, and the soundness proofs.

2 CATs by Example

We introduce the general structure of a CAT, then we present a running example
extracted from the Casino Case Study. We first define informal requirements on
the behavior of procedures and their context. Then we illustrate how a formal
specification with CATs can be done.

2.1 General Structure of a CAT

A context-aware trace contract [6] Cp, for a procedure m consists of a triple of
symbolic trace formulas [2]:

Cp =<b,,, | 05, |0, >

Here, 65, is the internal behavior that m guarantees, while 6, _ and 6.,
specify the call context, wherein m enters into the contract: The pre-trace 6,,,
specifies the assumptions on what must have happened before executing m,
and the post-trace 0., specifies the requirements on how the computation must
continue after the termination of m. We assume that the final state specified in
0., is the state where 0,  starts, and similarly for 6,  and 0., .

Trace formulas 6 contain state formulas v as building blocks of the form [v],
denoting all singleton traces consisting of an execution state that satisfies .
Moreover, trace formulas can be composed by concatenation -, conjunction A
and disjunction V. We use the notation “-” to denote an arbitrary finite trace?

)

hence a traditional state contract (Pre, Post) corresponds to the trace formula

[Pre] - [Post]. Expression ™ further restricts traces to those not containing
any procedure call to an m € m.

2.2 Accessing the Program State: Observation Quantifiers

To restrict possible execution states of a specified program it is necessary to
access the value of program variables at some point during execution. In state
contracts it is obvious when a variable is observed in the pre- and postcondition:
at the start and at the finish of a procedure, respectively. In a trace formula,
however, such as 8- [i > 0]-6"-[i > 0] - 0", two observations of program variable
i refer to arbitrary different time points during execution.

To be able to compare the value of program variables at different states in
a trace formula, it is necessary to capture the value and define a scope. This

! https://verifythis.github.io/02casino/.
2 This constitutes a special case of a general smallest fixed point operator that is part
of the definition of trace formulas, see [2] for details.
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is done with an observation quantifier. An observation quantifier has the form
Ux as y.0(y), where x is a program variable whose current value is bound to the
logical (first-order) variable y, which then can be accessed from the scope of the
quantifier, the trace formula 6. For example, Ux as y. ([y > 0] --) specifies the set
of finite traces starting in a state, where x has positive value. We say y observes x
at such a position. Logic variables are rigid, meaning their values are immutable:
when y observes x at a certain instant of the computation it is immutably bound
to the value x has at that instant. Therefore, Ux as y. ([y > 0] ) is equivalent
to Ux as y. (-~ [y > 0]), the only difference being that the check whether x is
positive in the beginning is now syntactically located at the end of the trace
formula. The same programs are conforming to these two trace formulas.

Specifying Pre- and Postconditions. With observation quantifiers it easily possi-
ble to specify state preconditions, simply by placing the quantifier at the border
between 6, and 65, , as for example in

Sm?
<0, -Uxasy.[y>0]]6bs, |0, > .

It is important to observe that the scope of an observation quantifier occur-
ring in a contract always includes all subsequent contract elements, here 65, and
0.,,. Postconditions are analogous. It is possible to observe the same program
variable at different execution states and compare the values. For example, if we
want to specify that m increases the value of x by one we can write

<0, -Uxasy.[true] |0, -Uxasy'.[y =y+1]]0., > .

2.3 Running Example

To illustrate our approach we use an excerpt of the Casino Case Study men-
tioned in Sect. 1, where a player can place bets and, depending on the outcome,
collect a win. Procedures placeBet and decideBet are shown in Fig. 1. We look
at the following properties: (i) a game is either available and can be started with
placeBet, or it is ongoing and can be terminated with decideBet (there is no idle
state, i.e. no creation of the game is needed); (ii) we focus on the constraints on
the player’s wallet, ignoring the amount of money in the pot (infinite amount).

placeBet () { decideBet () {
bet = amountToBet; if (coinSide == guess) {
playerWallet -= bet; playerWallet += 2xbet;
return; }
} bet = 0;
return;
}

Fig. 1. Code for placeBet and decideBet
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2.4 Goal of Specification

We give an informal description of the requirements for the execution of placeBet
and decideBet:

Requirements for placeBet. (Pre-trace): Before executing placeBet there cannot
be any pending bet still to be decided. (Precondition): The amount the player
bets must be positive and cannot exceed the amount of money in the wallet.
(Internal behavior): Procedure placeBet does not call any other procedure.®
(Postcondition): By betting, the wallet of the player is reduced by the amount
of the bet. (Post-trace): After a bet is placed it must be decided upon.

Requirements for decideBet. (Pre-trace): Before executing decideBet, any pend-
ing bet still to be decided must have been placed. (Precondition): None. (Internal
behavior): Procedure decideBet does not call any other procedure. (Postcondi-
tion): The wallet of the player is credited twice the amount of money only if
the guess of the player was correct and the amount of the bet is reset to 0.
(Post-trace): None.

2.5 CATs

We formalize the requirements stated in Sect.2.4 in the CAT framework.

CAT forplaceBet . We define the components for the CAT for placeBet:

CplaceBet :<<9aplaceBet | asplaceBet | ecplaceBet >

(Pre-trace): The case that no pending bet is still being decided can occur in two
situations: Either no bet has ever been placed, or the most recently placed bet
was decided, i.e. no bet is placed after the most recent occurrence of decideBet.
This can be specified with the trace formula:*

placeBet

’ . placeBet decideBet

dplaceBot V - pop(decideBet, )

(Precondition): The trace formula for the precondition is straightforward, but
we must observe the values of amountToBet and playerWallet:
¢pr€placeBet = U amountToBet as toBet.
U playerWallet as wallet.[toBet > 0 A toBet < wallet]

. Y )
Therefore the pre-trace for placeBet is QaplaceBet = GGPIaCQBet ¢P7'5p1aceBet'

3 This is a simplified form of a typical secure information flow property.
* An event of the form pop(m, k) signifies that a call of procedure m with call identifier
k has terminated, see [2] for details. There is also a dual event start(m, k) used below.
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(Internal Behavior): No procedure calls are allowed in the internal behavior of

placeBet:

placeBet
/ __ decideBet

SplaceBet

(Postcondition): To specify requirements on the value of playerWallet at the
end of the execution of placeBet we use another observation quantifier and refer
to the observed variables in ¢p,e :

placeBet

¢p°5tplaceBet = UplayerWallet as wallet’.[wallet’ = wallet — toBet]

So the internal behavior for placeBet is 6 =0 - Ppost

placeBet SplaceBet placeBet *

(Post-trace): The requirement that the continuation of execution must include
a matching occurrence of decideBet can be specified by the trace formula:

placeBet
__ decideBet

ecplaceBet = start(decideBet, ) -

CAT for decideBet . We define the components for the CAT for decideBet:

CVdecideBet =<0 >

AdecideBet | esdecideBet | ecdecideBet

(Pre-trace): A bet can be decided only if it has been placed and it has not been
decided yet:

placeBet

, _placeBet decideBet

- - poO laceBet
AdecideBet p p(P aceBe 77)

(Precondition): Even though the precondition is trivial, we still need to observe
the values of coinSide, guess, playerWallet, and bet in the beginning of the
execution of decideBet, because the observed values are referred to in the post-
condition:
Ppregecidenes — O coinSide as ¢, guess as g,
playerWallet as wallet,bet as b.[true]

(Internal Behavior): No procedure calls are allowed in the internal behavior of

decideBet: 0’ is specified analogous to 6’ )
SdecideBet p g SplaceBet

(Postcondition): To specify the postcondition we need an additional observation
quantifier, to observe playerWallet and bet at the end of the computation:

= U playerWallet as wallet’ bet as .
[ =0A (c=g— wallet’ = wallet + b)]

¢p05tdccichct

/

So the internal behavior for decideBet is O, .\ o = GSdecideBet " Ppost gocideBet -
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Post-trace. There is no requirement on how the execution must continue after

the execution of decideBet, therefore, ¢ ., . =

3 Wrapping Up

The paper [6] contains a sound calculus that can prove the contracts specified
in Sect. 2.5 separately. Moreover, it is proven that validity of a set of contracts
implies the validity of any proven program specified with those contracts. In
consequence, the principle of procedure-modular verification carries over from
state contracts to CATs.

What remains to be shown is how to incorporate concurrent execution—our
case study is sequential. The above mentioned paper shows how CATs can be
applied to asynchronous procedure calls in the style of cooperative scheduling [3].
More general programming models are future work.
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Abstract. Establishing equivalence and refinement relations between
programs is an important mean for verifying their correctness. By estab-
lishing that the behaviours of a modified program simulate those of
the source one, simulation relations formalise the desired relationship
between a specification and an implementation, two equivalent imple-
mentations, or a program and its optimised implementation. This article
discusses a notion of simulation between open automata, which are sym-
bolic behavioural models for communicating systems. Open automata
may have holes modelling elements of their context, and can be com-
posed by instantiation of the holes. This allows for a compositional app-
roach for verification of their behaviour.

We define a simulation between open automata that may or may not
have the same holes, and show under which conditions these refinements
are preserved by composition of open automata.

Keywords: Labelled transition systems - Simulation - Composition

1 Introduction

Compositional design is a highly convenient approach for specifying and veri-
fying large systems. Automata are often used as the basic formalism for this
approach, but most automata definitions allow only the specifications of finite
closed systems. These systems can be verified efficiently, but programming often
consists in writing systems that should be interfaced with others, and with poten-
tially unbound behaviours. We investigate in our works the reasoning on open
symbolic systems, with a strong focus on compositionality of properties. More
precisely, we say that a system is open if it contains a “hole” to be filled by
another system. Open systems are typically composition operators [17] or com-
ponentised systems where some of the components are yet to be provided [6].
This form of composition is more complex to handle than top-level interaction
usually found in process algebra, as the behaviour of each entity in the system
is parameterised both by classical symbolic variables and by process variables.
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Symbolic systems and their bisimulation raises additional challenges [15,17].
Reasoning on a symbolic automaton allows one to represent an infinite system
in a finite manner, but then the state of the system is not only characterised by
an automaton state but also by the value of the different variables representing
the system. In parameterised systems, it is necessary to guard state transitions
depending on the system state and on the input values. This is why in previous
works and in this article, it we extend the classical form of bisimulation relation:
in a symbolic setting a bisimulation relation relates classically states of two
systems but it is additionally parameterised by a formula that must be verified by
the state variables. This has been introduced in details in previous works [6] and
will be recalled briefly in Sect. 2.2. We have shown in previous works that open
symbolic systems are particularly convenient to model process algebra operators
and open component systems with infinite behaviour [6,17].

The refinement concept plays an important role in software engineering. In
addition to helping to cope with the complexity of requirements and design,
refinement provides a foundation for ensuring system correctness. The correct-
ness of a system can be established by proving, that a system refines its specifi-
cation with the idea that some properties of the specification are preserved in the
refined system. Refinement entails that one system can be considered as a more
precise version of another one that is considered to be the specification. The
refined model features all the specified behaviours with more concrete details.
From a formal point of view, refinement is a mathematical relations between a
specification and its implementation, with trace inclusion or simulation being
frequently used relations [20,22].

In this article, we design a simulation theory for open symbolic systems.
We build a very generic theory that should allow us to reason on simulation-
based verification for most concurrent systems, as our base theory merely relies
on automata parameterised by both variables and processes. As we shall see,
our composition of automata is also very generic to account for any interaction
mechanism found in concurrent systems. While our contribution is theoretical, it
establishes the foundations for to the verification of any compositionally designed
system, like component systems, algorithmic skeletons.

Open automata (that we abbreviate OA) were defined as a way to provide a
semantics for open parameterised hierarchical labelled transition systems (abbre-
viated LTS). They were proposed as a theoretical foundation for parametrised
automata used in verification tools and called pNets. An OA [17] is similar to
a classical automaton but with variables and holes. Variables make automata
symbolic and allow them to encode infinite-state systems. Holes enable the
composition of automata: an automaton with a hole is an operator that takes
another automaton as parameter and reacts to the actions it emits; the composed
automaton is an automaton where the behaviour of one “process parameter” of
the main automaton has been provided. Due to their generic nature, the notion
of OA model is quite abstract but we already illustrated previously how to derive
OAs for process algebra operators [17] or for component systems [5,6].
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In previous works [6,24] a bisimulation relation was defined for OA and open
parameterised hierarchical LTSs. It exhibited good properties concerning bisim-
ulation, but refinement relations were not studied. In this article we go further
to define a theory of simulation for OA. The simulation relation we introduce in
the paper is based on the notion of simulation, in a similar way to that defined in
classical automata theory [8,21]. It possesses the common behaviour-preserving
property: all the behaviour of the abstract specification must be followed by its
(complex) implementation but additional behaviours may exist. However we also
ensure that a whole scenario, made of several steps, of the specification can also
be simulated by the refined system, which is slightly richer than the traditional
simulation relation and allows us to obtain a compositionality result.

Our contribution in this paper is the definition of a simulation relation for
OA that has the following characteristics:

— Classical simulation characterisation but also an additional criteria ensuring
that simulation does not introduce deadlocks when following a trace from the
simulated automaton.

— Good properties relatively to composition: we prove that composition pre-
serves the simulation relation.

— Ability to take into account both composition and transitivity: this is a chal-
lenge because composition changes the set of holes of the OA and simulation
takes into account the actions of the holes.

The simulation relation is introduced in two steps. First we define a simulation
that relates two automata with the same holes, which allows us to focus on the
automaton aspect. Second we introduce a relation that relates two automata
with different sets of holes, which allows us to take into account the open nature
of OA, and to deal with composition. Properties of the simulation are stated and
proven on the second, more general version of the relation, thus also being valid
for the first simpler simulation relation.

This paper is organized as follows. Section 2 recalls the definition of OA and
defines their composition. We then define a simulation relation for OA, first only
considering two automata with the same set of holes in Sect.3 and generalize
it to automata with a different set of holes in Sect.4. Section 5 is dedicated to
formalize and prove basic properties of the simulation defined, including the
proof that simulation is a preorder and has nice composability properties. In
Sect. 6 we review related works, and Sect. 7 concludes the paper.

2 Open Automata and Their Composition

This section presents our notations and the principles of automata. Except for
minor changes in the notations, compared to previous works [6] the only new
contribution is the definition of a composition operator for OA.
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2.1 Preliminaries and Notations

Countable families of values (equivalent to maps) will be noted =zl

{imz;|i€ I}, or {i — x;|i€ I}, depending on what is more convenient (e.g.
i « x; is used for maps that are used as substitution). Statements like 30}6‘]
defines both J and the mapping j—c;. The disjoint union on sets is noted w.
Disjoint union is also used on maps. There are several ways of ensuring a union
is disjoint, we will indifferently either suppose sets are disjoint or rename con-
flicting objects (useful for variables). In a formula, a quantifier followed by a
finite set will be used as a shorthand for the quantification on every variable in
the set: Y{a1,...,an},3{b1,...,bm}, P means Vaq,...,Yay,,3by,...,3by, P.

Our expression algebra E is the disjoint union of terms, actions, and formulas
E=T7TwAw F. T and A are term algebras. The set of formulas F contain at
least first order formulas and equality! over 7 and A. For e € E, vars(e) is the
set of variables in e that are not bound by a binder. An expression is closed if
vars(e) = . The set P denotes values which is a subset of closed terms. A is
the set of formulas f that only uses variables in V, i.e., the formulas such that
vars(f) € V. The parallel substitution of variables in e by amap ¢ : V. — 7 is
denoted ef{v'}.

We suppose given a satisfiability relation on closed formulas, denoted |=f.
We will use two variants of the satisfiability relation:

— The satisfiability of a formula f € F under some valuation ¢ : V. — P is
defined as follows: o |= f <= |= Jvars(f{o}), f{o}

— The satisfiability of a formula f € F with some variable set V' as context is
defined as follows: V |= f <= = YV, 3(vars(f)\ V), f

2.2 Open Automata (OA)

OA are labelled transition systems with variables that can be used to compose
other automata: they are made of transitions that are dependent on the actions of
“holes”, a composition operation consists in filling a hole with another automaton
to obtain a more complex automaton. The variables makes the OA symbolic, and
the holes allow for a partial definition of the behaviour.

Definition 1 (Open transition, Open automaton). An open automaton is
a tuple (S, so,V,00,J,T) with S a set of states, sy € S the initial state, V the
finite set of variable names, og : V. — P the initial valuation of variables, J the
set of hole names and T the set of open transitions.
8= g,0

An open transition is a structure JH/ made of several composing enti-
ties, equivalent to a tuple. In an open transition s,s’ € S are the source and
target states, o € A is the resulting action that can be observed from the outside,
J' < J are the holes involved in the transition, g € F is the guard that may
constraint the transition, and ¢ : V — T are the variable assignments that have

! Equality does not need to be only syntactic.
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an effect on the state of the automaton. Each §; € A is an action of the holes j,
To be well-formed, an open transition should use only variables of the automaton
and variables appearing in the involved actions, formally:

vars(g) € vars(a) U U vars(B;) vV
jed’
Yo e Vovars(y(v)) < vars(a) u U vars(B;) vV

ged’

A pair consisting of a state and a valuation is called a configuration (of the
automaton). We use two operators to access pieces of information of the OA.

Definition 2 (Out-transition, Transition variables). Let (S, so,V, 00, J,T)
be an automaton and let r be a state in S. OTp(r) C T are the transition out-
going from state r?. The local variables of a transition vars(t) are all variables
appearing in transition t except the variables of the automaton. Outgoing tran-
sitions and variables are formally defined as follows.

-
Bl La¥
OTT(T) — Ja ..... R Tls=r
s—S
J

/BJe Y )

vars Jaglw = | vars(a) U Uvars(ﬁj) \V
§—S jeJ’

Ezample 1 (prod-cons). As a running example, we consider a classical
producer-consumer pair interacting through FIFO buffer, named prod-cons.
Figure 1 reflects the overall structure of the system involving a producer pro-
cess, a consumer process and an orchestrator that coordinates their activities.

T push T
@ @ @
compute compute
print
[P Orchestrator | 8¢t put
L
pop

Fig. 1. Structure of the example. Each box corresponds to a process whose ports are
the actions it can perform. The actions observable by the environment are push, which
indicates the enqueuing of an element, pop which indicates the dequeuing, and print
which indicates the production of results.

2 When the set T is clear from the context, it will be omitted and we will use OT(r).
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{Q > compute}, True, ()
T

{P — compute}, True, ()
T

{Q— put(m)}, True, ()
print (m)

{P—put@m)}, (1+1)%N # £, (M[(1+ 1)%N] + m;1 < (14 1)%N) Q— get(Mf])}, 1AL, (f+ (f+ 1)%N)
push pop

Fig. 2. OA for the prod-cons system using FIFO circular buffer.

The OA modelling the behaviour of such a system using an unbounded cir-
cular/ring buffer is depicted in Fig.2. The automaton has a single state with
two holes: P and Q that are the two interacting processes. 1 (as last) indicates
the next available position for enqueuing an element and f (as first) is the posi-
tion that contains the next element to be dequeued. The buffer reacts to a push
from P and enqueues it. Similarly, whenever Q pops an element, it dequeues it.
Additionally, whenever Q produces an item, it is exposed as an external observ-
able print action. When any process do its internal computation, it is exposed
externally as unobservable action 7.

The example uses several kinds of data. Variable m holds a message (we
can leave the message type abstract here). We additionally use arrays of mes-
sages with a syntax of the form M[1] for array accesses; M is an array of N
elements, from 0 to N — 1. Finally we use addition and modulo operation (%) on
integers. g

Open Automata Composition. OA are partially specified automata, the partiality
arises from the holes. A hole can be seen as a port in which we can plug an
OA. The plugging operation is called composition. The composition of OA was
already implicitly defined by the means of composition on pNets in previous
work [17]. We provide here a (new) direct definition of composition for OA.

Definition 3 (Composition of OA). Let A. = (S, Soc, Ve, Ooc, Jey Te) be an
OA and k one of its holes, k € J.. Let Ay, = (Sp, Sop, Vp, 0op, Jp, Ip) be another
OA, the composition A.[A,/k] that fills the hole k of the context OA A. with the
parameter OA A, is defined as follows:

AcJAp /K] = (Se X Sp, (S0¢, Sop)s Ve w Vi, 00c W 00p, Jp w Je \ {k}, T)

with
jeJ wJ’ jeJ wik JeJ],
p VBT e n gy n oy = Brote oty | BT g e B gt
. ¢ [e2 p
(Sc,8p) == (sl s;) 5o 5, Sp— 8,

Qe / Qe /
(SC? SP) - (Sm SP) e 8,
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{}, True, (m < new())
compute {}, True, ()
‘put (Res)

{}, True, ().
get (m)

@ @

(1 True, ) {}, True, (Res « f(m))

put (m) compute

Fig. 3. (Left) A producer. It produces one item at a time and pushes it. (Right) A
consumer. It pops an item, does some work and pushes the result.

140
f+0

{}, True, (m <+ new()) @ put@}, True, ()
print (m)

/\ {Q — compute}, True, ()
Q)

@ T
(@ get (M)}, 14 £, (£ (£+1)%N)

(3, (L )% # £ (M1 + D7) — mi1 e (14 1)%N) Pop
push

{Q — put (m) }, True, ()
print (m)

{Q ~ compute}, True, ()
T

(@ get(M[f])}, 1£ £, (£ (£+1)%N)
pop

Fig. 4. OA for filling the hole P in prod-cons: prod-cons[P/producer].

The first OA decides when the second can evolve by involving its hole in a
transition: the action emitted when A, makes a transition is synchronised with
the action of the hole k in transitions of A.. The condition o, = 3 ensures that
the action emitted by the automaton A, filling the hole is the one expected in
the hole k of the open automaton A..

Example 2. Figure 3 shows a producer automaton and a consumer automaton
that can be used to fill the holes P and Q of prod-cons defined in Example 1.
The OA on Fig. 4 is the composition of the system in Fig. 2 and the producer
in Fig. 3 (left). The composition consists of two states (the product of the states
of both automata). The transitions from one state to another come from the
synchronisation of the transitions of the encompassing automaton with those of
the producer filling the hole P, this is why there is no more action from hole P in
the composed automaton. Only elements related to the hole P are changed and
in particular, transitions involving Q remain unchanged. O

2.3 Relations Between Open Automata

Establishing semantic equivalences and simulation relations between different
OA requires to compare their states. For this purpose, we suppose that the
variables of the two OA are disjoint (a renaming of variables may have to be
applied before comparing OA states).

Definition 4 (Relation on open automata configurations). Suppose V; and
Vo are disjoint. A relation on configurations of two OA (S1, so1, Vi, 001, J1,T1) and
(S, s02, Va, 002, J2, T2) is a function R : S1 X Sa — Frwv,-
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The idea is that two states are related depending on the satisfiability of the
expression relying their variables, i.e., if the variables of the OA verify a certain
formula. In other words, to each pair of states is attached a boolean formula that
may refer to the variables of each of the two OA, stating whether the two states
are related or not. Additionally, we say that the relation R relates the initial
states of the automata if: oo w ooz |= R(s01, So2). We illustrate such a relation
over automata with bisimulation relation below.

2.4 A Bisimulation for Open Automata

Bisimulation between OA was defined in [6]. We show below the principles of this
bisimulation. We first recall the usual definition of bisimulation. Bisimulation can
be defined as follows for standard transition systems:

Definition 5 (Classical Bisimulation). A bisimulation is a relation R such
that if s R t then:

Vis, shs = . d RNt s R "
and conversely ie. l U
Vit tht = 3. Rt AsD s s RV

s and t are bisimilar, written s ~ t iff there is a bisimulation relation R such
that s R t. If only the first one of the two implications above is verified, we say
that s simulates t and denote it s < t.

A bisimulation relation relates pair of states and ensures that any behaviour
of one automaton can be performed by the other one while staying in relation.
We informally explain here the symbolic nature of the bisimulation for OA and
the related complexity of its definition. The notion of symbolic bisimulation, as
it was introduced in [15], is aimed at computing bisimulation of value-passing
systems, i.e. systems made of processes exchanging data with their environment
and between processes, where data are values from a possibly infinite domain.
The presence of holes in fact raises no strong difficulty but the variables must
be handled carefully. Consider the two following simple OA:

thefl@)lz 2 0,0y =) C
- ()
S9 t2
{h—B(x)}, True, (z — x)

We should be able to consider these two OA as bisimilar. Both can input
any ((z) input on their hole and stores the value of x, emitting «(x) along the
transition. The difference is the way « is stored. We can then define a configu-
ration relation R such that R(s, s2) is true and R(t,t2) holds when z > 0 and
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y = z, while R(t',t2) holds when z < 0 and y = —z. This illustrates relation on
configurations, but also shows that bisimulation on OA is more complex than
in the classical case. Indeed, we need two transitions on the left OA to simulate
a single one on the right OA. We should check that these two transitions cover
all the cases accepted by the right hand side OA, and of course that destination
states are in relation. Formally, FH-bisimulation is defined as follows [6]:

Definition 6 (Strong FH-bisimulation).
Suppose (S1, so1, V1,001, J1,T1) and (Sa, So2, Va, 002, J2, Te) are OA with identi-
cal holes of the same sort, with disjoint sets of variables (Vi NVa = ).

Then R, a relation on configurations of OA, is an FH-bisimulation if and
only if for any states s € S1 and t € So, we have the following:

jeJ’
Bj agOT7,¢)OT

~ For any open transition OT in T : -y there exists an indexed set
jEJf ;Oz‘ Yor
of open transitions OT*X < Ty: A% 701’2 such that the following
£t
holds ’

R(s,t) Ngor =

\/ (V4.8 = Bjz N gor, Na=a, AR (s, t.) {vorwior, })
xeX

— and symmetrically any open transition from t in T can be covered by a set
of transitions from s in Tj.

Two automata are bisimilar if there exists a strong FH-bisimulation R that
relates their initial states.

Note that this definition matches an open transition ¢; to a family of covering
open transitions ¢35 . Intuitively, this means that for every pair of related states
(s1,82) of the two automata, and for every transition of the first automaton
from s, there is a set of matching transitions of the second automaton from
so such that the produced action match, the actions of the same holes and the
successors are related after variable update. Technically, the following sections
do not rely on the definition of strong bisimulation on OA, but they follow the
same principles and in particular the same way to faithfully simulate an open
transition by a set of other open transitions.

2.5 Reachability

We finally define a new predicate abstracting state reachability for OA, it allows
us to reason on reachable states in an automaton. It can be seen as an abstraction
of the reachable states under the form of a predicate that must stay verified along
the execution of the OA.
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Definition 7 (Reachability). For any OA A = (S, so,V,00,J,T), a reacha-
bility predicate v4 : S — Fy is any predicate on states that is valid on initial
state, and preserved across transitions:

-
B,
oo EVa(so) A Vi= Ja ~~~~~ ;€T vars(t) = (/A(s) Ag = /A(s’){{zb}})
s—s

Reachability takes into account all paths, and can over-approximate the
reachable configurations. From an automation point of view, finding the most
precise reachability predicate for a given automaton is not decidable because of
the symbolic nature of OA, but only an over-approximation is necessary.

3 Simulation for Automata with the Same Holes

Similarly to FH-bisimulation [6] we are interested in finding simulation rela-
tions between configurations of two OA that contain variables and holes. When
dealing with open systems it is common to define simulation in terms of a sim-
ulation relation. We rely on a classical notion of simulation and perform the
same extension as in [6], i.e., we start from a simulation relation and add holes
and symbolic. The idea is to consider two configurations related by a relation; if
one state can do a transition, then the other can also make this transition. Like
for bisimulation, a simulation relation characterises when two states are related,
and this characterisation is expressed as a predicate on the variables of the two
automata. Simulation defines conditions on a relation R such that R(s1, s2) is
a predicate (possibly involving variables of the automata) that is true when the
state s; of A; simulates the state sy of As.

However here we want to build a simulation relation that also guarantees that
no deadlock is introduced when refining the automaton. This property is quite
frequent in simulation relation, and referred to as lack of new deadlocks [20] or
complete simulation [23]. The notion of deadlock should however be specialised
to our OA. Indeed, it is not very useful to check the existence of a transition,
instead it makes more sense to use the guards to check if a transition can be
taken. We thus define a deadlock reduction criterion based on how the outgoing
transitions are guarded. As such, a simulation does not introduce deadlocks if
in the conditions where no transition is possible in the refined automaton, no
transition were already possible in the more general one. More formally, for any
pair of states s; and sy we introduce a criterion of the form:

V(s1,82) € S1 X Sa,
VTwls = (R(Sl,SQ) A ﬁ( \/ guard(tl)) - ﬁ< \/ guard(h)))

tleOT(sl) tQEOT(Sz)
Which can be rewritten as:

V(s1,82)€S51 xS, ViwVs |= (R(sl, 89) = (\/ guard(t1)> \/—\(\/ guard(tg)))

t1€0T (s1) t2€0T (s2)
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Both statements being equivalent, as each of them may reveal more intuitive
than the other in different situations, we use them interchangeably. We can now
state the definition of simulation between OA that have the same set of holes.

Definition 8 (Hole-equal simulation). Consider two OA with identical set
Of holes: A1 = <Sl, S01 V17 001, J, T1> and A2 = <SQ, $02, ‘/2, J02, J, T2>, the rela-
tion on configurations R : S1 X Sz — Fwv, @S a hole-equal simulation from Ay
to As if the following conditions hold :

(1) 001 w oo2 = R(s01,502)
(2) V(Sl,SQ) (S Sl X Sg,

Bje.li 0,1 ﬂje-fé.p Gozs e

15 91, %1 2¢5 Y2z, P2z

Vi, = Jal/ ..... OT(s1). | ty, = 24 e e OT(s2)
S1—> 8 S92 — > So,

gy = 01 A /\52zj = 513‘/\

ViwVowwars(ty) = R(s1,82) gt = jeJ,
zeX 922 N R(Sllv 5/27'){17[}21‘ Y 7/}1}

(3) Deadlock reduction:

V(s1, 82) €51%S2, V1wV, |= (’R(sl,SQ) - (\/ guard(tl))\/ﬁ (\/ guard(tg)))

tleOT(sl) tQEOT(SQ)

If there is a hole-equal simulation from Ay to As, then we say that As
simulates A1; we denote it Ay < A;.

The first and second conditions coincide with the natural way to prove induc-
tively that an automaton simulates another by starting with the initial state. The
third condition ensures that simulation prevents the introduction of deadlocks.
Similarly to bisimulation, the second condition states that, for any transition of
the simulating automaton A;, it corresponds to a transition of the automaton
A, that does the same thing and ends up in a similar state. However a family is
needed in Ay because of the symbolic nature of transitions, and because depend-
ing on the values of the variables, t; may correspond to different transitions in
Asy. Our definition captures a simple simulation for OA with the same holes
that is more expressive than a strict simulation since it matches a transition
with a family of transitions. For example, with such a relation we are able to
check the simulation between two OA that differ by duplicated states, removed
duplicated transitions, reinforced guards, different variables, etc. We will show in
Sect. 5 that this simulation relation has good properties in terms of transitivity,
compositionality, and reflexivity.

Example 3. To illustrate the simulation of OA, we consider a variation on
the prod-cons example. Namely, we suppose that the two processes P and Q
communicate through a one-place buffer. Figure 5 shows the OA modelling this
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simpler version of the system, that we refer to as simprod-cons. We can easily
check that this automaton simulates the one of Fig. 2. Indeed, one can see that
R = {(ro, s0)~1 = £, (rg, $1)~f = 1 + 1%N} is a simulation relation. It follows
that simprod-cons < prod-cons. O

The simulation relation defined above is insufficient in the setting of compo-
sition which is the main advantage of the OA-based approach. Indeed, it should
be possible to refine an automaton by filling its hole, providing a concrete view
of a part of the application that was not specified originally. More generally, it
should be possible to relate automata that do not have the same holes because
composition is a crucial part of system specification. However, filling holes can
result in a system with more or less holes than the original system because the
plugged subsystem can contain itself many holes. Next section defines a more
powerful simulation relation able to reason on automata with different sets of
holes.

4 A Simulation Relation that Takes Holes into Account

This section extends the preceding relation to automata where the set of holes
is not the same. This is particularly useful to state whether the automaton
after composition is a simulation of the original automaton or not. Indeed, when
composing the set of holes changes. Being able to compare automata with only
some of their holes in common seems useful in general.

One major challenge in the extension of simulation to different sets of holes
is to maintain a form of transitivity while being able to take into account the
actions of some of the holes. A naive definition of simulation would ensure that
only the holes that are identical in the two OA are taken into account in the
simulation. Unfortunately, considering all the common holes does not ensure
transitivity of the simulation for the following reason. If A; simulates A5 and A,
simulates Az, and one hole j appears in Az and in A; but not in A5 then we have
no guarantee on the way A; and Aj take the actions of this hole into account,
thus a simulation between and A; and Az would require conditions involving
actions of the hole j which cannot be ensured. The way we solve this issue is
to remember in the simulation relation which holes have been compared. This
makes the relation parameterised by a subset of the set of holes that belong to

{P — put(m)}, True, (M < m)
{P — compute}, True, () push
pa /_\
{Q — compute}, True, ()
T
{Q — put(m) }, True, ()

print (m) {Q+— get D}, True, ()
pop

{P > compute}, True, ()
T
{Q > compute}, True, ()

pa
{Q+— put(m)}, True, ()
print(m)

Fig. 5. The simprod-cons OA: the system using one-place buffer.
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the two automata that we want to take into account. This way, in the example
above, we would have no guarantee on actions the hole j by transitivity but can
state a simulation relation with guarantees on the actions of the other holes.

In the following definition we add a parameter H which is the set of holes
tracked by the simulation relation and adapt the definition by ignoring actions
of the holes that are not in H.

Consequently, there is no guarantee related to the actions of the holes outside
H. We provide compositionality properties when plugging an automaton inside
a hole in H but cannot state anything when plugging an automaton outside H.
The principle is that any property concerning holes that are not in H should be
proven specifically for the considered automaton or the considered composition
of automata.

Definition 9 (Hole-tracking simulation). For two OA

A1 = <Sl, S01, V1, J01, J17T1> and A2 = <SQ, 502, ‘/2, J02, JQ,T2>, Al s a simula-
tion of Ag tracking holes H, noted A1 <y Ao, with H < Jy N Jo, if there is a
relation on configurations R : (S1 x S2) — A,wv, such that®:

(1) 001 w 002 = R(s01, 502)
(2) V(s1,52) € S1 x Sa,

jeJ; jeJ} veX
61' 1a91,¢1 62 '2m592xaw2w
vﬂal ..... e OT(s1), J ~% z Jazz ..... L € OT(s2) ’
$1—> 8] 82— 89,

(VeeX,JjynH=1J nH)A
Vi w Vo wwars(ty) =
ay = oz A /\Blj = Bozin
R(s1,82) A g1 = jeJinH
vex \ G2z A R(sY, shy ) {1 w Yo, }

(8) Deadlock reduction:
V(s1,82)€S1xS2, ViwVs |= (R(Sl,SQ) = (\/ guard(tl))\/ﬂ (\/ guard(tg)))
t16OT(Sl) t2EOT(52)

Note that every action of the holes outside H is unconstrained according to the
simulation relation.

Property 1 (Relating simulations). Hole-equal simulation is a particular case of
hole-tracking simulation when J; = Jo = H.

In particular, if an OA has no hole, the two definitions are equivalent and
result in a “symbolic simulation”, if additionally there is no variable in the OA,
this corresponds to classical simulation.

3 Note that the definition below is identical to the hole equal simulation except NH is
added in a few places.
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Example 4. Consider the automata of Examples 1 and 3. As we saw above,
simprod-cons < prod-cons, therefore prod-cons <({p,q} Simprod-cons.

Property 2 (Tracked holes). By construction, if an automaton is the simulation
of another one, it is also a simulation by tracking less holes.

Al <HA2/\H/§H - Al <H/A2

Now that we have a simulation relation that takes both variable parame-
ters and process parameters into account, we would like to ensure that it has
properties one would expect for a simulation relation.

5 Properties of Our Simulation Relations

Before reasoning on the properties of simulation, we need to introduce one addi-
tional notion that characterises when the composition of two automata does not
introduce new blocked transitions.

5.1 Non-blocking Composition

Unfortunately, the deadlock reduction property in the definition of simulation is
not compositional: the composition operator can itself introduce a deadlock. In
other words, when filling the hole of two related automata with a third one, even
if there is a deadlock reduction between the two original automata, there might
not be a deadlock reduction in the composed ones. The same problem may arise
when two related automata are composed in the same hole of a third one.

This creates a conflict between deadlock reduction and the properties involv-
ing composition. We call non-blocking composition a composition that can safely
be used to compose OA that are involved in a deadlock reducing relation.

Definition 10 (Non-blocking composition). Consider two OA:

A1 = <S1, S01, ‘/1, J01, J17T1> and A2 = <S2, S02, ‘/2, Jo2, J27T2>. Let A be the OA
resulting from the composition A = A1[As/k] = (S, so,V,00,J,T). The compo-
sition Aq1[Aa/k] is non-blocking if A has a reachability predicate such that, for
each reachable configuration, if there is a possible transition in A1 then there is
a possible transition in A:

Vs = (s1,82) €S,V w L—H vars(t) = (/A(s) A \/ guard(t) = \/guard(t))

teOT (s1) teOT (s1) teOT(s)

Like in the definition of simulation (Definition 8) we use guards to ensure that
the transition can occur. In general, one would not want to only consider non-
blocking composition as it may reveal a bit restrictive, but it is the best necessary
condition that we could identify for compositionality of simulation. It will be
used to prove composition theorems given below. In absence of non-blocking
composition, simulation may also be checked specifically for a given composed
automaton.
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5.2 Properties

We now state the properties of our simulation, their formal proofs can be found
in the extended version of this paper [16]. We express these properties in terms
of hole-tracking simulation because, thanks to Property 1 all the properties of
hole-tracking simulation are also valid for hole-equal simulation. The first crucial
theorem of simulation is that it is a preorder on the set of OA. This latter enables
stepwise refinement.

Theorem 1 (Simulation is a preorder). Hole-tracking simulation is reflez-
e and transitive: it is a preorder on the set of OA.

Proof sketch. The relation < is reflexive, A <y A. This is shown by consider-
ing the relation R such that R(sq, s2) L5 =55 A /\ v = v we can prove the
vevars(si)
conditions for Definition 9. In [16], we give proof of transitivity. It is done classi-
cally by identifying the relation between A; and Ajz that is a simulation. What
is less classical is the definition of this relation because it is a boolean formula.
For each couple of states s; and s3 of A; and A3 we build a formula that defines
the simulation. To do this, we take the disjunction of formulas relating s; and
s3, and passing by all states sy of As. More precisely, we define a relation of the
following form:

Ris(s1,83) = \/ (Ri2(s1, 52) A Ras(s2,53))

82652
We then prove that this relation is a simulation, according to Definition 9. O

The next theorem states that if two automata are in simulation relation and
the same automaton is placed in the same hole of the two automata, then the
simulation is preserved. This is the first step toward proving that simulation
is compositional in the sense that it is sufficient to prove simulation for the
composed automata separately to obtain a simulation relation.

Theorem 2 (Context refinement). Let Ay, Ay and As be three OA with
Ay <y As. Let J3 be the set of holes of Az and suppose that k € H. Suppose
additionally that A1[As/k] is non-blocking. We have:

A1[A3/K] < jyom\ (k) A2l[Az/K]

Proof sketch. The proof relies on a simulation relation that we consider is the
one that makes A; and A, similar, complemented with identity of configura-
tions for Az. Then, by construction, all transitions of the composed automaton
A1[A3/k] are specified by open transitions of A;. For the transitions that do not
involve hole k, the transition of A;[A3/k] is the same and simulation between
Ay and A, allows us to conclude directly. If the hole k is involved the considered
relation implies that valuations in A3 are equal (i.e., the value for each variable
are the same in both valuations), after a transition we should obtain “equal” val-
uations because post-conditions are deterministic. The requirement “A;[A3z/k]
is non-blocking” ensures the deadlock reduction property holds. More precisely,
if A1[As/k] is stuck, then A; is stuck, and thus A;[As/k] is also stuck. O
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Example 5. Consider again the prod-cons and simprod-cons automata given
in the examples above. Since prod-cons <(p,q; simprod-cons, then accord-
ing to Theorem 2, prod-cons [producer/P] <(q; simprod-cons[producer/P].
The automaton of prod-cons[producer/P] is shown in Fig.4. The automaton
resulting from the composition of simprod-cons and producer is bigger and
not shown here. 0

Theorem 3 (Congruence). Let Ay, Ay and As be three OA with Ay <pg As.
Let Jy be the set of holes of A1 and suppose that k € Jy. Suppose additionally
that the composition A1[As/k] is non-blocking. We have:

A1[As k] <jiom\qky A1[As/K]

Consequently, as the simulation is transitive we can compose the previous
theorems and state the following:

Theorem 4 (Composability). Let Ay, As, As and Ay be four OA with
Ay <y As and Az <g Ay. Suppose that k€ H. We have:

A1[A3/k] <gonngry A2[As/E]

Example 6. As an example of the use of this theorem, if we design a refined version
of the producer process of Example 2 called Refproducer. According to Theorem
4, we have prod-cons [producer/P] <(q} simprod-cons[Refproducer/P].

Note that the substitution operation can be extended to a multiple substitu-
tion that fills several holes at the same time, and the theorems can be adapted
accordingly.

6 Related Work

The origins of refinement are in the approach of programming that aims to
provide solid foundations for building correct programs [12]. Many work con-
tributed to the development of elaborated notions of refinement in various area
(e.g. [1,7,8,10]). In the context of process algebra, refinement between processes
can be defined in terms of simulations relation (e.g. ([19,22]). However, the con-
cept of simulations presented so far has focused on the refinement of systems that
are inherently closed, i.e., systems which are bounded and without environment,
The simulation ensures the preservation of safety properties as deadlock-
freeness and, more generally, all linear temporal logic properties [1,20]. The
difference between the existing refinement principles have been studied in [13],
for example the authors explain in what sense failure semantics is different from
(bi)simulation in the compared systems and properties ensured. In this paper
we particularly focus on the compositionality of simulation-based refinement.
There are not a lot of works that study refinement for open systems. Defin-
ing refinement of open systems as trace inclusion is addressed as a notion of
subtyping in type theory (e.g. [9,14]). The definition of refinement is based on
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a connection between session types and communicating automata theories —
a notion of session automata based on Communicating Finite-State Machines,
that are used for modelling processes communicating through FIFO channels.
The refinement of open systems is also defined in terms of alternating simulation
[3,4]. Alternating simulation is originating from the game theory [2], it allows
the study of relation between individual components by viewing them as alter-
nating transition systems. In particular, a refinement of game-based automata
expresses that the refined component can offer more services (input actions)
and fewer service demands (output actions). However, the composition of such
automata may lead to illegal states, where one automaton issues an output that
is not acceptable as input in the other one. The theory of alternating simulation
provides an optimistic approach to compute compatibility between automata
based on the fact that each automaton expects the other to provide legal inputs,
i.e., two components can be composed if there is an environment where they can
work together. Our approach has some commonalities with the above mentioned
simulation [3]: both are process-oriented approaches even if they are not based
on the same notion of simulation, and both include in the model how to com-
pose and interact with processes that are accepted as parameters. Nevertheless,
they differ in that our approach focuses on the compositional properties of the
simulation, and not on the fact that entities can be composed.

Previous works on OA focused on equivalence relations compatible with com-
position. In [18], a computable bisimulation is introduced, while in [6] a weak
version of the bisimulation is introduced. In this paper we tackle the refinement
relation in the form of simulation, as is the case for the corresponding relations
on labelled transition systems [8]. Unlike the standard simulation we deal with
symbolic and open models. In [25], the authors exploit transition systems to
reason about the systems that are partially specified by using variables, making
the state space potentially infinite.

Some work target component-based refinement with the concern of preserving
deadlock freedom (e.g. [11,20]). These works are not concerned with the theory
of open symbolic systems, and therefore do not focus on the same modularity as
we do, in particular we provide preservation of refinement by composition.

7 Conclusion

In this article we investigated the notion of refinement for a symbolic and open
model: open automata. OA are convenient for compositional software verifica-
tion. Indeed, OA model parallel systems that are parameterised both by the use
of variables and by the possibility to compose automata. The formalism supports
compositional specification through the simulation paradigm. In this paper, we
introduce a refinement relation between open automata. It relies on a simulation
relation between the two automata; it specifies that the refined process must fol-
low the behaviour of the simulated one. We finally showed that simulation is a
preorder that is preserved by composition, both when filling a hole and when
placing automata in comparable contexts.
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Abstract. This paper presents the Cubicle Fuzzy Loop (CFL), a
fuzzing-based extension for Cubicle, a model checker for parameterized
systems.

To prove safety, Cubicle generates invariants, making use of forward
exploration strategies like BF'S or DFS on finite model instances. How-
ever, these standard algorithms are quickly faced with the state explosion
problem due to Cubicle’s purely nondeterministic semantics. This causes
them to struggle at discovering critical states, hindering invariant gener-
ation.

CFL replaces this approach with a powerful DFS-like algorithm
inspired by fuzzing. Cubicle’s purely nondeterministic execution loop is
modified to provide feedback on newly discovered states and visited tran-
sitions. This feedback is used by CFL to construct schedulers that guide
the model exploration. Not only does this provide Cubicle with a bigger
variety of states for generating invariants, it also quickly identifies unsafe
models. As a bonus, it adds testing capabilities to Cubicle, such as the
ability to detect deadlocks.

Our first experiments have yielded promising results. CFL effectively
allows Cubicle to generate crucial invariants, useful to handle hierarchi-
cal systems, while also being able to trap bad states and deadlocks in
hard-to-reach areas of such models.

Keywords: Fuzzing techniques - Model Checking - Parameterized
Systems

1 Introduction

Cubicle [3,5] is a model checker for verifying safety properties of array-based sys-
tems. This is a syntactically restricted class of parametrized transition systems
with states represented as arrays indexed by an arbitrary number of processes
(or nodes) [6]. Distributed protocols, cache coherence, and mutual exclusion
algorithms are typical examples of such systems.

Cubicle is based on the Model Checking Modulo Theory (MCMT) frame-
work [7] where states and transitions are both represented as formulas in a par-
ticular fragment of first-order logic. To verify safety, Cubicle checks that unsafe
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states are not reachable using a symbolic backward reachability analysis: start-
ing from a user-defined formula describing unsafe states, it iteratively computes
its pre-image closure (understood as unreachable states), making use of an SMT
back-end for termination and safety tests.

In order to speed up safety proofs, Cubicle supports invariant synthesis [4].
For that, it first computes a set M of reachable states using a forward explo-
ration for a finite instance of the system (with a fized number of processes).
The current strategies implemented in Cubicle for this forward search are BFS
and DFS (users can choose which strategy to use). Then, Cubicle performs a
backward reachability analysis of the parameterized system. At each loop iter-
ation, Cubicle computes an over-approximation of pre-images and checks that
they represent states that are not in M. All these approximations, which can be
seen as candidate invariants, are model checked together with the original safety
property. Sometimes approximations can be too coarse, leading to false positives
known as spurious traces. When these occur, Cubicle is forced to backtrack in
order to ensure completeness.

The strength of this method lies in the fact that finite instances are generally
good oracles for guiding the choice of approximations, as they can be seen as
concentrated knowledge of the system. However, the method only works if the
set M is sufficiently large and contains crucial system states. If this is not the
case, Cubicle will backtrack very often during its backward analysis, which will
likely prevent it from completing its proof.

Unfortunately, the space of states M to be visited for a finite instance can
grow exponentially, even for a small number of processes. This is the case, for
example, for hierarchical systems such as cache coherence algorithms, where it
is necessary to explore execution traces deep enough to visit significant states.
For such systems, Cubicle’s current exploration strategies are either unable to
go deep enough into the system (BFS), or unable to explore subtle interleavings
of component executions (DFS). In both cases, Cubicle is forced to backtrack
often during its backward analysis.

In this paper, we describe an algorithm for a new forward exploration strat-
egy for Cubicle inspired by fuzzing techniques [8,9,11]. This strategy not only
makes it possible to explore very deep traces, but also to discover extremely
rare events in a system, such as synchronization points resulting from highly
improbable interleavings. The relevance of the states visited by this approach
is such that it enables Cubicle to deduce invariants for systems that previously
ranged from difficult to impossible to analyze. Furthermore, not only does this
new exploration technique provide Cubicle with a bigger variety of states for
inferring invariants, it also quickly identifies unsafe models. As a bonus, it adds
testing capabilities to Cubicle, such as the ability to detect deadlocks.

To summarize, we make the following contributions:

1. We define the Cubicle Fuzzy Loop (CFL), a new (forward) exploration algo-
rithm for Cubicle based on fuzzing techniques, for which we present and
discuss different heuristics.
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2. We have implemented CFL in a new prototype version of Cubicle. We are
experimentally evaluating the benefits of CFL on representative examples of
highly concurrent and hierarchical systems.

3. Finally, we demonstrate experimentally that CFL can be easily extended to
detect deadlocks, which is not possible with the current version of Cubicle.

The rest of the paper is organized as follows: In Sect. 2, we recall the back-
ward reachability algorithm of Cubicle and its (candidate) invariant inference
mechanism. In Sect. 3, we illustrate how CFL works on a simple example that is
representative of systems that are difficult for Cubicle to analyze. We formalize
CFL in Sect. 4. We show and discuss experimental results in Sect. 5. We conclude
and present related works in Sect. 6.

2 Backgound on Cubicle

Cubicle is based on MCMT, a declarative framework for parameterized systems
in which (sets of) states, transitions and properties are expressed in a particular
fragment of first order logic with enumerative data types. Systems expressible
in this framework are called array-based transition systems, because their states
can be seen as a set of unbounded arrays (denoted by capital letters X,Y,...)
whose indexes range over elements of a parameterized domain, called proc, of
process identifiers (denoted by 4,7, ...). Given an array variable X and a process
variable i, we write X[i] for an array access of X at index i. Systems may also
contain variables but, from a theoretical point of view, a variable is seen as an
array with the same value in all its cells. Arrays may contain integers or real
numbers, booleans (or constructors from an enumerative user-defined datatype),
or process identifiers.

A parameterized array-based system S is defined by a triplet (X, I, 7) where
X is a set of array symbols, I is a formula describing the initial states of the
system and 7 is a set of (possibly quantified) formulas, called transitions, relating
states of §. The formula [ is a universal conjunction of literals of the form
Vi. A\, £, which characterizes the values for some array entries. Each literal £,
is a comparison (=, #, <, <) between two terms. A term can be a constant
(integer, boolean, real, constructor), a process variable (i), an array access X[i]. A
transition ¢ € 7 is represented by a formula parameterized by the set of variables
before and after the transition (X and X’) and prefixed by the existentially
quantified process variables involved in the transition:

HX,X') = Fi. AG) A (i, X)
AN VRN, (Culis b, X) = X[K] = v, (4, k, X))
X/EX/

where A(7) is the conjunction of all disequations between the variables in 4
(to ensure that variables ¢ denote distinct processes) the formula (i, X) is
a conjunction of literals that represents the transition’s guard, ¢.e. the condi-
tions that must be met for the transition to be triggered and the conjunction
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A, (Cr(i,k, X) = X'[k] = vy, (3, k, X)) represents the updated value of each array
X defined by a case-split expression, where each conjunction of literals C,, (¢, k, X)
and term v, (2, k, X) may depend on ¢,k and X.

In Fig. 1, we give an example of an array-based system implementing a simple,
slightly modified, Dekker mutual exclusion algorithm. The system keeps track
of the status S[i] of a process 7. A process can have one of three statuses:

— Idle: the process is not doing anything in particular
— Want: the process has requested access to the critical section
— Crit: the process has been granted access to the critical section

As denoted by the formula Init in Fig. 1, the status of every process i is Idle in
the initial state of the system. There is also a variable Turn, keeping track of who
among those who’ve requested access can enter the critical section (the content
of Turn is not specified in the Init formula). The three transitions Req, Enter and
Exit describe the behavior of any process i. For example, transition Enter should
be read as: if there exists a process i such that S[i] = Want and Turn = 4, then
the new value of the array S, called S', is S[i «— Crit] which succinctly denotes
an array equal to S, except for cell i, which is now equal to Crit.

typet=Idle | Want | Crit

gobals: feq g;  Sll=TdleATum=iA
‘P a: ' §'=S[i < Want] ATurn =Turn'
S : (proc, t) array
Init: Enter: 3i Sli{]=Want ATurn=iA
Vi. S[i]=1Idle T 77§ =S[i« Crit] ATurn=Turn'
Unsafe: Exit:  3ij S[i]=Crit A

3ij. i#jAS[i]=Crit AS[jl=cCrit S’ =S[i — Idle] ATurn'=j

Fig. 1. Modified Dekker mutual exclusion algorithm

Safety properties to be verified on array-based systems are expressed in their
negated form as formulas that represent unsafe states. Each unsafe formula ¢(X)
must be a cube, i.e., have the form 3k.(A(k) A\, {m(k, X)), where each literal
Ly (k,X) may depend on k and array symbols in X. For example, the Unsafe
formula in Fig.1 describes the bad states of the Dekker algorithm, which cor-
respond to states where two distinct processes have been granted access to the
critical section simultaneously.

For a state formula ¢ and a transition ¢ € 7, let pre,(¢) be the formula
describing the set of states from which a ¢-state can be reached in one t-step.
The pre-image of a formula p(X') by a transition ¢ is given by:

pre(p)(X) = 3X' (X, X) A (&)
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The pre-image closure of ¢ w.r.t a set of transitions 7, denoted by PRE} (), is
defined as follows:

PRE} () £ ¢
PRE] (p) £ U{pre,(v) | ¢ € PRE} " (p),t € T}

PRE} () £ Upen PrE} ()

and the pre-image of a set of formulas V is defined by PREL(V) =
Ugev PREZ(p). We also write PRE, () for PrEL(p).

Given an array-based parameterized system S = (X, I, 7) and a set of unsafe
states represented by a cube U, we say that U is reachable if and only if
PRE;(U) A I satisfiable. In order to decide if U is reachable or not, Cubicle
implements the symbolic backward reachability loop Bwd(S, U, diax, k) given in
Algorithm 1. This function takes as input a parameterized system S, a cube
U, and two integers dynax and k. It starts by initializing a variable M with the
set FWD(dmax, k) of reachable states constructed by a forward exploration of the
reachability graph for k processes starting in a state defined by the formula
I(#1) A --- A I(#k) and limited to depth dpax. FWD is not fixed and can be any
user-chosen forward exploration strategy (BFS, DFS; etc.).

Algorithm 1: Cubicle backward reachability loop

1 function Bwd(S, U, dmag, k) : begin
2 M := FWD (dmaz,k);
3 V= 0;
4 push(Q,U);
5 while not _empty(Q) do
6 @ := pop(Q);
7 if ¢ A I satisfiable then
8 L return unsafe
9 else if ¢ £V then
10 Vi=VU{p}h
11 1 = Approx (p);
12 if M}~ ¢ then
13 L push(Q, Pre; (¢))
14 else
15 L push(Q, Pre;(¢))
16 return safe

Then, Bwd(S, U, diax, k) computes the pre-image closure of U by maintaining
two collections of states:
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— @ contains the (unsafe) states to visit (it is initialized with U)
— V is filled with the visited states (initially empty)

Each iteration of the loop performs the following operations:

1. (pop) retrieve and remove a formula ¢ from Q

2. (safety test) check the satisfiability of ¢ A I, i.e. determine if the states
described by ¢ intersect with the initial states I. If so, the system is declared
as unsafe

3. (fizpoint test) check if ¢ |=V is valid, i.e. determine if the states described
by ¢ have already been visited. If so, discard ¢ and go back to 1

4. (over-approzimate) call function Approx to find an over-approximation of .
This step can be sophisticated or simple. For instance, one way to calculate
an approximation is to remove a (or multiple) literal(s) of .

5. (oracle test and pre-image) if ¥ represents states not in M (M [~ @), then
compute the pre-image Pre, (1) and add these new (set of) states to Q. When
1 appears in M (meaning it represents reachable states), then we keep ¢, and
add the result of Pre,(¢) to Q.

If Q is empty at step 1, then all of the state space has been explored and the
system is declared safe. Note that the (non-trivial) fixpoint and safety tests are
discharged to an embedded SMT solver. Notice that the correctness of Bwd does
not depend on the content of M, which thus acts as an oracle and only impacts
the completeness of the algorithm.

3 Motivation

Cubicle’s current forward exploration strategies are extremely efficient, but have
their limitations. In this section we show how and where Cubicle struggles.

If we consider real-life concurrent systems and how they are built, there are
three prevailing features: (i) pipeline parallelism, (ii) synchronization barriers,
and (iii) nondeterminism. Pipeline parallelism breaks up a task into a sequence
of sub-tasks, where each one can be treated concurrently by the system. This is
done to improve performance by leveraging parallel processing. It complicates
system models, because it not only adds depth, since each sub-task becomes
an independent transition, it also introduces more interleavings to check. Syn-
chronization barriers are necessary to coordinate the multiple processes in a
concurrent system. For example processes may be required to be in a certain
configuration before gaining access to specific parts of the system. These condi-
tions can be very precise, which can lead to them appearing rarely. Last but not
least, nondeterminism is inherent to concurrent systems- processes can behave
independently or run tasks in parallel, and the order in which they do this can
differ from execution to execution, which again adds multiple branchings to a
model.

We condense these features into a specific pattern, shown in Fig. 2. There we
can see an initial node (at the top) with multiple arrows leading from it. This is
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to simulate branching and nondeterminism, since a process at that stage would
be able to choose any of the arrows. After branching, we insert the pipeline -
multiple transitions to represent a task. This adds depth to our models. Note
that at any point, when a process gets finished with a sub-task, it can decide
to either continue forward to the next task, or go back. All of this culminates
with a synchronization barrier that demands processes behave a certain way to
be activated. It is important to note that while we constructed our pattern in
this order, in real life the elements can appear wherever and however often they
want. This pattern can also repeat itself, leading to hierarchical systems.

Branching <

A

-~ :

O Continue
Pipeline or
go back
Depth <

Synchronization
Barrier

Fig. 2. Concurrent systems pattern

The problem is that this specific pattern and its repetition, so prevalent in
concurrent systems, is exactly at the root of Cubicle’s limitations. We converted
our pattern to Cubicle types and transitions, shown in Fig. 3. The branch tran-
sitions are to give a process initial choices. The transitions pipeline and task
simulate breaking up one task into multiple sub-tasks. Note that these transi-
tions can be repeated many times to complicate the system. We give an example
synchronization barrier transition sync. This transitions’s guard can easily range
from simple to more complex. When faced with this pattern, both of Cubicle’s
forward strategies face difficulties. BFS will be forced to run through every pos-
sible branching before being able to go down a level. The more branchings there
are, combined with an elevated number of processes, the longer BFS has to spend
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type branch = None|A,|... |4, where k,n,m € N
typetask= Ty | .| Ty | Tor | ] Tonl e Tt | o] Ton
globals:

Cmd: (proc,branch) array
PC: (proc, task) array

Init: Vp. Cmd[p] = None A PC[p] = Ty,

Cmd[p] = None A

branch,, : 3p. Cmd’ = Cmd[p — A,] where x € [1, k]
pipeline,,: 3p. Cn}d[p] =A, APClp] =Ty, where x & [1,m] and y € [1,n ~ 1]
PC’ = PC[p«<T,441)
) PC[p] = T,y wherex € [1,m — 1] and y € [1,n]
tasky 3P per= PC[p < T.1)]

sync: 3 pqr. PC[p] = T53 A PC[q] = T4, A PC[r] =T33 A Vi PC[i] = T4

#P4r:

Fig. 3. Pattern as Cubicle transitions

checking every one. And as we stated, this pattern can repeat itself, so the inter-
esting part of the system might be below the synchronization barrier, but BFS
will visit countless states before it even gets close to it. DF'S handles this specific
problem better than BFS, as it privileges depth. But complicated interleavings
and algorithms that do not loop slow it down and lower its efficiency.

For example, we take the previous pattern and create a model for three
processes. We give a process four initial branch transitions (i.e. k = 4 in Fig. 3),
as well as four tasks decomposed into three sub-tasks each (i.e. m = 3 and
n = 4 in Fig.3) and set a synchronization barrier that forces each of the three
process to be doing different tasks in order to be activated. We let BFS and DFS
each explore 1000000 states to see how often they visit the synchronization
barrier. This is important because activating the barrier means having access
to the potentially interesting transitions behind it. For 1000000 visited states,
both BFS and DFS visited the sync transition two times. This means that any
transitions that require sync to happen are barely ever visited.

We turn to fuzzing techniques to mitigate this problem. CFL’s goal is to
tackle this pattern by basically abandoning exhaustivity and skipping around
the system. CFL abandons exhaustivity because it does not try to methodically
explore every single path in the system - it tries to diversify the state space as
much as possible. The reason it skips around the system is that anytime a state
is visited by CFL, this state becomes an eligible initial state from which CFL can
explore. This means that CFL has a higher chance of directly accessing crucial
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states and exploring from them. If we let CFL explore 1 000 000 states for the
above example, it visits the sync transition approximately 150 times.

4 Fuzzing Cubicle

In this section we discuss and formalize CFL, detailing how we draw from fuzzing
to create a new exploration strategy for Cubicle.

Fuzzing is essentially rapidly generating inputs for a program to see how it
reacts. If an input leads to new code coverage, that input is retained and later
mutated to generate new inputs that hopefully lead to more new code coverage.
We retain two key notions — new inputs and mutation — both of which we want
to incorporate into Cubicle. This is not straightforward, because Cubicle directly
contradicts both these notions.

Cubicle’s models have fixed initial states, meaning that any system explo-
ration starts from there. We cannot randomly generate these states, since we
cannot guarantee reachability. We also cannot take reachable states and mutate
them for the same reasons. To fix the input problem, CFL takes already visited
states and reuses them as the initial state. This guarantees that all initial states
are reachable. It also allows us to diversify the explored state space: any visited
state can become the initial state from which a system exploration is run.

However, setting the initial state isn’t enough. When inputs are mutated in a
fuzzer, the hope is that it will lead to new coverage and/or behavior fast. Simply
setting new initial states in Cubicle does not lead to that if the exploration itself
is not modified. The problem with the DFS and BFS strategies as they are now
in Cubicle is that they are exhaustive and provide no feedback while they run,
whereas we want something that might not provide exhaustivity, but will skip
around the system trying to visit as many interesting new states as possible.
This is why we have decided that since we cannot mutate states, we will mutate
the scheduler, i.e. change exploration tactics while CFL runs. CFL has multiple
exploration techniques, and each time an initial state is chosen, one of these
techniques is run. Before going into detail on the techniques themselves, it is
first necessary to describe how CFL treats states.

In CFL each state s is represented as a CFL node, a record containing the
following fields:

— state: the explicit representation of s where variables (or arrays) are mapped
to their values

— count: the number of times s has been visited

— exit_num: the number of exit transitions from s, i.e. the transitions with
guards evaluating to true in s

— exit_transitions: an explicit representation of the exit transitions from s
(represented by the name of the transitions and their arguments)

— exits_taken: which transitions have been taken from s

— exit_count: how many times each erit transition has been taken.
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CFL essentially keeps track of two key pieces of information: a map V of vis-
ited explicit states mapped to their corresponding nodes, and a set P of potential
initial fuzzer nodes. Any time a new explicit state is visited its calculated fuzzer
node to is added to P and the mapping of the explicit state to the node is added
to V.

The reason we keep track of exit transitions is because they decide when a
node is no longer an interesting initial candidate. If every potential exit transition
has been taken, then that node can no longer offer any new information and can
be removed from P. The basic algorithm for CFL is given in Algorithm 2.

Algorithm 2: Basic CFL Algorithm

1V:=0;

2 P:=0;

3 7 := init_transitions(k);
4 U := all_unsafes(k);

5 Init := init_system(k);

6 P:=P U {Init};

7 while not_empty(P) do

8 n := choose_node (P);

9 explore := choose_strategy();
10 V,P := explore(n, U, T);
11 end

Initially, V and P start off empty. CFL explores the model for a given number
of processes k. It calculates all possible transitions for all processes on line 3.
For example if the model only contains a transition t(i) and CFL is run with
three processes, 7 with contain t(#1), t(#2), and t (#3). It does the same for
the unsafe formulas on line 4. The user-declared initial state is instantiated for
k processes on line 5 and is then added to P.

CFL then takes the form of a while loop that runs as long as there are still
potential initial nodes to process in P. During the loop, it first chooses a random
node from P, chooses a random exploration technique (described below), and
applies the technique to the node. Both V and P are modified as a result of this.
When choosing a random exploration technique, CFL has the choice between
six techniques, detailed below.

1. Random exploration: CFL chooses a number of steps and applies random
transitions to the starting node for that many steps.

2. Process sequences: CFL selects a random process, picks a number of steps,
and only moves that process forward for that amount of steps (or until it
can’t anymore)

3. Weighted decision: CFL grades potential steps using the following criteria

— this step will lead me to a never visited state
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— this step means taking a transition that has never been taken by anyone
globally
— this step means taking a transition never taken from this node
These criteria are in order of importance - being able to visit a state that has
never been visited will outweigh the rest.
4. Mazimizing randomness: a certain percentage of the time, CFL picks steps
that will give the most choices in the next step.
Limited BFS: runs a very limited depth BFS from the node
6. Unused exit: covers an exit that hasn’t been taken yet

o

Each technique follows the same basic algorithm, shown in Algorithm 3. It
first picks a random number s of steps (bound can be set by the user) to take
and sets the current step curr to zero. The environment env is set to the chosen
node, and all possible transitions from that node’s explicit state are kept in poss.
Then, while the current number of steps taken is less than the chosen s, each
technique does the following: on line 5, it picks a transition from all possible
transitions according to the current technique. So for example if the current
technique is Process sequences and the chosen process is #1, technique will
return a transition with #1 as an argument.

Algorithm 3: Basic exploration technique template

1 function explore(n, U, 7) : begin
2 s := random_int (bound); curr := 0; env := n;
3 poss := env.exit_transitions;
4 while curr < s do

5 t := technique(poss);
6

7

8

9

clean_exits(env,t);
state := apply_transition(enwv,t);
check_unsafe(state, U);
try:
10 env := find(state, V);
11 env.count := env.count + 1;
12 poss := env.exit_transitions;
13 curr := curr + 1;
14 catch NotFound:
15 poss := all_possible_transitions(state, 7);
16 env := init_node (state, poss);
17 V := add(env, state, V);
18 P :=P U {env};
19 curr := curr + 1;
20 end
21 end
22 end

CFL cleans the aforementioned exit transitions in the fuzzer node on line 6.
For example if ¢ is a transition that’s never been taken, the exits_taken field
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will be modified in the node to include ¢. Then at line 7, the transition is applied
to the node and a new explicit state, state, is calculated. Line 8 checks state
against the unsafe formulas. How this is treated depends on how CFL is being
run. Our implementation allows CFL to be run in two different manners: (i) as
an oracle for the invariant generating algorithm and (ii) as a standalone fuzzer
to explore models. If the algorithm is running as an oracle, then encountering an
unsafe state immediately makes Cubicle return Unsafe. If CFL is running in a
standalone fashion, it only shows a warning, but does not stop. Then (lines 9-18)
the algorithm checks if a mapping from state to a node already exists in V. If
it does, then env is set to the existing node, with only its count being modified
and poss is set to the possible exits from that node. If a mapping doesn’t exist,
then poss is calculated, a fuzzer node is created, a mapping is added to V and
the node is added to P. When a node is initialized, count is set to 1, exit_num
is set to how many transitions are in poss, exit_transitions is set to poss,
exits_taken is empty, and exit_count has 0 for every possible transition.

5 Experimental Results and Discussion

CFL is implemented in Cubicle!. As mentioned in Sect.3, there is a specific
recurring pattern in strongly concurrent and hierarchical models. We run our
benchmarks on examples that were originally used to run Cubicle’s benchmarks
(available on github!). The difference is that we have modified them to include
a layer of transitions as described in Fig.2 and Fig. 3. All of our examples now
have 25 extra transitions to represent depth, branching, and piplining, as well
as one synchronization transition which requires that processes be in different
configurations throughout the model.

We compare several forward exploration strategies with our new CFL heuris-
tic: (i) Cubicle’s existing BFS and DF'S strategies, both optimized for speed, (ii)
a random exploration strategy, i.e. one that starts at the initial state and ran-
domly chooses transitions, and (iii) CMurphi, an enumerative model checker [12]
developed on top of Mury, only used here to efficiently visit the state space. The
results of this comparison, excluding CMurphi, can be seen in Table 1. We discuss
CMurphi separately further down.

Each strategy is run for three processes and has the same amount of time
allocated for its forward exploration, noted in the Forward Time column. We then
compare how many states were visited (States column) and whether Cubicle was
able to prove safety before hitting the timeout criteria (Safe column). The total
time (forward + proof) is noted in the Total Time column for each strategy.
Each example was timed out after 5 min. This was chosen due to the time taken
using CFL, as well as the number of proof nodes generated by Cubicle within
those 5min, compared in Table 2. The values underlined and in bold are where
Cubicle was successful in proving safety. We can see that the number of nodes
for the timed out examples is much higher than is necessary for Cubicle in the
cases where it quickly proves safety.

! https://github.com /cubicle-model-checker /cubicle/tree/debugger.
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Table 1. Comparing CFL with different forward strategies.

Model Forward Time | BFS DFS Random CFL
States | Safe | Total Time | States |Safe | Total Time | States | Safe | Total Time | States | Safe | Total Time

Dekker 10s 466K | T.O |- 605K | Yes |12.72s 266K | Yes |11.74s 120K | Yes | 10.61s
Germanish 10s 424K | T.O.|- 593K | Yes |12.91s 261K | Yes |11.94s 120K | Yes | 10.78s
Germanish2 10s 315K | T.O. |- 515K | Yes |12.26s 244K | Yes |11.92s 115K | Yes | 10.75s
Germanish4 10s 287K | T.O. |- 547K | Yes |14.54s 186K | T.O. |- 110K | Yes |11s
German 10s 312K | T.O. |- 547K | Yes |16.25s 207K | Yes |13.55 107K | Yes |12.23s
German_ Baukus | 10s 359K | T.O. |- 591L | Yes |14.82s 207K | Yes |12.93s 105K | Yes |12s
German_CTC 50s 1 429K | T.O. |- 2 010K | Yes |62.81s 505K | T.O. |- 265K | Yes |55.17s
German_ pfs 10s 416K | T.O. |- 431K | Yes |17.37s 174K | Yes |12.69s 100K | Yes |13.11s
Szymanski_at 10s 372K | T.O. |- 534K | T.O. - 155K | Yes [11.92s 105K | Yes | 11.60s
Szymanski_na 10s 270K | T.O. |- 483K |T.O. |- 270K | T.O. |- 100K | Yes | 12.50s
Bakery _lamport |40s 1 565K | T.O. |- 2038K | T.O. |- 650K | T.O. |- 230K | Yes |42.59s
Flash_no_data |40s 862K | T.O.|- 1 048K | T.O. |- 273K | T.O. |- 140K | Yes |43.32s

Table 2. Number of generated proof nodes for each strategy

Model BFS | DFS | Random | CFL
Dekker 6904 4 4 4
Germanish 889 |4 4 4
Germanish2 1770 1 4 4 4
Germanish4 2415120 | 3255 20
German 2862 141 |41 41
German Baukus|2170 41 |41 41
German CTC 1500 1 61 | 1231 60
German _pfs 112144 |44 44
Szymanski at 2861|174 |33 33
Szymanski na | 2061|210 |510 43
Bakery lamport | 779 |2189 |230 16
Flash no data |1329|61 |1227 37

Another problem is that, when it comes to Cubicle, models following patterns
like the one described above are a double-edged sword. When they are safe, a
proof will take a long time, and when they are unsafe, a counter-example might
also take a long time. Both of these things are impacted by the number of states
visited during the forward exploration. More visited states does not necessarily
imply a faster proof, since Cubicle will have to compare its invariant candidates
to every state. The key is visiting fewer, but more important, states. Cubicle
is designed to prove safety, and while it will give a counter-example should the
system be unsafe, this can take an arbitrarily long time in huge systems. The
forward and backward algorithm face the same problem in essence- huge safe
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models take too much time to explore forward, and huge unsafe models take too
much time to trace backward. Running a time-and-calculation-heavy proof only
to be hit with an “Unsafe” for trivial reasons is something we want to avoid.
This problem is in the same family as trying to prove safety when the model
deadlocks. When Cubicle says that a model is safe, it is safe - there is no way
to get from the initial state to the unsafe state. However, the reason for that
could be a correctly written model, or a model that deadlocks- it is natural that
an unsafe state is unreachable if the model is incapable of taking any steps.
The inclusion of CFL in Cubicle allows us to tackle both of these problems.
We buried unsafe states deep within our test models and launched CFL against
Cubicle’s normal backward algorithm, without any additional forward strategies
to accelerate invariant finding. The results can be seen in Table 3. Once again
timeout was set to five minutes. Deadlocks were a bit harder to compare - while
it was fairly easy to deadlock our models, it wasn’t simple to pinpoint the specific
state that could be classified as a deadlock. We provide deadlock detection results
for CFL in Table 4 without comparing them to Cubicle.

Table 3. Unsafe: backward vs. CFL

Model Backward | CFL
Dekker T.O. 0.3s
Germanish T.O. 0.7s
Germanish2 T.O. 0.2s
Germanish4 T.O. 0.7s
German T.O. 0.4s
German _Baukus | T.O. 0.4s
German CTC | T.O. 0.5s
German_pfs T.O. 0.3s
Szymanski_at T.O. 2s

Szymanski na | T.O. 2s

Bakery lamport | T.O. 1.5s
Flash_no_data |T.O. 3s

The reason CMurphi is excluded from Table 1 is due to the fact that we were
unable to find an option that would force CMurphi to run for the allocated time.
For each of our models, CMurphi raised the following error: “Internal Error: Too
many active states.” For the sake of fairness, we rerun CFL, manually setting the
limit for each model to how many states were visited by CMurphi. The results
for this are seen in Table 5.
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Table 4. Deadlock detection

This leads us to the discussion part of this section, namely concerning CFL’s
stability. As you can see in Table5, the results for CFL all have the form X/Y.
This is due to CFL’s innate randomness. Two executions will not necessarily
have the same results, especially if the allocated time/number of states to visit
is low and the model is large. For example, in Table 5, Dekker was run 10 times,
and all 10 times CFL managed to visit enough states to help Cubicle quickly
prove safety. However, on a model like Germanish4, which is longer and more
complex, running CFL 10 times only led to seven quick successes. This is due
to CFL containing a fair amount of randomness in how it chooses execution

strategies.

Model CFL
Dekker 0.1ms
Germanish 0.5s
Germanish2 0.2s
Germanish4 0.5s
German 0.4s
German Baukus |0.4s
German CTC | 0.4s
German_pfs 1s
Szymanski_at 2s
Szymanski_na |0.6s
Bakery lamport |2s
Flash_no_data |4s

Table 5. Comparison with CMurphi

Model CMurphi CFL

States | Safe | States | Safe
Dekker 48K | T.O. | 48K 10/10
Germanish 48K |T.O. 48K |10/10
Germanish2 39K | T.0.|39K |10/10
Germanish4 39K |T.0.|39K |7/10
German 33K | T.0.|33K |6/10
German Baukus | 33K | T.O0.|33K |7/10
German_CTC 24K |T.0.|24K |0
German_pfs 33K | T.0.|33K |6/10
Szymanski _at 32K |T.0.|32K |3/10
Szymanski na 26K |T.O0.|26K |2/10
Bakery lamport 32K |T.O0.|32K |1/10

Flash_no_ data |21K |T.O.|21K

3/10
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6 Conclusion and Related Work

In this paper, we presented CFL, an algorithm for a new forward exploration
strategy based on fuzzing for Cubicle. CFL not only serves as an oracle for
Cubicle’s invariant generation algorithm, but also adds new functionalities. We
show that this strategy is effective and capable of tackling a class of models that
Cubicle struggles with. We describe how CFL draws from fuzzing, but is adapted
to Cubicle’s semantics. We show how it uses multiple exploration techniques to
cover the state space as diversely as possible, leading to the discovery of crucial
states needed to terminate proofs. CFL also introduces quick debugging and
deadlock detection to Cubicle, quickly capturing both unsafe and deadlocking
states in complicated models.

There are two immediate lines of future work. The one we are currently
working on is including parameterization. The goal is for CFL to be able to
estimate how many processes it needs to efficiently explore a system. The other
is CFL’s stability. As mentioned earlier, CFL is nondeterministic by nature, and
chooses its exploration techniques randomly. Fine-tuning how these choices are
made could increase CFL’s performance. We also think it is important to extend
CFL and add more techniques, for example allowing processes to die randomly
throughout an exploration. We would also like to incorporate liveness testing into
CFL, since, like with deadlocks, this would add a new functionality to Cubicle.

Our work is inspired by fuzzing. Fuzzing is a simple technique designed to
quickly explore a program’s execution paths. The idea of mutating and gener-
ating inputs in our case was specifically inspired by AFL [14], a state-of-the-art
fuzzer. Combining model checking with fuzzing is not new. For example, the
authors in [13] use it for test case generation. In [10], it serves as the inspira-
tion to test Linear-time Temporal Logic (LTL) properties for C+-+ programs.
Bounded model checking (BMC) has been combined with fuzzing in multiple
instances. For example in [2], BMC is used to generate paths that the fuzzer
would not have found on its own. In [1], the authors combine BMC and Gray-
Box Fuzzing to find vulnerabilities in concurrent programs. To our knowledge,
no previous works combine fuzzing with parameterized model checking. Our end-
goal also diverges, the above examples all dealing with actual code, whereas we
want to focus on the model. We consider this to be a new line of research, per-
fectly suited for Cubicle, since Cubicle’s invariant generation needs a forward
exploration strategy that is not exhaustive (contrary to model checking) but is
capable of exploring the state space efficiently.
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Abstract. Symbolic execution is widely used to detect vulnerabilities
in software. The idea is to symbolically execute the program in order to
find an executable path to a target instruction. For the analysis to be
fully accurate, it must be performed on the binary code, which makes
the well-known issue of state explosion even more critical. In this paper,
we introduce a novel exploration strategy for symbolic execution aiming
to limit the number of explored paths. Our strategy is inspired from the
A* algorithm and steered towards least explored parts of the program.
We compare our approach, using the Binsec tool, to three other classi-
cal strategies: depth-first (DFS), breadth-first (BFS) and non-uniform
random (NURS). Our experiments on real-size programs show that our
approach is promising.

Keywords: Symbolic execution - Program analysis - Binary code
analysis + A™ algorithm

1 Introduction

Context. Software verification is a crucial step during the development of pro-
grams permitting to discover potential failures. It consists not only in assessing
the correct behavior of the program but also in checking if vulnerabilities exist.
Software verification techniques include (automatic) formal proofs [15], test-
ing [5], fuzzing [16], code review and program analysis [3,6-8,14]. This paper
deals with program analysis of binary code, more precisely with the problem
of efficiently finding an executable path to a target instruction (aka the line
reachability problem). The number of inputs of a program is usually very big,
inducing a huge number of possible paths. A popular technique used to handle
this problem is symbolic execution [14]. It is an exploration technique aiming to
find inputs of a program, with the help of a constraint solver, corresponding to
a target path of the program. More precisely, considering a target path 7 of the
program, a corresponding path predicate formula representing the constraints
over the input variables along 7 is sent to a constraint solver. If the formula is
satisfiable, then the path is executable, and a solution of the constraint system
corresponds to a possible input set of the program activating 7. A major problem
of this approach is that it generally does not scale well on real-size programs. The
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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order of exploration is crucial and decided by the exploration strategy, which can
be for instance depth-first (DFS), breadth-first (BFS) or non-uniform random
(NURS). In this work, we consider binary code. Directly analyzing the binary
code is necessary to verify that the compilation did not introduce new behaviors
or vulnerabilities, but it is challenging. This stems from the fact that a lot of
information is lost after the compilation and that binary code contains a lot
more instructions than source code.

Contributions. In this paper, we introduce two novel exploration strategies
for symbolic execution, inspired by the well-known A* algorithm [13]. A* is an
efficient single-pair shortest path algorithm, therefore using it in order to quickly
reach a target during symbolic execution makes sense. This key insight is at the
core of Blondin et al.’s efficient explicit reachability analysis tool for Petri nets [4].
We first adapt the A* algorithm to symbolic execution of binary code, using a
precomputed distance heuristic, which has never been done previously to our
knowledge. We then improve this basic A*-like strategy to steer the exploration
towards least explored parts of the program. The total number of explored paths
is reduced, implying better performance.

We provide a formal description of our approach on transition systems, which
makes it generic and then applicable in various contexts. Our strategies have been
implemented in the binary code analysis tool Binsec, although dynamic jumps
are not currently handled. We present an experimental evaluation of our two
A*-like exploration strategies on seven programs, two of them being of real-size
(Wookey’s bootloader [1] and the NetBSD leave command). Our experiments
show that our approach is promising. A replication package is available at Zen-
odo [10].

Related Work. Symbolic execution [14] is a powerful technique to analyze
programs. It is used in many program analysis tools, for instance KLEE [5],
MIASM [19], ANGR [24] and Binsec [11]. KLEE is a dynamic symbolic exe-
cution engine that is used on source code (translated to LLVM). MIASM and
ANGR are binary analysis platforms that combine both static and dynamic sym-
bolic execution. Binsec is a framework for binary code analysis based on formal
approaches such as symbolic execution, abstract interpretation [8], SMT solv-
ing [9] and fuzzing [16]. The exploration strategies provided by Binsec are BFS,
DFS and NURS. Common uses of symbolic execution include test case genera-
tion [5], input generation for fuzzing [25] or even vulnerability detection [12,23].

In 2021, Blondin et al. proposed an approach based on the A* algorithm [13]
to perform reachability analysis on Petri nets [4]. Their results showed that using
this approach outperforms existing state-of-the-art Petri nets tools. The idea is
to use distance oracles to guide the exploration of Petri nets. Our approach
generalizes this concept to any labeled transition system. We also propose some
enhancements in order to reach targets more efficiently in real programs. Many
strategies aiming to guide the exploration towards more promising paths have
been proposed in the literature. Some of them prioritize paths that are closer
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1 #define MAX SIZE 10000000

> #define EXPECTED_ SIZE 100

3 void valid (int y) {

A int x;

5 for (x = 0; x < MAX SIZE; x++) {
6 if (!correct(y)) break;

7 y——;

9 if (x != EXPECTED_ SIZE) trap();
10 critical ();

Listing 1.1. C-style running example.

) NURS A™ guided

Fig. 1. Illustration of different symbolic execution strategies.

to the target [2,18] while others prioritize paths that explore new parts of the
program [17,26]. In both cases, only partial aspects of the A* algorithm are
implemented. To our knowledge, none of them apply both strategies, and they
are applied on source code. Our proposal combines both of these concepts into
a novel exploration strategy, and applies it directly on binary code.

2 Running Example

The code given in Listing 1.1 is a simplified version of a security-critical code
inspired from a real-life application. The parameter y of the function valid is a
secret value that an attacker is not supposed to know. This value must satisfy a
certain condition, namely that correct(n) returns true for all integers n with
y—99 < n <y, and correct(y—100) returns false. Note that the corresponding
loop (lines 5-8) may, in fact, be traversed up to 107 times. If the above-mentioned
condition on y is satisfied then the critical function is executed, otherwise a
counter-measure, here trap, is triggered. For our discussion, the contents of these
two functions does not matter, except that the trap function is an infinite loop
whose body contains two small paths (corresponding to security measures). Our
goal is to use symbolic execution to (efficiently) find an executable path from
the start of the valid function to the target critical function.

Let us look qualitatively at the behavior of symbolic execution on this exam-
ple regarding different exploration strategies. A depth-first (DFS) strategy either
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exits the loop early and ends up in the trap function, or executes the loop entirely
and still ends up in the trap function. In both cases, it is highly inefficient, as
a huge number of branches are explored in the trap function before the loop
exits with the expected value of 100 for x. This behavior is illustrated in Fig. 1a,
where the red branch is the only one leading to the target, and the gray zone
represents the branches already explored. A breadth-first (BFS) strategy is also
highly inefficient as it generates all branches of length lesser than the length of
the branch reaching the target, including the ones that are stuck in the trap
function. Its behavior is exhibited in Fig. 1b where a large part of the reachabil-
ity tree is explored. A non-uniform random (NURS) strategy chooses randomly
which branch to explore further (see Fig. 1¢). Again, because of the trap func-
tion, a huge number of branches are generated on average before reaching the
target. The approach proposed in this paper is inspired from the A* algorithm
and aims to explore a limited amount of branches. The resulting exploration
strategy is illustrated in Fig.1d, where only a very small portion of the whole
tree is explored. A more precise comparison of these four exploration strategies
on this example will be given at the end of the next section.

3 A* Guided Symbolic Execution

Many verification questions, including vulnerability detection, can be phrased as
reachability queries over a labeled transition system providing the operational
semantics of the system under analysis. We start by recalling a few prelimi-
nary notions on reachability in labeled transition systems. The remainder of the
section focuses on symbolic execution and discusses various exploration strate-
gies.

Reachability in Labeled Transition Systems. A (non-deterministic) labeled
transition system is a 5-tuple S = (C, X, —, I, F) where C' is a possibly infinite
set of configurations, X' is a finite set of actions, — C C'x X' x C' is a labeled tran-
sition relation, I C C'is a set of initial configurations, and F' C C is a set of final
configurations. A run in S is an alternating sequence p = (cg, a1, ¢1,. .., an, Cy)
of configurations ¢; € C' and actions a; € X such that ¢;_1 — ¢; for all i. We
say that p is a run from ¢y to ¢, and we write p = ¢y — ¢1 - - - — ¢,,. The word
ay - - ay is called the trace of p. Given two configurations ¢,¢’ € C' and a word
w € X*, the notation ¢ — ¢ means that there exists' a run from ¢ to ¢ with
trace w. The length of w is denoted by |w|. We say that ¢’ is reachable from e,
written ¢ = ¢, when c 2, ¢ for some w € X*.

Our main objective is to determine whether there exists a run from an initial
configuration to a final configuration. Formally, the reachability problem asks,
given a LTS § = (C, X, —, I, F), whether there exists ¢ € I and ¢/ € F such

that ¢ = ¢. In theory, the reachability problem is only a decision problem.

! Due to non-determinism, there may be several runs from ¢ to ¢’ with trace w.
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But, in practice, a trace w € X* witnessing reachability ¢ — ¢’ should also be
provided when the answer is positive.

location|h(location)
A 3

Ol W NN

QMmoo QW

+o0o

T4+ (b) Estimated distances
to the final location F (so-
(a) States and transitions of the counter machine. called h values).

Fig. 2. Counter machine corresponding to the inlined code given in Listing 1.1, assum-
ing that the correct function simply checks that its argument is nonzero.

Example 1. Consider the counter machine given in Fig.2a. This machine is a
translation of our running example where the correct function simply performs
a nonzero test on its argument. All functions are inlined. The location F corre-
sponds to the call to the critical function. The trap function is modeled in
location G by two loops that are chosen non-deterministically (non-determinism
typically comes in practice from inputs to the program).

Formally, this counter machine operates on two counters, namely x and vy,
that range over Z. Its locations are A,B,...,G and its edges are the arrows
depicted in Fig. 2a. Each edge is labeled with an action over the counters. These
actions are either guards or assignments. Let Y denote the set of all counter
actions appearing in Fig. 2a. The semantics [a] of an action a € X is defined, as
expected, as a binary relation [a] C Z{#¥} x Z{=:¥} over valuations of the coun-
ters. The operational semantics of the counter machine is given by the labeled
transition system S = (C, X, —, I, F) defined as follows. The set of configura-
tions C'is the set of pairs (£,v) where £ is a location and v € Z1*¥} is a valuation
of the counters. The sets of initial and final configurations are I = A x Z1#:¥} and
F = FxZ*¥} The labeled transition relation is the set of triples (¢,v) < (£/,v")
such that £ % ¢’ is an edge depicted in Fig.2a and (v,v’) € [a]. Our goal can
now be formally phrased as the reachability question for S. <

We present an algorithm for the reachability problem that is based on sym-
bolic execution. Some additional notations are needed first. A region in a LTS
S=(C, 2, —,1,F)is asubset ¢ C C of configurations. Regions are often called
symbolic states in the context of symbolic execution. We define the region trans-
former post : 2¢ x ¥ — 2¢ as usual, by post(p,a) = {¢' € C|Ic€ p:c L ).
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Symbolic Execution for Reachability Analysis. Symbolic execution has
originally been proposed for program testing [14], but the technique can also
be used for reachability analysis. Our main contribution concerns exploration
strategies for symbolic execution. In order to present and compare these strate-
gies, we first recall some elements about symbolic execution.

An algorithm for reachability analysis based on symbolic execution is given
in Algorithm 1. This algorithm takes as input a labeled transition system S =
(C,X¥,—,1,F) and computes a symbolic reachability tree where each node is
labeled with a region (i.e., a subset of C). The set of unprocessed nodes, called
the worklist, is maintained in the variable W. Initially, the algorithm creates the
root of the tree, labeled with the set I of initial configurations, and puts it in
the worklist. Then, as long as the worklist is non-empty, the algorithm selects
a node from the worklist (more details are given below) and processes it. If the
node’s region intersects the set F' of final configurations then there exists a run
from an initial configuration to a final configuration, so the answer “Reachable”
is returned. Note that a witnessing trace w can be obtained by collecting the
actions along the branch (from the root to the node). Otherwise, the node is
expanded, meaning that for each action a € X, a child is created and labeled
with the appropriate region according to the post transformer. This expansion
is omitted if the node’s region is empty. If the worklist becomes empty then all
configurations reachable from an initial configuration have been explored, and
none of them is final, so the algorithm returns “Unreachable”.

Algorithm 1 SymbolicExecution(S,Prio)

Input: A LTS § =(C, X, —,I,F), a priority function Prio: (---) — RU {400}
Output: Either “Reachable” or “Unreachable”
1: r < createRoot ()

2: (r.regiom,r.priority) « (I,Prio(S,r,0))

3 W {r}

4: while W # () do

5: n « argmin{n.priority | n € W}

6: W — W\ {n}

T (p < n.region

8: if oNF # 0 then

9: return “Reachable” > the branch provides a witnessing trace
10: else if ¢ # () then

11: for all a € X do

12: u «— createChild(n,a)

13: (u.region,u.priority) « (post(y,a),Prio(S,u, W))
14: W — W uU{u}

15: end for

16: end if

17: end while
18: return “Unreachable”
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Remark 1. Algorithm 1 is correct in the sense that it either returns the correct
answer to the reachability problem for the input LTS S = (C, X, —,I,F), or
loops forever. The proof is pretty standard. Let post* : 2¢ — 2¢ be defined as
usual, by post*(p) = {¢' € C' | Ic € ¢ : ¢ = ¢'}. We introduce in Algorithm 1
a “ghost” variable N that maintains the set of constructed nodes. The correct-
ness of the algorithm follows from the two following properties at line 4. First,
n.region is disjoint from F for every node n € (N \ W). Second, post*(I) is the
union of the set {J,, ¢ n\nr) n-region and the set |J, ¢y, post™(n.region). These
two properties are routinely shown to be loop invariants at line 4.

In practice, symbolic execution implicitly assumes a maximum exploration
depth. The potentially infinite symbolic reachability tree computed by Algo-
rithm 1 is truncated at this maximum exploration depth (and the answer
“Unreachable” is replaced by “Unknown” if the tree was truncated).

The order of exploration in Algorithm 1 can be customized via the prior-
ity function Prio. This function takes three arguments, a LTS, a node and a
worklist, and returns a priority in R U {+o00}. Each node is assigned a priority
upon creation (lines 2 and 13) and this priority remains unchanged afterwards.
When the algorithm picks an unprocessed node from the worklist, it picks one
of minimal priority (see line 5).

Naturally, the classical search exploration strategies DFS, BFS and NURS
can be encoded as priorities. The corresponding priority functions are given by:

{0 W =0

min{n.priority |n € W} —1 otherwise

PrioDFS(S,u, W)

PrioBFS(S,u, W)

0 if W =0
max{n.priority [n € W} +1 otherwise

PrioNURS(S,u, W) = random(0,1)

The depth-first (DFS) strategy is classically implemented with a last-in-first-out
worklist. This strategy is encoded with priorities by ensuring that the last node
added to the worklist receives a smaller priority than all other nodes in the
worklist (see the PrioDFS function). Similarly, the breadth-first (BF'S) strategy,
which is classically implemented with a first-in-first-out worklist, is equivalent
to using the PrioBFS function in Algorithm 1. Finally, the PrioNURS function
provides a random priority for every node added to the worklist, which does
correspond to a non-uniform random (NURS) exploration of the tree.

Remark 2. To implement Algorithm 1 in practice, regions have to be finitely
representable, emptiness of a region and emptiness of the intersection of two
regions have to be decidable, and the post transformer must be computable. In
practice, regions are often encoded as SMT formulas.

Remark 3. As in classical symbolic execution, Algorithm 1 blindly expands a
node regardless of whether its region has already been processed before. A
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computationally cheap inclusion test (i.e., a relation < on regions such that
r <1’ = r Cr') could be used to partially truncate the exploration.

Exploration Strategy Inspired from A*. In addition to the classical strate-
gies DFS, BFS and NURS, we provide a new exploration strategy for symbolic
execution, inspired from the A* algorithm.

Recall that A* is a single-pair shortest path algorithm for nonnegatively
weighted directed graphs. Assume that we are given such a graph together with
a source vertex and a target vertex. Let V' denote the set of vertices of the graph.
The main idea of the A* algorithm is to guide the exploration using a heuristic
function h : V. — NU {400} that underestimates the (minimal) distance from
any vertex to the target vertex. Note that h(v) may be +oo if there is no path
from v to the target vertex. When A* picks a vertex to process from its worklist,
it chooses a vertex v that minimizes the sum g(v) 4+ h(v), where g(v) is the
weight of the shortest path seen so far from the source vertex to v. Let us see
how to adapt this exploration strategy in our symbolic execution algorithm. In
our context, edges are not weighted (they correspond to symbolic transitions
0 % ¢ where ¢’ = post(p,a)), so we assume a uniform weight of one. We first
need to extend the notion of distance underapproximation to regions.

Definition 1. A distance underapproximation for a LTS § = (C, X, —,I,F)
is a function hs : 2 — NU {+o00} such that for everyi,c, f € C and w € X*,

iel NiSscehNcepheBfAFeEF = hs(p) <|wl

Informally, hs(p) returns an underapproximation of the distance between a given
region ¢ C C and the set of final configurations F'. However, to facilitate the
design of distance underapproximations, this condition on hs(¢p) is only required
for the configurations ¢ € ¢ that are reachable from an initial configuration.

To adapt the exploration strategy of A* in Algorithm 1, we assume that we
are given a (computable) distance underapproximation hgs for the LTS S under
analysis, and we use the priority function PrioASTAR defined as follows:

PrioASTAR(S,u, W, hs) = depth(u) + hs(u.region)

where depth(u) denotes the depth of the node w in the symbolic reachability
tree that is generated by Algorithm 1. Note that this is slightly different from
A* since depth(u) only upper-bounds? the distance seen so far from the set of
initial configurations to the region of u. This is not an issue as our primary goal
is to quickly find an executable path, regardless of its length.

2 To faithfully mimic A*, depth(u) should be compared with the depths of all pro-
cessed nodes having the same region as u. But this would require checking equality
between regions, which is computationally costly in general.
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Fig. 3. Symbolic execution with PrioASTAR of the counter machine in Fig. 2.

Ezample 2. We illustrate this approach on our running example (see Example 1)
by applying it on the LTS giving the semantics of the counter machine of Fig. 2a.
The symbolic reachability tree generated by Algorithm 1 with the PrioASTAR
function is (partially) depicted in Fig. 3. We use the distance underapproximation
obtained by ignoring the counters, given in Fig. 2b. Each node in Fig. 3 is labeled
with its region and its priority (in parentheses). The region is given by a location
of the counter machine and a formula over its counters z,y. Recall that the
priority of a node is the sum of its depth and of the h value of its location (given
in Fig.2b). The order of exploration is not explicitly shown but dotted/gray
nodes have not yet been explored and are still in the worklist at the end of the
exploration. Our approach explores about 600 nodes before reaching the final
location.

In comparison, with a maximum exploration depth of 10000 nodes, at least
10270 nodes are explored with PrioDFS, assuming that actions are always taken
in the same order at line 11 of Algorithm 1. About 103° nodes are explored with
PrioBFS, most of them stuck in location G (this location corresponds to the trap
function). At least 10'°° nodes are explored on average with PrioNURS. N

4 Guiding the Exploration Towards the Unknown

This section presents an improvement of the A*-like exploration strategy pre-
sented in the previous section. We first exhibit some weaknesses of this explo-
ration strategy and we then show how to tackle these weaknesses. In short,
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our improved A*-like exploration strategy steers the exploration towards least
explored parts of the system under analysis.

Limitations of our Basic A*-like Exploration Strategy. In the symbolic
reachability tree generated by Algorithm 1 with PrioASTAR, the priority of a node
w is the sum depth(u)+hs(u.region). When the non-infinite hs values are small
compared to the depth of the nodes, the resulting exploration roughly amounts to
a breadth-first (BFS) exploration (except that nodes u with hs(u.region) = +oo
are explored last). This is bad news as symbolic execution with BFS is known
to perform poorly in practice. Let us illustrate this issue with a small example
inspired by our experimentations on Wookey’s bootloader (see Sect. 6).

2 #10Vy #10 2 < 100 loc[h(loc.)

A 27

B 26

¢ 25

D 24

E 23

z F| 2
Y G| 3
H| 2

T B

I 1

x>0 K 0

Fig. 4. Counter machine that illustrates some limitations of our basic A*-like explo-
ration strategy induced by the priority function PrioASTAR. The distance underapprox-
imation is shown on the right-hand side.

Ezxample 3. Consider the counter machine given in Fig. 4. The two edges B i,

¢ and B ©== C model a non-deterministic choice from the location B. Similarly,
the two edges originating from F are chosen non-deterministically. The dashed
edge from E to F stands for 20 intermediate locations between E and F. This is
reflected in the distance underapproximation values given in the table on the
right hand-side of the figure. As before, this distance underapproximation is
obtained by simply ignoring the counters.

The only run reaching the final location K takes the loop B-C-D exactly 10
times, each time choosing the B LaRNTg edge so that z and y remain equal, and
exits the loop in E with z = y = 10. It then moves to F and takes the edge

F 2% G since K is not reachable from J with z = 10. Finally, the loop G-H-T is
taken exactly 90 times before moving to K.

Symbolic execution with PrioASTAR first constructs all nodes obtained by
taking the loop B-C-D exactly 9 times, so we end up with 2% copies of B in the
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worklist, each with the same depth 1+ 9 - 3, hence, the same priority 54. Then,
the loop B-C-D is taken once more, and exactly one branch exits the loop. This
branch reaches F, forks into G and J, and takes the loop on J twice. At this
point, the worklist contains 2'° — 1 copies of B with priority 57, one copy of G
with priority 56, and one copy of J with priority 56. In order to reach the final
location X, the exploration now needs to iterate the loop G-H-I exactly 90 times.
But for each iteration of this loop, an additional iteration of the B—C-D loop is
performed from each copy of B in the worklist, leading each time to twice as
many copies of B in the worklist. This dramatically slows down the construction
of the only branch leading to the final location K. <

An Improved A*-like Exploration Strategy. As mentioned previously, the
issue at hand arises when the sum depth(u) + hs(u.region) is dominated by
depth(u), which is very common in real-size programs. To fix this issue, we
propose to replace depth(u) by another measure that still accounts for the length
of the branch from the root of the tree to u, but prioritizes nodes corresponding
to parts of the system that have rarely been visited.

Remark 4. A tempting solution to the above-mentioned issue may be to simply
replace depth(u) by zero, i.e., to let the priority of each node u be hs(u.region).
The resulting symbolic execution of the counter machine given in Fig. 4 is similar,
at first, to the one detailed in Example 3. However, when the branch reaching F
forks into G and J, the copy of G now has priority 3 and the copy of J now has
priority 1. So the copy of G remains in the worklist and the loop on J is taken
forever (or until the maximum exploration depth is reached).

Let us now define the priority function PrioASTAR-2 inducing our improved
A*-like exploration strategy. We first introduce the notion that we use to identify
“parts of the system”. An observable for a LTS § = (C, X, —, I, F) is any subset
of C'. Given a finite set P of observables, we define the region observation function
obs : 2¢ — 2P by obs(p) = {p € P | (p N p) # 0}. Given a sequence of
regions 7o, ..., ",, we let obs_g(ro,...,r,) denote the sequence obtained from
obs(rg), . ..,obs(r,) by removing all occurrences of §).

Observables will be used to focus the exploration on specific properties of
the system under analysis. On a given branch of the symbolic reachability tree,
instead of looking at the sequence of regions rq,...,r, that have been visited
along the branch, we will look at the sequence of observations obs_g(rq, ..., 7).
Typically, for counter machines and binary programs (see Sect.5), we consider
observables induced by specific locations. But we could use observables express-
ing properties on counters or registers.

Example 4. In the counter machine of Fig.4, we focus on locations that are
targets of branching instructions, i.e., locations in the set T = {B,C,E,G, J,K}.
For each location ¢t € T, we define the observable p; = {t} x Z{#¥}. Q

The PrioASTAR-2 function is defined in Algorithm 2. To simplify the pre-
sentation, we assume that the set I of initial configurations has a nonempty
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Algorithm 2 PrioASTAR-2(S,u, W, hs, P, \)

Input: A LTS § = (C, X, —,I,F), a node u, a worklist, a distance underapproxima-
tion hs for S, a finite set P of observables for S, a function A : N — R>g

: Let wo, ..., u, denote the branch from the root r = uo to the node u = u,,

: Let obso, . ..,o0bsy = obs_g(up.region, ..., u,.region) >k>0

: Let g = Card{obso, ..., 0bsm} where m = min{i € [0, k] | obs; = obsy }

: Let p = Card{i € [0,n] | obs; = obsy}

: return g - A(u) + hs(u.region)

U W N~

observation. This guarantees that the sequence obsy, ..., obsy defined at line 2
is nonempty. The priority returned by PrioASTAR-2 is g - A(u) + hs(u.region)
where g and p depend on the sequence obsg, . .., 0obs; of nonempty observations
seen along the branch. In words, g is the “elementary” length of this sequence,
i.e., the number of distinct elements in the sequence obsg, ..., 0bs,, where obs,,
is the first occurrence of obsy, and p is the number of times that obsy occurs in
the sequence obsy, . .., obsy. Intuitively, obsy indicates which part of the system
corresponds to the node u, so p tells us how many times this part of the sys-
tem has been visited along the branch. Observe that g only depends on the first
occurrence of each observation in obsy, ..., 0bsg. We call g the elementary depth
of the node u.

The function A : N — R>( allows us to adjust the priority depending on the
value of p. The choice of a good A function is crucial to guide the exploration
properly. In order to steer the exploration towards least explored parts of the
system, A should be non-decreasing, and A(u) should be small when g is small.
According to our experiments, a A function of the form

0 ifpu<é6

Ao(p) = {1 :
ogo(pp — 0+ 1) otherwise

performs well in practice. Here, the parameter 6 € N acts as a threshold (in our
experiments, we use § = 3, see Sect. 6). The idea behind Ay is to give precedence
to nodes that are in a part of the system that has rarely been visited (less than
0 times) along the branch. Note that this function always returns zero or a small
value. As mentioned before, we do this to prevent the elementary depth ¢ from
dominating hgs. Note that this is just an example of a possible A function that
we designed during our experimentations. Different A functions may also work,
and even outperform this one.

Example 5. Consider again the counter machine given in Fig.4. We take the
same set of observables as in Example 4, and we use the function Ay defined
above with 8 = 3. As with PrioASTAR, symbolic execution with PrioASTAR-2
first constructs all nodes obtained by taking the loop B—C-D exactly 9 times.
When the branch that exits the loop forks into G and J, the worklist contains
210 1 copies of B with priority 26 + 1 - log;(8), one copy of G with priority
3, and one copy of J with priority 1. So the loop on J is iterated first, and the
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priority of the J copy in the worklist slowly increases. When this priority becomes
larger than 3, the loop G-H-I is also iterated. The exploration then interleaves the
construction of the two corresponding branches. After 90 iterations of the loop G-
H-I, the worklist contains a copy of K with priority 0. This copy is then processed
immediately, and the algorithm returns “Reachable”. Let us estimate the number
of iterations of the loop on J. Just before completion of the G-H-I loop, the last
copy of G in the worklist has priority 34+4-log;,(90—1) < 3+4-2 = 11. Similarly,
the last copies of H and I have priorities less than 8 and 7, respectively. After
k > 3 iterations of the loop on J, the priority of the J copy is 1+4-log,,(k—1).
Observe that (14+4-log,q(k—1) > 11) < k > 317. So the loop on J is iterated at
most 318 times. Note also that the 219 — 1 copies of B have not left the worklist
since their priority is larger than 26, hence, larger than 11. <

5 Application to Binary Programs

We show in this section how to apply our approach to binary programs. Recall
that our new A*-like exploration strategies require a distance underapproxima-
tion for the LTS under analysis. The main purpose of this section is to provide an
efficiently computable distance underapproximation for binary programs. Before
that, we need to define® the syntax and semantics of binary programs.

Syntax and Semantics. Consider a fixed set Reg of registers and a fixed set
Addr of addresses. To account for instructions that do not impact the control-flow
of the program, such as memory accesses and arithmetic operations on registers,
we assume an a priori given set Op of operations. Each operation op € Op comes
with its semantics [op], given as a function from Z%%9 x ZA4" to itself. A binary
program is a finite sequence of instructions (I1,...,I,), where each instruction
Iy, is in the following set:

Op U {BR7{|reRegnlel,n]} U {CALL¢|¢ € [1,n]} U {RET}

Here, BR stands for conditional branching, and CALL and RET stand for procedures
call and return. A location of the binary program is any integer in [1,n + 1].

The operational semantics of a binary program (I,...,I,), equipped with
a final location f € [1,n + 1], is given by the labeled transition system S =
(C, X, —,1, F) defined as follows. The set of actions X' is the set of instructions
of the programs, i.e., ¥ = {I;,...,I,}. The set of configurations C' is the set of
quadruples (¢, R, M, s) where £ € [1,n+1] is a location, R € Z% and M € ZAdd"
are register and memory contents, and s € [1,n + 1]* is a stack contents. The
sets of initial and final configurations are I = {((,R,M,s) e C |{=1Ns=¢}
and F = {(¢,R,M,s) € C | { = f}. The labeled transition relation — is defined
by the rules given in Fig. 5. Note that each of these rules implicitly requires that
¢ € [1,n] since I, must be defined.

3 Similar definitions of the syntax and semantics of binary programs can be found in
the literature. Our definition is intentionally simple and tailored to our purposes.
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Ir=o0pc0Op  (R',M')=[op](R, M)

Iy

(6,R,M,s) 2% (¢+1,R, M, s)

I;,=BRr /¢ R(r)=0 I;=BRr /(¢ R(r)#0
(6, R, M,s) 2% (0 +1,R, M, s) (6, R,M,s) 2% (¢',R, M, s)
I, = CALL ¢ I, = RET
(6, R, M,s) 25 (¢/,R,M,({+1) - 5) (6, R, M, 0 - s) 25 (¢, R, M, 5)

Fig. 5. Operational semantics of binary programs.

Distance Underapproximation. Following the approach of Blondin et al. for
Petri nets [4], we propose a distance underapproximation for binary programs
that is based on an abstraction of the operational semantics defined above. This
abstraction merely consists of ignoring the register and memory contents.

I, =op€0p I, =BR7r{ I, =BRr{
(0,s) 258 (0+1,5) (6,5) 5% (041, 5) (0,s) 2% (¢, 5)
I, = CALL ¢/ I, = RET
(0,s) 258 (0 (0+1) - 5) (0,0 - 5) 158 (0, 5)

Fig. 6. Abstract semantics of binary programs.

Formally, the abstract semantics of a binary program (Iy,...,I,), equipped
with a final location f € [1,n + 1], is given by the labeled transition system
St = (CF, X, —*F I* F*) defined as follows. The set of actions X is the same as
before, i.e., ¥ = {I1,...,I,}. The set of abstract configurations C* is the set
of pairs (¢,s) where ¢ € [1,n + 1] is a location and s € [1,n + 1]* is a stack
contents. The sets of initial and final abstract configurations are I* = {(1,¢)}
and F* = {f} x [1,n+1]*. The labeled abstract transition relation —* is defined
by the rules given in Fig.6. Again, each of these rules implicitly requires that
¢ € [1,n]. Obviously, every run in S can be mimicked in S* by ignoring the
register and memory contents. Formally, it holds that (£,s) —= (¢/,s') in S*
when (¢, R, M,s) < (¢, R',M’,s') in S. So we can use S* to underestimate the
distance in S between two (sets of) configurations.

For efficiency reasons, our distance underapproximation is based on the pre-
computation of the distance in S* between pairs of locations ¢, ¢ € [1,n + 1].
However, if we start in ¢ with an arbitrary stack contents, then a RET instruction
may directly lead to ¢/. This would yield an extremely coarse distance under-
approximation. So we restrict the stack contents to “legitimate” ones, in the
sense that the stack starts with a valid return location. Formally, we say that an
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abstract configuration (¢, s) is coherent if s is empty or of the form s = ¢'-s’ with
0" € [1,n+1] such that (¢”,¢) 5% (¢,¢') for some £ € [1,n+ 1]. Note that every
abstract configuration (¢, s) reachable in S* from (1, ¢) is coherent. A run in S* is
called coherent when all abstract configurations visited by the run (including the
first and last ones) are coherent. We write (£, s) —%, (¢, s") when there exists a
coherent run from (¢, s) to (¢, s') with trace w. Let d* : [l,n+1] x [1,n+1] — N
be defined? by:

d*(,0") = inf{|w| | Is,s" € [I,n+1]*: (£,5) b, (¢',s)}
The distance underapproximation hs that we propose is defined as follows:
hs(p) = mf{d*(¢, f) | (, R, M,s) € ¢}

Intuitively, hs(p) is the minimal distance from the locations of ¢ to f in the
abstract semantics S* restricted to coherent abstract configurations. It is readily
seen that the function hg satisfies the condition of Definition 1.

Remark 5. Our notion of coherence for abstract configurations only accounts for
the top-most return location on the stack. The remainder of the stack may be
arbitrary. However, for every coherent run (4,4 --- £y, - 8) =%, (£, s), the prefix
£y -+ £ of the stack that is popped in the run is “legitimate” in the sense that
each ¢; is a valid return location for ¢;_; (formally, the abstract configurations
(€;—1,¢;) are coherent).

To compute hs(p), we need to compute df(¢, f) for every location ¢. First,
we compute, for each instruction CALL ¢ appearing in the binary program, the
(-summary inf{|w| | 3¢ : (¢,e) ¢ (¢,) A Iy = RET}. Second, we compute
the values d*(¢, f) by applying a single-source shortest path algorithm on S*
augmented with summaries, starting from f and moving backwards on edges.
The resulting algorithm is similar to the one described in [2].

Wrap Up. We now have the necessary ingredients to perform symbolic execu-
tion (see Algorithm 1) with our new A*-like exploration strategies. Regions use
SMT formulas for register and memory contents, and an explicit representation
for locations and stack contents. The post transformer is computed by following
the operational semantics given in Fig. 6. The distance underapproximation pro-
vided to PrioASTAR and PrioASTAR-2 is the one presented in the previous sub-
section. Finally, the finite set P of observables given to PrioASTAR-2 is induced
by the locations that are targets of control-flow instructions. Let T" denote these
locations, i.e., T'is the set of all ¢ € [1, n+1] such that there exists ¢, ¢ € [1,n] and
r € Reg verifying Iy € {BRr ¢/,CALL ¢'} and t € {¢', £+ 1}. Formally, P is the set
of all subsets p; = {t} x ZF9 x 7444 x [1,n + 1]* where ¢ ranges over T.
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Fig. 7. Experimental results obtained with Binsec: bars represent the number of
unrolled instructions in a logarithmic scale and dots represent the SSE duration in
seconds.

6 Experimental Results

We evaluate our new approach on seven programs: the two running examples
of the paper (Figs.2 and 4), three “crackme” challenges [20-22| which are rel-
atively easy to solve and with a reasonable size (around 200 instructions), and
two “real-size” programs namely the Wookey bootloader [1] which is a popular
software designed by the ANSSI® meant to be robust against various type of
attacks (~10K locations), and the leave command of NetBSD (~100K loca-
tions). The programs are cross-compiled to pure THUMB-2 with target CPU
cortez-m3 and armuv7-m architectures.

We use the symbolic execution tool Binsec (version 0.6), in which we have
implemented our new strategies. The targets for the study are chosen arbitrarily
but meant to be deep in the execution flow or difficult to reach. A time limit
of 100s is allowed for each experiment, beyond which we stop it and report
a timeout (f.0.). In the Wookey bootloader and the leave programs, we have
stubbed some parts of the code to accelerate the process. All benchmarks were
ran on a AMDG64 Oracle Linux Server (release 8.8) machine with an Intel(R)
Xeon(R) Gold 6244 CPU (3.60 GHz) and with 256GiB of RAM. A replication
package for our experiments (including the source code and the seven programs)
is available at Zenodo [10].

We compare the approach based on PrioASTAR-2 (named astar-2 in the
benchmarks) with the usual exploration strategies (dfs, bfs and nurs), and also

4 Recall that inf X = min X for every non-empty subset X C N and that inf § = +cc.
5 French National Cybersecurity Agency.



Guiding Symbolic Execution with A-Star 63

with our basic A*-like approach, i.e., based on PrioASTAR (named astar in the
benchmarks). In Fig. 7, we compare the number of unrolled instructions and the
symbolic execution time for each exploration strategy on the different programs.
The results of the three crackmes are summed up and displayed as one “program”
named crackmes. In the case of NURS, the experiments are ran 10 times and the
average for both metrics are displayed. The exploration strategies are on the X-
axis, the number of unrolled instructions is on the left Y-axis and represented by
the bars. Finally, the symbolic execution time is on the right Y-axis and displayed
by green dots. For readability reasons, we use a logarithmic scale for the number
of unrolled instructions. Clearly, our new exploration strategy astar-2 always
outperforms the classical strategies. Moreover, it also always outperforms the
strategy solely based on astar, as expected. The astar exploration strategy
is generally not powerful enough to reach the target on real programs (leave,
Wookey’s bootloader). Regarding the duration of the symbolic execution, the
strategy astar-2 also always outperforms the other strategies. Note that the
number of unrolled instructions is not directly correlated to the execution time
of symbolic execution. In fact, what really slows it down are satisfiability queries,
which are made at conditional branching points.

The efficiency of the exploration depends on the maximum exploration depth.
The perfect bound is not definable beforehand so we set it to 107 instructions
for all programs. Finally, the results of our exploration strategy astar-2 depend
on the function A (see Sect.4). The best A function is specific to each situation,
nevertheless we chose to systematically use A\p with § = 3 in our experiments.
Using a smaller parameter 0 tends to steer the exploration towards a BFS, while
a larger parameter 6 steers the exploration towards a DFS. The best in-between
value we found was 6 = 3.

7 Conclusion

In this paper, we have introduced a novel exploration strategy for symbolic exe-
cution inspired from the A* algorithm permitting to find efficiently an executable
path to a target instruction. This approach orders the exploration of symbolic
states by using heuristics permitting to visit in priority states that have been
less explored. Consequently the number of paths to explore is smaller than in
usual approaches such as DFS, BFS and NURS, implying better performance.
Although some faulty execution may still remain difficult to catch, this approach
shows promising results. Our key insight while designing this algorithm is to cre-
ate a balanced mix between a DFS and a BFS. The strategy has been designed
on generic transition systems, making it applicable in various situations. We have
described how to apply it on binary code, and provided an experimental evalu-
ation showing that our strategy outperforms the classical exploration strategies
DFS, BFS and NURS and scales well on real-size programs. As future work, we
intend to apply this technique to the detection of hardware vulnerabilities (i.e.,
vulnerabilities to fault injection attacks).
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Abstract. Software verification tools fully automatically prove the cor-
rectness of verification tasks (i.e., programs with correctness specifica-
tions). With their increasing application on safety-critical software, the
quality of such tools becomes of prime importance. This quality is typ-
ically assessed via experimental evaluation. In this paper, we present a
novel approach for robustness testing of software verifiers. We consider
tools to be robust if their output (for a given input task) does not change
under small perturbations of the input. The core idea of our technique is
to start with tasks of publicly available benchmarks and systematically
apply small program transformations on them which preserve program
semantics. As a consequence, the ground truth known from the bench-
mark (i.e., the correct outcome used as an oracle during testing) carries
over to all of its perturbed versions. We experimentally evaluate robust-
ness testing on three state-of-the-art software verifiers. To this end, we
perturbate 778 tasks from the annual Competition on Software Verifica-
tion via 8 transformations. Our evaluation shows that all three verifiers
are non-robust, however, to different extents.

Keywords: Software Verification - Robustness - Testing

1 Introduction

The past years have seen enormous progress in software verification, partially
due to novel approaches being developed and partially due to optimizations of
existing techniques. Annual challenges (e.g., the RERS challenge [20]) as well
as competitions (e.g., the Competition on Software Verification SV-COMP [1])
fuel novel developments. As automatic verification is also increasingly applied to
industrial software, the quality of software verification tools (short: verifiers) is of
prime importance. In competitions, verifiers are assessed on common benchmark
sets. A benchmark case in such a set, a verification task, is typically a program
(in some programming language) together with a specification of a property. In
addition, benchmarks often contain information on the expected correct output,
the ground truth, true or false, stating whether the property does or does not hold
for the program. This assessment via benchmarks is the main form of quality
assurance for software verifiers.
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int main() { int main(){ void function(int *i){
int i = 0; int i = 0; while(*i < 5 &
while (i < 5) while (i < 5) nondet ())

i++; while(i < 5 & (ki)++; 7}
if (4 < 5) nondet ()) int main(){
error(); i++; int i = 0;
return 0; } if (i < B) while(i < 5)
error(); function(&i);
return 0; } if(i < 5) error();

return 0; }

Fig. 1. Example program (left) and two versions obtained by transformation

In this paper, we propose an approach for robustness testing of software
verifiers (for the C programming language). In general, robustness testing checks
whether a system under test (SUT) — in our case a software verifier — is sensitive
to small perturbations of the input — in our case a verification task. The small
perturbations should be inconsequential, i.e. they should not change programs
behavior or the expected verification outcome of a given verification task.

In particular, we would expect software verifiers to be robust under pertur-
bations which preserve program semantics. Consequently, our robustness test-
ing employs simple semantics-preserving program transformations and checks
whether a software verifier computes the same results for a verification task and
its transformed version. Conceptually, our testing approach is thus an instance
of metamorphic testing [11] in which the SUT is supplied with a pair of inputs
related by some metamorphic relation R; and the tester checks whether the cor-
responding outputs are related via a relation Ry. In our setting, relation R; is
semantic equality and Ry simply the identity. As Ry is the identity (the same
output should be computed for a verification task and its transformed version),
the ground truth for a verification task stored in public benchmarks carries over
to the transformed version and can also be used as an oracle during testing.
This ultimately allows us to not only check the robustness of a verifier, but also
provides us with further benchmarks for assessing its overall quality.

Example. As a first example, consider the program on the left of Fig. 1. The
program represents a simple verification task. The software verifier has to prove
that the function call error is not reachable, i.e., there does not exist an exe-
cution leading to the function call. The expected outcome for the task is true.
Our robustness testing would now for instance apply the semantics preserving
transformation loop deepening (giving the program in the middle) and further
function encapsulation (giving the program on the right). Our testing approach
then checks whether a software verifier computes the same outcome for the
transformed versions and the original version.

Contributions. In this paper, we introduce a number of such transformations
and employ them to systematically evaluate the robustness of three state-of-
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v €V =z €Z | nondet() B € BExpr :=v|x € X | B |
CeCu=ux:=A|call p|skip|error | BiABz | B1V B
if B then C) else C; fi | A€ AExpr s=v |z € X | SA |
while B do C od | C1 ; Co AL @ Ay
PeP:= procpisCend |P; P |P;C p € PId

Fig. 2. Program syntax (X program variables, PId procedure identifiers)

the-art software verifiers. In summary, we make the following contributions on
robustness testing of software verifiers.

e We propose several semantics-preserving transformations that concern the
introduction of loops, branches, recursion and functions as well as new types
of variables (pointers, arrays, structs).

e We provide a formalization of our notion of semantics preservation and prove
eight of our transformations to be sound.

e We evaluate the effectiveness of robustness testing on three state-of-the-art
software verifiers (and — to see the effect on specific verification algorithms —
three additional specific configurations of one verifier). To this end, we have
taken 778 verification tasks from the SV-COMP benchmark set and have
transformed it via 8 transformations.

e Our evaluation shows that both verification tools and verification algorithms
are not robust against semantic-preserving transformations. The degree of
robustness highly depends on the type of the employed verifier.

The implementation of all semantic-preserving transformations introduced in
this work are publicly available on Github' and can easily be adopted for testing
of software verifiers. All experimental data and our open-source implementation
are also archived and available in our supplementary artifact [17].

2 Background

We start by shortly introducing the syntax and semantics of programs? and
formalizing the task of software verification.

Program Syntax and Semantics. To ease representation, we consider a sim-
ple programming language (see Fig.2). We assume a set of program variables X
and identifiers for procedures PId. Program values v € V can only be numerical
constants or random values returned by a function nondet. Booleans B € BFExpr
are also represented by numerical values (0 for false and v # 0 for true) and can
be negated and logically connected. Furthermore, values can be modified through

! https://github.com/FlorianDyck/semtransforms.
2 For our formalization, we employ an artifical programming language; our implemen-
tation transforms C programs.
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[Als 5 v, a=(z:=A)

(skip) ——————— assign
(skip, ) = ¢ ( ) (x:= A, ¢) 5 dlx — 0]
(if1) [Ble 2 v,v#0 (if2) [B]s >0
. T 4 1
(if B then C1 else Cs fi, ) = (C1,¢) (if B then C; else C> fi,¢) = (C2,¢)
(whilel) [Blo 5 v.v 70 (while2) (5], >0
(while B do C od ,¢) = (C;while B do C od , ¢) (while B do C od ,¢) = ¢
(C1,0) % (C, ¢/ 0) 5 ¢
(seql) —— o0 2 (G.0) (seq2)—— ) 2 &
(C1;C2,0) = (C1;C2,¢) (C1;Ca, ) 5 (C2,¢)
(pdef) p € PVar (call) olpl =C
(proc p is C end ,¢) = ¢[p > C| @ (call p,¢) = (C,¢)
(pseql) (P,9) = (pse Q)M
(P P2,0) = (Po,0) P Rce) 5 (o)
(errl) (error.d) <5 & (err2) ps
, error (error;C2, ¢) — Perror

Fig. 3. Operational semantics of programs

common unary and binary operators. Statements C' € C consists of assignments,
branches, while loops, sequences and an error statement®. Altogether, a program
P € P consists of procedure definitions followed by statements.

The semantics of a program is defined by a state transition system consisting
of an initial state (P, ¢) and a transition relation — C (P x @) x Act x (P x D).
In this, a program state is a tuple (P, ¢) of the current program P € P and a
mapping ¢ : X U PId — Z UC* P x @ is the set of all such states and Act :=
{err,7} U{x:=A |z € X, A€ AExpr} is the set of actions. An ezecution trace
of a program P; and an initial mapping ¢, is a (potentially infinite) sequence

of program states (P, ¢1) — (Pa,¢o) — ... RN (Poydn) — ... such
that (P, ¢;) i (Pit1,®i+1). If an execution trace ends, we denote this by
eliding the current program and just giving the final mapping ¢*. The transition
relation — is defined by the operational semantics shown in Fig. 3. Therein, [-]y :
AFExprUBEzxpr — 2% defines the set of interpretations of a given expression with
respect to ¢. Programs are allowed to be non-deterministic represented by calling
a random function nondet, i.e., [nondet ()]s = Z. Furthermore, we define the
evaluation of the other operators as [z]s = {z} for all z € Z, [z], = {o(2)}
for x € X, [©A]y = {62 | z € [A]ls} and [A1 & As]y = {21 P 22 | 71 €
[Aille, z2 € [A2]p}. We let the set of all execution traces with initial state (P, @)
be traces(P, ¢) and its execution results be exec(P,¢) := {¢* | (P, ¢) —* ¢*}.
Execution results can also be restricted to subsets of variables X C X with
dx = {z— ¢(x) |z € X} and exec)x (P, ¢) := {P|x | ¢ € exec(P, $)}. Finally,
the function computed by a program P for a given mapping ¢ can be represented
by fp(¢) = exec(P, ¢) which can be restricted to fp|x(¢) = exec|x (P, ¢).

Weak Bisimilarity of Program States. The transformations which we
employ for robustness testing preserve the semantics of programs. We will prove

3 In Fig. 1 we used an error-function to make it proper C syntax.
4 To simplify the notation, the mapping ¢ stores both assignments to variables and
procedure definitions.
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such preservations by showing weak bisimilarity [24] between program’s transi-
tion systems. Two program states (P;, ¢1) and (P, ¢2) are weak bisimilar if they
share the same observable behavior with respect to their state transition systems.
For observability, we fix a set of program variables X C X that we are interested
in for the particular transformation. Formally, for a given X we define any behav-
ior as X -observable that changes the observable state ¢ of X (plus the error tran-
sition), i.e. any transition o € Actx :={err}U{zr == A |z € X, A € AExpr}.
We consider any changes to procedure definitions and variables not defined in
X as non-observable. Based on this, a relation R C (P x @) x (P x P) is a weak
X -bisimulation, X C X, if the following holds for all ((Py, ¢1), (P2, ¢2)) € R and
all « € Actx U {7} :

1. (P1,¢1) = (P}, ¢}) implies

3(P3, ¢b) : (Pa, ¢2) = (P3, @) and ((Pf, 1), (P, ¢5)) € R,
2. (Py, ¢2) = (Py, ¢%) implies

3(P{, ¢4) : (Pr,¢1) = (P{, ¢4) and ((P{, ¢}), (P5, ¢5)) € R.

where =:="""5 if o € Actx and =:="— otherwise. Two states (P, ¢;)
and (Py, ¢2) are weak X-bisimilar ((Pr,¢1) ~x (P2, ¢2)) if there exists a weak
X-bisimulation R with ((Py, ¢1), (P2, ¢2)) € R. Note that any two weak X-
bisimilar states (Py, ¢1) ~x (Ps,$2) share the same observable behavior [15],
i.e. Obsx (P, 1) = Obsx(Pa, ¢2) where Obsx (P, ¢) := {a1e -, € Acty |
(P,¢) == (P1,¢1) =2 ... =% 6, € traces(P, ¢)}.

Program Verification. The goal of program verification is to show that a pro-
gram P € P is safe with respect to some property ¢ (e.g., that a program is
memory safe, terminates or avoids error statements). A program verifier (or soft-
ware verifier) is a tool that proves or disproves that P satisfies . In the context
of this work, we view program verifiers as functions V, : P — {true, false, unk}
which decide whether the property is satisfied (V,,(P) = true), unsatisfied
(Vo (P) = false) or it fails to make a decision (V,,(P) = unk). The ground truth
gt € {true, false} of a verification task (P, ¢) defines whether P truly satisfies the
property . Therefore, a verifier is said to be correct for a given verification task
(P, ) if the output of the verifier matches the ground truth gt (i.e. V,(P) = gt).
Finally, we will evaluate a verifier on verification benchmarks which are sets of
verification tasks (P, ,gt) with a known ground truth.

The Unreachability Property. Here, we consider verification tasks with the
unreachability property. We assume that safety properties are encoded in the
program (e.g., as assertions) and the program verifier has to prove that error
locations are unreachable. Formally, an error location inside a program P is
unreachable iff there does not exist a state (P, ¢) with

(Pvd)) a_1> (Plvd)l) 06_2) &l_) ¢err0ra

or alternatively the error state is not contained in the execution result (i.e.,
Vo : derror € exec(P,¢)). In this work, we specifically focus on unreachability
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verifiers which simplifies the notation: unreachability verifiers Vigreach : P —
{true, false, unk} are verifiers that are specialized to prove the unreachability
property and unreachability benchmarks are sets of verification tasks (P, gt).

3 Robustness Testing for Software Verification

Our goal is to evaluate the robustness of unreachability verifiers with respect to
simple semantics-preserving program transformations. In the following, we start
by defining robustness of verifiers in general and then show how the robustness of
unreachability verifiers can be tested via semantics-preserving transformations.

3.1 Robustness of Software Verifiers

We start by defining the robustness of software verifiers with respect to some
program transformation:

Definition 1. A verifier V,, : P — {true, false, unk} is robust with respect to a
program transformation v : P — P iff:

VP P :gtp =gty py = Vo(P) =V, (v(P)),

where gtp and gt py are the ground truths for the verification tasks (P, ¢, gtp)
and (’Y(P)7<P,gt7(p)) respectively.

A verifier is said to be non-robust if there exists a program transformation -y :
P — P such that the verifier is not robust with respect to ~.

Testing Robustness. Calculating the robustness of a verifier is highly chal-
lenging in practice as the verifier would have to be evaluated on all possible
verification tasks and with all possible program transformations. Therefore, a
common approach is to test for robustness. Here, the goal is to check whether
there exists a verification task P and a transformation ~ for which the verifier
is non-robust:

AP e P gtp =gt p) = Vo(P) # V,(v(P)) .

In practice, this is often done by taking a set S C P of seed programs and check-
ing whether the verifier is non-robust for any seed s € S and any transformation
v : P — P of a defined set of transformations. If a verifier is not robust for any
of the seed programs and their transformed variants, then the verifier can be
decided to be non-robust. Note however that checking whether the ground truth
is preserved after the transformation is non-trivial. Therefore, in practice, prop-
erty preserving program transformations are often employed, i.e., gtp = gt (p)
is guaranteed by design of ~.
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3.2 Semantics-Preservation

To effectively test the robustness of software verifiers, we employ semantics-
preserving transformations of programs. In the following, we will formally intro-
duce semantics-preserving transformations and then show that they also preserve
the ground truth for verification tasks with the unreachability property.

Semantics-Preserving Transformations. To begin with, we define two pro-
grams Py and P, as semantically equivalent if they compute the same function.
Therefore, a program transformation is semantics-preserving if the resulting pro-
gram is semantically equivalent to the original program. Formally, we can define
a semantics-preserving program transformation as follows:

Definition 2. A program transformation v : P — P is semantics-preserving
with respect to some X C X if for any program state (P, ¢) the following holds:

frix(®) = fy(p)x (@)

In other words, the programs P and (P) compute the same function for all
result variables x € X. Here, the error state ¢error is independent of X, i.e.
Gerror|X ‘= Perror- Therefore, it is easy to show that any semantics-preserving
program transformation also preserves the unreachability of error-statements:

Lemma 1. Any semantics-preserving program transformation v : P — P pre-
serves the ground truth for unreachability tasks, i.e.

(berror € fP\X((b) & Perror € f’y(P)\X((b)

Note that this is a direct consequence of Definition 2. Because semantics-pre-
servation is more strict than unreachability-preservation for any X ## (), it is often
easier to show that a transformation is semantics-preserving for certain X C X
than showing unreachability-preservation. In fact, in the remaining paper, we
assume that the set of variables can be split into two distinct sets X = Xp U Ap
where Xp is the set of variables modified in programs and AT is a unique set of
variables that can only be introduced by program transformations. Further, we
assume that the introduced variables x € At can never be shared between two
transformations. In other words, we assume that Var(vy,(P1)) N Var(y2(Pe)) C
Xp for any two transformations 71,72 and two programs P;, P» where Var :
P — 2% gives the set of variables used in the program.

In the following, we introduce several program transformations that are
semantics-preserving with respect to Xp if not stated otherwise. For showing
that they are semantics-preserving, we employ the following two lemmas:

Lemma 2. Any program transformation v : P — P is semantics-preserving
with respect to X C X if all program states (P, ¢) are weakly bisimilar to the
transformed variant (y(P), @), i.e., (P,¢) =x (v(P), o) .

Proof: Assume that (P,¢) ~x (v(P),¢) is weakly bisimilar but the function
v : P — P is not semantics-preserving for P € P. Then, there either exists
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(a) loop deepening (b) loop to recursion

Fig. 4. Weak bisimulation for loop deepening and loop to recursion (dashed lines repre-
sent the relation, early aborts of the while loop are not depicted)

¢* € fp(¢) such that there is no ¢” € f,(py(¢) with Px = (bVX or vice versa.
W.lo.g. we assume ¢* € fp(¢) and ¢” & f,(p)(¢). Since ¢* € fp(¢) there
exists at least one observable trace (P, ¢) =% ... =% ¢’ with ¢1X = ¢[y- Since

(P,$) ~x (v(P),¢), there has to exist an observable trace (y(P), ¢) == ... ==
@7 with ngVX = 1X = ¢[x and ¢” € f,(p)(¢). Contradiction.

Lemma 3. Any program transformation ~v : P — P that transforms a part
of a program P with a semantics-preserving transformation is also semantics-
preserving with respect to Xp. In particular, the following program transforma-
tions are semantics-preserving:

the identity id(P) := P and vs¢q(C1; C2) := 71(C1);72(C2),

Yoranch (if B then C else Cs fi) := if B then 7,(C1) else 12(Cs) fi,
Yioop(while B do C od) := while B do v,(C) od,

Yproc(Proc p is C end) := proc p is v,(C) end,

where v1,v2 are semantics-preserving transformations with respect to Xp.

Due to lack of space we do not prove Lemma 3 here.

3.3 Transformations

In the following, we introduce eight different semantics-preserving transforma-
tions. Due to lack of space, we do not provide fully formal correctness proofs,
but partly give and explain the weak bisimulation relations employed in proofs.

Control Flow Transformations. Three of our transformations alter the con-
trol flow of the program.
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Loop Deepening (C1). Most existing software verifiers employ some type of loop
abstraction [5] or some other form of loop overapproximation [7]. To test whether
these abstraction techniques are robust with respect to loop nesting, we introduce
the loop deepening transformation defined as follows:

Vaeep(While B do C od) := while B do while B A nondet() do C od od

Note that B € BEzpr and C' € C can be arbitrary boolean expressions and
statements, respectively. Furthermore, based on Lemma 3, it is sufficient to define
program transformations only for sub-programs containing a loop. Now, to show
that Ygeep 1S semantics-preserving, we define the following weak bisimulation:

Raeep :={((while B do C od , ¢), (Vaeep(While B do C od),¢)) | ¢ € §}
U{((Cw, ¢), (while BA nondet () do C od ;Vgeep(Cw), ¢))
| $ € $,C,y = while B do C od}
U{((C;Cy, ), (C; while BA nondet () do C od ;Vgeep(Cw), ®))
| € &,C,, = while B do C od}
U{((P,9), (P, ) | P €P, ¢ €2t U{(¢,0) | ¢ € P}

We also depict the relation Rgecp in Fig. 4a. Note that, since evaluating the loop
condition has no effect on the variables, C' is the only statement or sequence
of statements that can modify the variables in ¢. In addition, if the loop ever
terminates (i.e. [B]y = 0), C either has to contain a modifying statement or
the loop body will never execute. If the loop body is never executed, both the
original program P and the transformed program 7ge,(P) will end in the same
state ¢ ((¢, ) € Raeep). Therefore, we focus in the following on the case that
the loop body is executed at least once. To preserve weak bisimilarity over Xp,
we hence have to guarantee that if C' can be executed in P then C can also
be executed in vgeep(P) and vice versa. In Fig. 4a, we can observe that this is
possible for the program transformation ygeep. The main difference is the 7 loops
that weak bisimulations abstract from. Since Rgeep is a weak bisimulation and
((while B do C od, ), (Yaeep(While B do C od), ¢)) € Raeep, We know that
the program transformation yqeep is semantics-preserving.

IF-encapsulation (C2). The branching width of a program can determine the
complexity of a verification task. Therefore, we are interested in testing whether
modern software verifiers are robust against increasing the branching width. For
this, we introduce the if-encapsulation transformation:

Vitenc(C) := if 1 then C else skip fi

Dead error (C3). Unreachability verifiers are often designed to adjust their ver-
ification complexity with respect to the occurring error-statements [13]. The
dead error transformation presents a way to inject additional such statements:

Ydead-err (C) := if O then error else C fi
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Both (C2) and (C3) are program transformations that map to the original
program state after one execution step. In other words, for any program state
(C, ¢) the transformed variant has an additional step to map to the original
program without changing any variable ((y(C),¢) = (C,#)). Therefore, both
program transformation in (C2) and (C3) are semantics-preserving.

Indirected Transformations (I1) and (I2). Indirected transformations are
transformations that redirect the data flow of a program without changing the
semantics of the program. We implemented two types of indirected transforma-
tions: array indirection (I1) and pointer indirection (12). Arrays and Pointers are
often challenging for software verifiers. Introducing them with indirected trans-
formations allows us to test the ability of verifiers to handle these data types.

In general, indirected transformations can be described in our semantics as
follows:

v (C) = px := z; Clz/pzx]; x = px,

where px is either (I1) a[0] of a newly introduced array or (I12) a pointer reference
followed by a pointer dereference (*(& x)). Note that [z/pz] in C replaces all
occurrences of some x € X by pz. The program transformation -, preserves the
semantics of the program as we initialize px to be x and then perform the same
operations on px as we would have done on x. Therefore, the resulting value of
px is equivalent to resulting value of x in the original program. In the end, we
map the resulting px back to x.

Function Transformations. So far, we mainly focused on local changes to the
program code. However, changes to the procedural structure of the program can
potentially have an impact on the verification process. Therefore, we are also
interested how procedure (or function) changes impact the verification process.

Function encapsulation (F1). In function encapsulation, we encapsulate a part
of the program inside a function and call this function in the previous context.
This function encapsulation transformation can be represented as follows:

Yeenc(C) := Proc phew is C end; call pyey

According to our semantics, the transformed program ends in the original pro-
gram after two non-observable execution steps. In other words, for any program
state (C,¢) we can map (eene(C), @) to (') (Yeene(C)i9) o (C. )
with ¢ x, = ¢i x,,- Note that for simplicity we allow that ppeyw is defined directly
next to its call. When applied in the context of a larger transformation, we
assume that pew is appended to all other procedure definitions. Furthermore,
we assume in our semantics that all variables are defined globally. This is not
true in practice. In our implementation, we simulate access to ”global variables”
by providing access to all relevant local variables inside a code block via point-
ers. Since both caller and callee access and manipulate the same memory address
for all relevant local variables in the caller context, both the original and the
encapsulated code compute the same function.
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Function inlining (F2). Inlining can be seen as the reverse operation to func-
tion encapsulation. Here, the function inlining transformation selects a random
function call and replace it with its implementation:

~e.in(call p) := C,

where proc p is C' end is defined in the program. Note that according to the
semantics any state (call p,¢) maps to (C,¢) with ¢[p] = C. If ¢[p] = C
then proc p is C end must be defined in the program. Therefore, we know
that (call p,#) = (yein(call p), ¢). As ¢ is not modified, the transformation is
semantics-preserving. Again, we assume here that variables are accessed globally.
In practice, we map formal parameters to actual parameters.

Loop to recursion (R1). Most software verifiers are effective in handling loops
but fail for recursion. Therefore, to evaluate the robustness of software verifiers
against recursion, we also introduce the loop to recursion transformation. The
transformation is defined as follows:

Yrec(While B do C od) := proc ppey is
if B then C; call p,., else skip fi

end; call pyey

To show that 7,ec is semantics-preserving, we again define a weak bisimulation
which we also depict in Fig. 4b.

Riec :={((while B do C od , ¢), (Vrec(while B do C od), ¢)) | ¢ € P}
U{((while B do C od ,¢), (call pyew, ¢[pnew — if B...])) [ ¢ € &}

U{((while B do C od ,¢), (if B then ..., d[pew — ...])) | ¢ € &}
D) ¢ed}
U{(¢, (skip , ¢[pnew = --.]))) | ¢ € P} U{(9, ¢[prew — --.])) | ¢ € P}

(

( ..
U{((C; while B do C od ,¢), (C; call pyew, ®[Pnew — -

( .

(

U{((P, ), (P, ¢[puew — -..])) | P € P, € B}

As soon as the function definition is handled, we can observe that the behavior
of the while loop directly maps to the behavior of the recursive function call.
In particular, the statement or statement sequence C' can only be executed as
often as in the recursive function. Since C can only include observable actions,
the two state transition systems are weak bisimilar.

3.4 Robustness Testing Through Repeated Transformations

To evaluate the robustness of unreachability verifiers, we check whether there
exists a seed program P € P and a semantics-preserving transformation v :
P — P such that Vinreach(P) # Vanreach (Y(P)). Recall that since ~ is semantics-
preserving, it also preserves the ground truth of the seed program. Therefore,
if our check succeeds for a combination of program and transformation we can
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Algorithm 1 Robustness testing algorithm

NR — 0 > non-robust transforms (pairs of seed and transformed seed)
for S € Seeds do
P—S
for k—1...ndo > apply n random transformations
v « random transformation
P —~(P)

if Vunreach(s) ?é Vunreach (P) then
NR — NRU{(S, P)}

conclude that the verifier is non-robust. In practice, we apply Algorithm 1 and
we vary the number of transformations applied to the seed program. This is
sound since chains of semantics-preserving transformation are also semantics-
preserving.

4 FEvaluation

We implemented our testing approach and all semantics-preserving program
transformations for testing unreachability software verifiers for C programs. In
the evaluation, we are interested in answering the following research questions:

RQ1 Are software verification tools robust against semantics-preserving program
transformations?

RQ2 Are software verification algorithms robust against semantics-preserving
program transformations?

RQ3 Which transformations reveal non-robustness of software verification algo-
rithms?

We designed individual experiments for answering our research questions.

4.1 Benchmark Setup

During our evaluation, we evaluate the robustness of verification tools as well as
specific verification algorithms. For this, we transform existing verification tasks
by applying our semantics-preserving transformations up to 100 times. Transfor-
mations are applied randomly and for answering RQ1 and RQ2 we apply all eight
semantics-preserving transformations in addition to three helper transformations
(for2while, break2goto and add_compound). The helper transformations per-
form only syntactic changes in C which will allow us to apply our technique
on a wider range of verification tasks. For RQ3, we apply transformations of
each transformation group (ControlFlow, Indirected, Functions and Recursion)
individually to evaluate their impact on the robustness of verifiers. In our experi-
ments, we measure two types of robustness: true-robustness and false-robustness.
True-robustness is the percentage of verification tasks that were decided to be
correct before and after the transformation. False-robustness is symmetrically



78 F. Dyck et al.

Table 1. Robustness results for verifiers on 778 tasks

(a) CPAchecker (b) ESBMC (c) Symbiotic
after transformation after transformation after transformation
true false unk‘ robust (%) true false lmk‘ robust (%) true false unk. ‘ robust (%)
o true 136 43 (168  39.2 o true (139 3 L a79 o true 0 87 785
S false 3 5 617 & false 0 50 69.1 & false 0 36 | 765
< unk 33 50 . T00 “unk 11 4 B 954 “uk 1 5 [BEJ 973

defined for tasks that are verified to be incorrect (false). A value below 100%
means that the verifier is non-robust with respect to our transformations. Bench-
marks were executed via BenchExec [8]. For RQ1, we use a 24-core machine with
128GB RAM. We limit the verifiers to 15GB RAM, a timelimit of 15min and 1
physical core (2 processing units) per task. The experiments for RQ2 and RQ3
were performed on a cluster of 4-core machines with 33GB RAM.

4.2 Experimental Results

For our experiments, we selected unreachability verification tasks from the
benchmark set of the SV-COMP 2023 [1] as our seed programs. Included are
all 778 tasks from the ReachSafety-Loops category.

RQ1. To answer RQ1, we evaluate the robustness of three of the most success-
ful verifiers in the SV-COMP 2023 ReachSafety category [1]: CPAchecker [4],
Symbiotic [10] and ESBMC [19]. CPAchecker composes several verification algo-
rithms into verification strategies which are selected based on certain program
features [2] (e.g. the occurrence of loops, arrays, floating point operations). Sym-
biotic employs program slicing [10] to remove parts of the program irrelevant for
verification and then employs symbolic execution for the verification. ESBMC
is built upon the bounded model checker CBMC [14] and uses k-induction [19]
to infer loop invariants for the verification. Our results for the three verifiers are
shown in Tablel (showing the number of tasks with specific outcomes before
and after transformation). The diagonals in the table give the number of tasks
with the same outcome (i.e., on which the verifiers are robust). We can observe
that no verification tool is robust with respect to all of our transformations,
CPAchecker in particular having difficulties with true- and false-robustness and
Symbiotic standing out with always achieving more than 70%-robustness. For
obtaining an insight why these verification tools are non-robust, we reviewed the
experiment logs for the individual verification tools. We found that CPAchecker
has significant problems with programs that contain recursive function calls.
This does not only lead to a low robustness score but also to high number of
new (partially incorrect) true and false verdicts (see the last row of Table 1a). In
the case of ESBMC and Symbiotic, the tools fail to verify a significant number
of the transformed verification tasks due to timeouts and out-of-memory errors.
It is unclear whether this is also caused by our loops to recursion-transformation.
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Table 2. Robustness results for verification algorithms on 778 tasks

(a) Symbolic Execution (b) Predicate Analysis (c) k-Induction
after transformation after transformation after transformation
true false unk. ‘ robust (%) true false unk.‘ robust (%) true false unk. ‘ robust (%)
o trie 5 o N0 1.9 o true 0 71 603 o true (105 0 4T
= £ &
:;mm 0 66 | 535 E‘ifalsc o BN 9 | 50 :gfalsv 0 20 | 840

wk. 0 2 [EEEN 995 wk. 18 0 96.7 wmk. 9 s XY 95

Therefore, to avoid that the measured effect on the tool’s robustness is dominated
by recursion, we also evaluated the tools on verification tasks transformed via
all transformations except loops to recursion. We find that CPAchecker is signif-
icantly more effective in avoiding incorrect results on verification tasks without
recursion. However, surprisingly the tool performs even worse in terms of true-
and false-robustness (with a score of 28.8% and 57.8% respectively). Interest-
ingly, avoiding recursion in the transformation process has little to no influence
on the robustness of the other tools. The only exception is the true-robustness
of ESBMC which further decreases by 9.6%. Overall, we can conclude that:

The tested verifiers are not robust against semantics-preserving transforma-
tions. The degree of robustness is highly dependent on the type of transfor-
mation applied during testing.

RQ2. As verifiers typically employ a mixture of different algorithms, we were
also interested in the effect of the transformations on standalone algorithms. For
RQ2, we thus evaluated the robustness of three verification algorithms imple-
mented in CPAchecker®: (1) Symbolic Execution [6] using symbolic values to
abstract the concrete program state, (2) Predicate Analysis [5] employing predi-
cate abstraction, and (3) k-induction [3], an extension of bounded model checking
with inductive invariants. Together all three algorithms cover a wide range of
those used in state-of-the-art tools in SV-COMP [1]. The implementations of
these algorithms however do not support programs with recursion. Therefore,
we exclude transformation loop to recursion. Our results are shown in Fig. 2.
We can observe that verification algorithms are also not robust against the
semantics-preserving transformations. Predicate analysis is the most robust algo-
rithm with a true-robustness score of 60.3% and false-robustness of 85.0%. Sym-
bolic Execution achieves the lowest robustness scores for both true-robustness
and false-robustness. Overall, we find that the transformed tasks are significantly
more challenging for the algorithms than the original tasks. In fact, for most of
the tasks that they have previously solved, the algorithms fail on the transformed
task because of a timeout or an out-of-memory error. Interestingly enough, there

® We chose CPAchecker for this purpose as it is the only verifier configurable to one
particular algorithm.
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Table 3. Robustness results for symbolic execution (SymEx), predicate analysis (Pred)
and k-induction (kInd) per category (transformations applied 1, 10 or 100 times (sub-
script); reporting true robustness (%TRob), false robustness (%FRob) and total num-
ber of unknowns (#unk)).

ControlFlow Indirected Functions Recursion
%TRob %FRob #unk %TRob %FRob #unk %TRob %FRob #unk %TRob %FRob #unk

SymEx; 979 955 352 938 962 361 541 667 496 45 | 220 HYS
SymExio = 56.6  89.1 456 60.6 627 541 667 496 0.0 L 696

SymExi00  56.6  84.7 462 59.8 628 541 667 496 715

Pred,; 100.0  100.0 525 90.0 94.0 542 60.7 88.2 573 690
Predio 99.3 100.0 526 82.1 86.0 600 57.9 84.3 579 712
Predioo 94.2 96.0 536 82.1 86.0 600 52.9 80.4 587 712
kInd, 94.8 99.1 401 81.2 98.2 421 91.5 98.2 399 691
klIndio 66.2 93.8 468 71.8 95.6 444 91.5 96.5 407 714

kIndioo 59.6 74.3 504 70.9 95.6 446 82.6 89.5 434 715

is a significant number of unknown results where the individual algorithms stop
the verification of the transformed task without exceeding any resource limit.
This is most evident in the symbolic execution. Here, the algorithm stops after a
few seconds with an unknown result in 117 of the 320 cases. This could indicate
that our transformations introduce program constructs that are not supported
by the algorithm (see RQ3). Summarizing, we find that:

Verification algorithms are not robust against semantics-preserving transfor-
mations. The degree of robustness and how much the verification complexity
increases is highly dependent on the employed verification algorithm.

RQ3. For answering RQ3, we evaluate the robustness of the algorithms for
the different transformation categories ControlFlow, Indirected, Functions and
Recursion in isolation. We start from the same seed benchmark and apply 1, 10,
100 transformations of a category. We excluded tasks which cannot be trans-
formed in at least one of the transformation categories (excluding 63 tasks with-
out loops). The algorithms are again evaluated on the task before and after the
transformation. Results are shown in Table 3.

As expected, loop to recursion has the highest negative impact on the verifi-
cation performance. The verification algorithms usually abort and fail as soon as
they discover a recursive function call. It is however surprising that some tasks
can still be solved after the loop to recursion transformation was applied. There-
fore, there are some tasks which can be solved without the need of processing the
recursive function call. Apart from recursion, we find that the verification algo-
rithms struggle to be robust for all transformation categories (with the exception
of predicate analysis for a single application of control flow transformations).
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In general, algorithms fail to be robust at least on a few tasks as soon as we
apply multiple transformations. This is expected as we naturally increase the
verification complexity by applying our transformation. It is however surprising
that predicate analysis is the only algorithm that is nearly robust for control
flow transformations while the other algorithms struggle in this category. The
same also holds true for the Functions category where k-induction dominates in
terms of robustness. Finally, our robustness results on individual transformation
categories also allow us to identify the cause for the robustness problems of sym-
bolic execution identified in RQ2. While symbolic execution is mostly robust for
function and control flow transformations, it fails to be robust on most tasks
after more than 10 applications of the indirected transformation. Upon closer
inspection, we find that symbolic execution fails on these tasks by reporting an
unknown or running into a timeout. From the tool’s logs it is not clear why this
happens, but we expect that symbolic execution either does not support arrays,
pointers or combinations thereof. To validate this hypothesis, we also applied the
Array indirected transformation and the Pointer indirected transformation inde-
pendently (100 times each). We found that symbolic execution is significantly
more robust against Array transformations (with a true-robustness of 90.3% and
a false-robustness of 95.8%) than against Pointer transformations (with a true-
robustness of 4.6% and a false-robustness of 62%). This indicates that symbolic
execution as implemented in CPAchecker does not fully support the introduced
pointers. Overall, this analysis demonstrate that robustness testing can be useful
for identifying the individual weaknesses of verification algorithms. For RQ3, we
thus get:

Verification algorithms have different strengths and weaknesses which can
be uncovered by robustness testing. Different transformation categories can
reveal robustness problems of individual algorithms. By using transformations
in isolation, it is possible to identify root causes for individual weaknesses of
verifiers.

5 Related Work

Assessing the quality of software verifiers in general is an important problem [9]
and many approaches have been proposed that address this problem by generat-
ing new benchmarks [16,25,26] and by transforming existing code [18,21,28].
For example, Chen and Furia [12] evaluated the robustness of intermediate
verifiers by transforming existing Boogie programs with semantics-preserving
transformations like swapping declarations or joining assertions. In contrast, we
focused on semantics-preserving transformations for C code and we showed that
complete verification tools are not robust against our transformations. Kapus
and Cadar [21] evaluated the correctness of symbolic execution engines with
semantics-preserving transformations. For this, they generated small determin-
istic C programs and then replaced constants with symbolic variables. The trans-
formations are semantics-preserving as the symbolic variables are constrained to
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be equivalent to the replaced constants. While we also target C programs, our
focus is more on the robustness of C verifiers in general. In fact, we showed that
our transformations can be used to test the robustness of various unreachability
verifiers. Zhang et al. [28] evaluated the correctness of unreachability verifiers by
injecting arbitrary error locations into existing C code. As their transformations
are not semantics-preserving, they had to rely on the execution of programs
(with deterministically defined inputs) to determine the ground truth. Our app-
roach works for arbitrary C programs and our transformations guarantee that
the ground truth is preserved. Fink et al. [18] randomly generate artificial C
code to benchmark software verifiers. For this, they use a template to gener-
ate various correct programs (so that the error location is unreachable) and
employ correctness-preserving transformations on the generated code. In con-
trast, our transformations can be applied to correct and incorrect programs and
we formally proved their soundness. While we mainly focused on testing the
robustness of C software verifiers, evaluating software analyzers is also an issue
in areas other than C software verification. For example, Dolan-Gavitt et al. [16]
generate benchmarks for fuzz testing via bug injection into realistic code. Schott
and Pauck [25] recombined existing benchmarks for evaluating taint analysis
tools. Steffen et al. [26] generated benchmarks for evaluating C software veri-
fiers. While our approach is not targeted at generating new benchmarks, it can
be directly used to augment existing benchmarks with a known ground truth.

Finally, semantics-preserving transformations have also been applied for test-
ing C compilers [22,23,27]. However, these works used a relaxation of semantics-
preservation called Equivalence Modulo Input (EMI) [22]. Transformations that
are semantics-preserving under EMI guarantee that program semantics are pre-
served for a restricted set of inputs. This allowed for example Le et al. [22] to
drop certain statements which are never reached for a given set of inputs. In
contrast, our transformations guarantee semantics-preservation for all possible
inputs which is a necessity for testing software verifiers.

6 Conclusion

In this paper, we have proposed a new technique for testing the robustness of
C software verifiers. We have employed this technique to test the robustness of
entire verification tools as well as individual verification algorithms. Our evalu-
ation has shown that most of the evaluated approaches are non-robust against
the eight semantics-preserving transformations introduced in this work. In addi-
tion, it shows that the robustness against individual transformations is heavily
dependent on the type of the employed verifier. While our technique is effec-
tive in uncovering robustness problems of software verifiers, identifying the root
cause of the robustness problem is still challenging. For future work, we see the
integration of search-based techniques that search for minimal modifications of
the input that still trigger the non-robustness of the verifier. Minimal modifica-
tions — consisting of one or two types of transformations (such as the Pointer
transformation in the case of symbolic execution) — are easier to interpret, which
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also makes it easier to isolate the cause of non-robustness. Finally, we believe
that our insights in the robustness of software verifiers can potentially guide the
development of more robust verifiers.
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Abstract. The correctness problem for reactive systems has been thor-
oughly explored and is well understood. Meanwhile, the efficiency prob-
lem for reactive systems has not received the same attention. Indeed, one
correct system may be less fit than another correct system and determin-
ing this manually is challenging and often done ad hoc. We (1) propose
a novel and general framework which automatically assigns comparable
fitness scores to reactive systems using interpretable parameters that are
decoupled from the system being evaluated, (2) state the computational
problem of evaluating this fitness score and reduce this problem to a
matrix analysis problem, (3) discuss symbolic and numerical methods
for solving this matrix analysis problem, and (4) illustrate our approach
by evaluating the fitness of nine systems across three case studies, includ-
ing the Alternating Bit Protocol and Two Phase Commit.

Keywords: Formal methods - Verification - Reactive systems

1 Introduction

Correctness guarantees help us avoid irritating, costly, and, in some cases, deadly
implementation bugs. However, two systems that both satisfy a correctness spec-
ification may differ with respect to efficiency. Inefficient systems result in real
world consequences: delaying content delivery, using excess energy, and wasting
clock cycles better spent elsewhere.

Much like reasoning about correctness, reasoning about efficiency is cogni-
tively demanding, prone to errors, and requires expert insight. The framework
proposed in this paper strives to eliminate this human burden, mitigate these
errors, and capture the expert’s insight and intentions in the parameters of the
framework. The proposed framework accomplishes these goals by assigning a
comparable fitness score to every system, such that we can decide between two
systems on the basis of their score. Consider the following example.

Ezample 1. Consider the finite labeled transition systems (LTSs) depicted in
Fig. 1. Labels s, a, t represent send, acknowledge (ack), and timeout respectively.
The symbols !, ? (output, input) denote rendezvous communication in which a
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! transition can only be taken in one LTS if the corresponding 7 transition is
taken in another LTS. Transitions with neither !, nor 7, can be taken freely.
LTS F represents a sender in the environment. LTSs G and B are ‘good’ and
‘bad’ receivers, respectively. B is ‘bad’ in the sense that it waits for two send
actions before replying with an acknowledgement, whereas G replies right away.
The synchronous products of the sender E with receivers G and B, denoted E||G
and E||B, are LTSs M and M’ respectively. Both M and M’ are correct, in the
sense that they satisfy the specification every s is eventually followed by an a
(given some fairness assumptions that prevent a from being ignored indefinitely).
Because they both satisfy this specification, M and M’ are indistinguishable
from the perspective of traditional verification and synthesis. However, M is
intuitively preferable to M’ because G is a better receiver than B. As we will
show in Sect. 5, our framework assigns fitness scores 0.25 and 0.14 to M and M,

respectively, and thus distinguishes M as a better system. a
(a) The sender E (b) A “good” receiver G (c) A “bad” receiver B

s t
a S

(d) The product system M := E||G (e) The product system M’ := E||B

Fig. 1. A simple communication protocol modeled with finite LTSs.

The exact nature of the fitness score depends on the application domain. Our
framework decouples the description of the system (e.g., the LTSs of Fig. 1) from
a set of domain-specific parameters which capture user preferences.

By assigning fitness scores to systems, as in the example above, our frame-
work can be used for performance evaluation. Our framework is additionally
motivated by recent work in the synthesis of distributed protocols [5]. Unlike
humans, synthesis tools typically ignore efficiency considerations. In some cases,
these tools generate systems that are, strictly speaking, correct (i.e., they sat-
isfy their logical specification), yet clearly unorthodox or even inefficient [6]. In
such cases, we can use our framework to rank automatically generated systems
according to their fitness score. In other cases, we may want to generate all
correct systems [24], potentially with the aim of doing fitness-optimal synthesis

(c.f. page 8).
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In summary, the contributions of this paper are as follows: (1) We propose
a novel and general framework for automatically assigning a comparable fitness
score to a system; this framework uses interpretable parameters that are decou-
pled from the system being evaluated. (2) We provide an automated method for
computing fitness scores; our method ultimately reduces the fitness-score com-
putation problem to a matrix analysis problem. (3) We discuss symbolic and
numerical methods for solving this matrix analysis problem. (4) We present an
implementation and evaluation of our framework: our prototype tool allows, in
a matter of seconds, to automatically compute the fitness of nine automatically
synthesized systems.

We organize the rest of the paper as follows. Section2 formalizes prelimi-
nary concepts. Section 3 presents our framework. Section 4 presents a method to
compute fitness scores. Section 5 illustrates our approach on the communication
protocol of Example 1, Two Phase Commit, and the Alternating Bit Protocol
taken from [6]. Section 6 discusses related work. Section 7 concludes the paper.

2 Preliminaries

N, Q, R, R>p, and B = {0,1} denote the sets of natural, rational, real, non-
negative real numbers, and booleans, respectively. A function h : N* — Q is a
scalar arithmetic function if h can be written in terms of basic scalar arithmetic
operations +, —, X, /, applied to its natural number arguments.

In traditional verification, we typically only consider the yes/no question:
does the system produce any violating traces. While this question allows us to
discard of the relative abundance of traces, the question of fitness is not so. All
else equal, if a system is capable of producing the same ‘unfit’ trace by executing
any one of many distinct runs, then that system is worse than a system that can
produce the unfit trace in just one particular way. Toward this end, we require
a notion of multisets.

A multiset X over domain D is a function X : D — N, where X (z) repre-
sents the multiplicity of element z, i.e., how many times x occurs in X. M(D)
denotes the class of all multisets over D, i.e., the set of all functions X : D — N.
If X(x) = m, then we write z €, X (possibly, m = 0). The cardinality of X,
denoted |X|, is the sum of the multiplicities of all members of the domain D.
We write multisets as {...} to differentiate them from sets.

Ezample 2. We denote by X = {0,0,1,1,1} the multiset where 0 €5 X and
1 €5 X. Then: |X| =2+3=5. 0

If AC D and X : D — N is a multiset, then X restricted to A is a new
multiset, denoted X |4: D — N and defined as follows. If ¢ A, X4 () =0
and otherwise if x € A, then X|4 (z) = X(z). Let X : D — N be a multiset and
let f: D — D’ be a function. Then intuitively, the image of X by f is a multiset
denoted f ® X obtained by applying f to the members of X. E.g. if f(z) = 22,
then f®{2,-2,3,3,3} = {4,4,9,9,9}}. Formally, we define f © X : D’ — N as
follows. (f®X)(y) := [(X|p, )|, where D, := {x € D | f(x) = y}. We may treat a
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set as a multiset with all multiplicities as 0 or 1 and take its image by f to obtain
a multiset. If X € M(N?) and 1 < i < d, then sum(X,i) = > ve.x CTi, where x;
is the ith component of z € N¢. E.g. sum({(1,2), (1,2),(3,4)},2) =2+ 2 + 4.
A finite labeled transition system (LTS) is a tuple M = (X, Q, Qo, 4),
where: X' is a finite set of labels; @ is a finite set of states; Qo C @ is the set of
initial states; A C Q x X' x @ is the transition relation. An n-length run of M is
a sequence t = qo = q1 3 qo... 28 ¢, such that gy € Qo and (g;,ai11,¢i11) € A
for all i = 0,...,n — 1. The trace of t, denoted Lab(t), is the sequence of labels
ayas...a,, while Sts(t) = qoqi...qn is the sequence of states visited during t.
[M],, denotes the set of all n-length runs of M. Two runs ti,ty € [M], may
have equivalent traces, i.e., Lab(t;) = Lab(tz). We denote the multiset of all n
length traces of M as M,, = Lab ® [M],. We denote the 0 length trace as e.
Then [M], = Qo and M is the multiset containing e once for each state in Q.

Ezample 3 (Two Systems). We define two LTSs M) and M over X = {0, $}.
We interpret the traces of these systems as follows: $’s are money that we receive,
and 0’s are lapses in this income. Intuitively, we prefer behaviors that maximize
the rate at which we receive $’s.

Let MM be the LTS with one state and a self-loop with label $. So M,(ll) con-
tains one n length trace of multiplicity 1: $”. Let M () be the LTS that alternates
between two states, outputting $ when leaving the initial state and 0 when leav-
ing the other. So M? contains one trace of multiplicity 1: ($0)L?/2/g(n mod 2),
i.e., even length prefixes end in 0 and odd length prefixes end in $. a

A distributed system is typically modeled as the product of a set of LTSs.
This product can be defined in the standard way, and is itself a monolithic LTS.

A deterministic finite automaton (DFA) is a tuple M =
(X,Q, 90, Qace, 9), where: X is a finite alphabet; @ is a finite set of states; ¢o € @
is the single initial state; Q4. C @ is the set of accepting states; 6 : Q@ x X' — @
is the transition function. Unlike a generic LTS, every trace w € X* corresponds
to one and only one finite run of a DFA M.

3 A Formal Framework for Capturing Fitness

Our framework assigns a real number called a fitness score to every system. The
key idea of our framework is that it decouples the description of the system from
the following set of domain-specific framework parameters: (1) A finite alphabet
Y, eg., {0,8}. (2) A fitness function, f : £* — N?. This function measures
some quantity of finite prefixes of infinite traces. (3) An aggregate function,
@ : M(N%) — Q. This function takes a multiset of fitness values, X € M(N9),
and compiles the values into a single value. Examples include min, max, average,
etc. taken over arithmetic combinations of natural numbers.! In addition, the
framework may also include: (4) A comparison relation, <, used to compare the

1 Slight generalizations to the framework, omitted here for the sake of simplicity, are
able to capture, e.g., aggregates that output tuples of rational numbers [22].
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fitness scores of two different systems. We next provide examples and formal
definitions of these parameters.

Fitness Functions: The rate function is an example of a fitness function:

Definition 1 (Fitness Function: Rate of $). For X' = {0,$} define rateg
(w) = (#s(w), |w|), where #g(w) is the number of $’s in w and |w| is the length
of w. This fitness function treats a label as a unit of time. O

Ezample 4 (Rate of $ Applied). Recall the systems MY = {$"} and M2 =
{($0) /2 g(nmod W from Example 3. We apply f := rateg to the n-length
partial runs of these systems. Taking the image of M) and M@ by f yields:

oMY ={f8"} = {(nn)}
FOMP = {f((80)l"/2gn med D)} = {([n/2],n)}
O

We represent a fitness function f : X* — N? by a d-tuple (f1,..., f4), where
each f; = (¥, Qi,q,Q%¢,6;) is a DFA. Specifically, consider an input w € X*.
When the DFA f; consumes w, it visits a sequence of states, § = ¢Y, ¢}, ..., ¢".
Interpreting f; as a function f; : X* — N, we define f;(w) as the number of
times an accepting state is visited in §. We then define the fitness function
f:X* — N so that f(w) = (fi(w),..., fa(w)). For instance, Fig.2 depicts the
DFA representation of rateg from Definition 1 and, e.g., f($0$$0) = (3,5).

0 $ 0,%

(s ()
e OB ORI OO

0

Fig. 2. The two DFA representing the rates fitness function: fi computes the number
of $’s in a word; fa2 computes the length of the word.

Aggregate Functions: The average rate function is one example of an aggre-
gate function. The average rate function treats ordered pairs as fractions and
takes the average value:

Definition 2 (Aggregate Function: Average Rate). For X € M(N?), [et:

1 D

Qppe(X) = — E .=

o(X) | X| "y
(P,g)EmX
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Example 5. This example emphasizes the role of multiplicity in aggregates. For
instance, if X := {(1,3),(1,3),(2,3)}, then the (1,3) term is counted twice:

3
—
—

Qug(X) = % Z m-= = 7(2-—+2) = 4/9

a

Ezample 6. This example applies @,,, to the running example (Example 3).
The average is moot here as there is only one partial trace of each length. Recall
from Example 4 that f ® M. = {(n,n)} and f® M = {([n/2],n)}, where
f = rateg. We can apply average rate to these images: @aug(fGMy(Ll)) =n/n=1
and @g,(f © M) = [n/2]/n. O

Another example of an aggregate function is the mazimum rate function:

Definition 3 (Aggregate Function: Maximum Rate). For X € M(N?):

Q(X) = max{p/q| (p,q) € X}

Ezample 7. For instance, if X := {(1,3),(1,3),(2,3)}, then:
@Q(X) = max{1/3,1/3,2/3} = 2/3
O

In principle, an aggregate function can be any mathematical function with the
appropriate type (c.f. page 4). But for the sake of computation, we want an aggre-
gate function to be represented as a scalar arithmetic function h(x1, xa, ..., zq).
We say that h : N¢ — Q is a faithful representation of @ : M(N?) — Q if and
only if for all X € M(N?),@(X) = h(sum(X, 1), ..., sum(X,d)). We will see in
Sect. 4 that this form of representation and the definitions that follow are key,
as the heart of our method is computing each sum(X, i), where X = f ® M,.
The importance should be clear by the time we state our primary correctness
result, Theorem 1.

While h might not be a faithful representation of @ for all X, h may be
a faithful representation assuming that X satisfies some condition. The fitness
function may in turn guarantee that X satisfies that condition. Fortunately,
this relationship holds between @, (Def. 2) and rateg (Def. 1). The following
definition and lemmas capture this useful situation:

Definition 4 (Conditional Representation and Compatible). Let ¥ be
a predicate over M(N?), i.e., a mapping ¥ : M(N?) — B. Additionally, let
@ : M(NY — Q be an aggregate function and h : N* — Q be a scalar
arithmetic function. Then h is a conditional representation of @Q subject to
¥ if and only if for all X € M(N?), if ¥(X) holds (i.e., ¥(X) = 1), then
Q(X) = h(sum(X, 1), ..., sum(X,d)).
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Let h be a conditional representation of the aggregate function @Q subject to W.
Let f be a fitness function. We say that h and f are compatible when W(f® M,,)
holds for any LTS M and any n € N. O

Let predicate W,qi(X) := ‘If (p,q), (p',¢') € X, then ¢ = ¢’.> Then we have
the following two lemmas.

Lemma 1. Let X € M(N?) and suppose Wue(X) holds. Then
Qu(X) = sum(X,1)/sum(X,2). Therefore, Qg is conditionally represented
by h(z1,x2) = x1/x2, subject to Yrate. O

Lemma 2. For alln € N and all LTS M, W,qc(rates © M,,) holds. Hence, rateg
and h(xy1,xe) = x1/x2 are compatible. O

Lemma 1 follows from the fact that the average of a multiset of fractions is
equal to the sum of the numerators divided by the sum of the denominators
when the denominators are all equal. Lemma 2 is immediate: if w € M, and
rateg(w) = (p,q), then ¢ = n. From Lemma 1 and 2 it follows that @,,, and
rateg are compatible. Therefore, if the fitness function is rateg we can represent
@ ,y4(X) with the expression sum(X,1)/sum(X,2).

Note that fitness functions other than rateg might not be compatible with
@gyq- For instance, let f(w) = (#s(w), #o0(w)), which measures the number of
$’s per 0. f does not satisfy W,q, but it is a realistic fitness function. In the
case of rateg, time is measured by the observation of any label from Y. Now for
f, time is measured using only 0. If $ denotes a local action of a server and 0
an interaction between two servers, f captures communication complexity. We
leave handling of such non-compatible fitness functions for future work.

Fitness Score: Given alphabet X, fitness function f, and aggregate function
Q, the fitness score of an LTS M, denoted @;M, is defined to be the limit
Q¢ M :=lim, 0o Q(f © M,,). This limit is a value in R>o U {oco0, L}. The limit
either: converges to a value v € R>¢, in which case the score is v; or increases
without bound, in which case we assign the value oo; or exhibits some other
behavior such as oscillation, in which case we assign the ill-behaved value L.

Comparison Relations: A comparison relation =< is a subset of (R>g U
{00, L})2. If (a,b) € <, we write a < b. If neither @ < b nor b < a, we say
that a and b are incomparable. Ignoring co and L for the moment, < could be
any one of <, <, >, or > on R. Extending this comparator to co and L would be
up to the user. One choice is to have these values be incomparable to any other
value. Note that, even though the aggregate @ maps to Q, < needs to compare
real (and not just rational) numbers because the fitness score involves taking a
limit. The semantics of a < b are that a is preferrable to b.

Ezample 8. Concluding our analysis of Example 3, consider an instance of our
framework with fitness function rateg (Definition 1), aggregate function @,
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(Definition 2), and comparison operator < := > (since we prefer high rates of
income). We can then compare the two simple systems introduced in Example 3.
Building on what we have presented so far (c.f. Examples 4 and 6), we have:

oMY = lim @(foMV) = lm1 = 1
2
a;M? = lim Q(f o MP?) = m 21 1/2
n—oo n—oo n

Because @fM(l) > @fM(Q), we conclude @fM(l) < @fM(z) and therefore we
prefer M) to M), This result aligns with our intuitions; we would rather
receive a dollar every day than a dollar every other day. O

Evaluation, Comparison, and Synthesis Problems: Within our frame-
work, we can consider various types of computational problems. A basic problem
is that of evaluating the fitness score of a given system: Given a fitness function
f, an aggregate function @, and a system M, compute Q;M. Another prob-
lem is that of comparing two systems: Given a fitness function f, an aggregate
function Q, a comparison relation <, and two systems My, My, check whether
QyM; < @Q;M,. We can also consider fitness-optimal synthesis problems, which
ask to find a system with the best fitness score, perhaps subject to some cor-
rectness constraint (e.g. an LTL formula). Of these problems, in the rest of this
paper we will focus on the fitness evaluation problem:

Problem 1 (Fitness Fvaluation Problem). Let M = (X Q,Qo,A) be a finite
LTS and let f = (f1,..., fa), where each f; is represented as a DFA. Let @ :
M(N9) — Q be an aggregate function represented by the scalar arithmetic
function h : N* — Q. Finally, suppose that h and f are compatible. The fitness
evaluation problem is to compute the fitness score Q¢ M of M, i.e., to compute
lim, 00 Q(f © M,,). O

4 Reducing Fitness Evaluation to Matrix Analysis

In this section we propose a method to solve Problem 1 that consists in the
following steps (assuming the same notation and setup as in Problem 1):

1. Compute the product automaton P; = M||f;, for each i € {1, ..., d}.

2. For each P;, compute a matrix-vector pair (&;,v;) representing a recurrence
relation. We call the matrix &; the recurrence matriz and the vector v; the
wniatial condition vector.

3. Solve the following matrix analysis problem:

Problem 2. Let g;(n) = (ff“vi)o for fixed square matrices &1, ...,&; and vec-
tors vy, ..., vg with non-negative integer entries and where (u)y denotes the first
entry of vector u. Let h : N — Q be a scalar arithmetic function. Compute

lim, o0 h(g1(n), g2(n), ..., ga(n)). O
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The motivation for the above steps follows. In step 1, the product P; repre-
sented all simultaneous paths through M and f;. L.e., a path through P; corre-
sponds to taking a path through M and handing the transition label encountered
at each step to the automaton representing f;. As mentioned, step 2 computes a
recurrence relation, which is reasonable because the number of accepting states
visited across (n+ 1)-length paths is related to certain quantities computed over
the n-length paths. The exact relationship is explained in detail in Sect.4.1.

The correctness of the reduction to Problem 2 (Corollary 1) hinges on the
fact that g;(n) = sum(f ® M,,1), i.e., computing sum(f ® M,, i) (which is then
an input to the aggregate function) reduces to computing the nth term of a
recurrence relation, which in turn reduces to taking a matrix power.

Step 1 of the method (computing automata products) is standard. Therefore,
in the rest of this section, we focus on explaining Steps 2 and 3.

4.1 Step 2: Constructing the Recurrence Relation
We will first explain the recurrence relation construction by example and then

give the general construction.

By Example: We skip the first step of the method and assume that we have a
product P = M||f1. In particular, we consider the automaton of Fig. 3.

n D

Fig. 3. A toy product Pi = M||f1. P has two states named so and si. so is the initial
state and s; is the accepting state. The transition labels from X are not needed and
hence are omitted.

Fig. 4. Partial unfolding of the automaton of Fig.3 into a tree up to depth 4. The
column labeled n denotes the number of transitions taken.
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From the automaton of Fig. 3 we extract the following recurrence relations:

Brpr = 02 + B3 B" =1 (1)
Bl = 070, o' =0 (2)
oty = oy + oy, ap’ =0 (3)
iy = + 6,0, ayt =0 (4)

an = a0 +ast, ag =0 (5)

where (as visual aid we provide Fig.4, which displays the unfolding of P; of
Fig. 3 into a tree containing all paths up to length 4):

— B2 is the total number of n-length paths through P ending in state ¢, e.g.,
0 =1, 55t =0, 83° =3, ;' =3.

— af is the total number of accepting states visited along all n-length paths
through P; restricted to paths terminating in state ¢, e.g., af* =0, af' =1,
as’ = 2.

— ay is the total number of accepting states visited along all n-length paths
through Py, eg., a0 =0, 01 =1, as =2, ag =5, ag = 10.

— ag is a dummy variable representing the initial condition of «a,. Notice that
the v, term of the recurrence is unique in that no other term depends on it.

We determine each equation of the example recurrence relation as follows:

Equations (1) capture the number of paths of a certain length ending in state
s0. The initial value 5;° is 1 because sq is an initial state. Otherwise, notice that
so has two predecessors: s and s;. To walk an (n + 1)-length path ending in sy,
it is necessary and sufficient to walk an n-length path to one of its predecessors
and then take one more step. Hence, we compute 3,° ; as the sum of ﬂs(’ and
(321, Analogous reasoning yields Equations (2); notice the initial value 33! is 0
since s7 is not an initial state.

Equations (3) capture the number of accepting states visited along all paths
of a certain length ending in state sg. Importantly, sg is not an accepting state.
Therefore, adding it to an n-length path will not change the number of accepting
states visited along that path. Hence, as with 3, we can compute «;° ; as the
sum of a2° and «af!'. The initial value o is 0 because sq is an initial state, but
not an accepting state.

Equations (4) capture the number of accepting states visited along all paths
of a certain length ending in state s;. Unlike sg, the state s; is an accepting
state. Therefore, the (n+1)th step contributes to the number of accepting states
visited, in particular for each path it will increase the count by one. There are
B0 such paths, hence the inclusion of that term in addition to the « of the
predecessor sp. The initial value ag' is 0 because s; is an accepting state, but
not an initial state.

Equations (5) capture the accepting states along all paths of a certain length.
The initial value ag is irrelevant; we use 0 for simplicity. Otherwise, this equation
merely captures the fact that we can partition the paths of length n based on
which state they end in and take a sum over that partition to compute a value
over all paths.
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We can represent these recurrence relation as a matrix-vector pair (&1, v1),
where:

ag 0 01100
al? 0 01100
v =lag | =|1| and &= (01010
%0 0 00011
21 0 00010

E.g. row 1 of ¢ indicates which terms are required to compute a,.

In General: The key to generalizing the above method is the set of predecessors
for each state and how each term should be computed using the predecessor
terms. Not shown in this example is the case where a state ¢ is both an initial
state and an accepting state. In that case o is 1. Also there is at most one
transition between two states in this example. In general, there may be multiple
transitions between two states (with different labels). In that case, the equations

will include factors in front of the o and § terms. In particular,

ﬁgz-‘rl = Z taq - B
9€@
where t, , is the number of transition labels that transition from ¢ to ¢’ (Note:
tq.q 18 0 if g is not a predecessor of ¢’). Likewise:

g = Z(tq,q/ cad) + (ty g - B)
q€Q

where t? . is t, o when ¢’ is an accepting state and 0 otherwise.

Now we explain the recurrence relation extraction algorithm in general. Let
P = M]||f be the synchronous product of some finite LTS M and some DFA f.
We explain how to extract both the recurrence matrix ¢ and the initial condition
vector v from P.

In what follows, we assume that P has N states indexed by the set {1,..., N'}.
We first define a matrix that encodes the transition relation of P:

Definition 5. We define the N x N predecessor matrix, denoted D, by its
entries. We denote the entry in the ith row and jth column as D;;. Define
D;; to be the number of transitions from state j to state i in P. a

Next, we define a matrix that encodes the accepting states of P:

Definition 6. We define the N x N accepting matrix, denoted A, so that A;; =
D;; if state i of P is an accepting state. Otherwise, A;; = 0. O

We are now able to define the recurrence matrix &:
Definition 7. The recurrence matrix of P is the (2N + 1) x (2N + 1) matriz
010
(¢=(0DA
00D
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where 0 and 1 are n-dimensional vectors of 0’s and 1’s respectively and where 0
is an n X n matriz of 0’s. a

We now explain how to extract the initial condition vector v from P. We first
introduce some notation. For convenience, we vectorize the a? and 8¢ terms. Let
Qp = (a},...,a™)T and B = (BL, ..., BT, Then, the two vectors a and Bo
capture the initial conditions of terms af, and 3¢ in the recurrence relation, and
we can construct the 2N 41 dimensional vector v by combining @ and Bo along
with ag = 0, namely, v := (ag, dg, Bo)T.

The vectors g and ﬁo are extracted from P as follows: (1) The ith entry of
Qo is 1 if and only if state i of P is both an accepting state and an initial state.
Otherwise, that entry of ag is 0. (2) The ith entry of 5y is 1 if and only if state
i of P is an initial state. Otherwise, that entry of Bo is 0.

The following two statements (proven in Appendix A.4 of [22]) capture the
correctness of our reduction.

Theorem 1. Let o and (3 be the recurrence relation terms for the product

n

M]||fi, as constructed above. Then for alln > 0, §?+1vi = [Qny1|. And hence
ﬁnJrl

(€M) = o = sum(f © M, i). O

Corollary 1. Let &; and v; be the recurrence matrices and initial condition vec-
tors for the products M||f;, for i =1,...,d, as constructed above. Then

Qp(M) = lim h((& v1)o, (€57 v2)0, -, (€5 va)0)

n—oo

4.2 Step 3: Matrix Analysis

Next we will discuss two methods for solving the matrix analysis problem. One
of these methods is symbolic and the other numerical. We illustrate them by
continuing with the example of Fig.3. We have constructed g;(n) = (£7v;)o.
For sake of example, let us assume that & = & and that ve = & vy, so ga(n) =
g1(n + 1). Let us also assume that the aggregate function is represented by
h(.Tl, .132) = xl/xg.

Symbolic Method: The first step of the symbolic method is to compute closed-
form expressions for each g;. Tools such as Mathematica can solve for this closed-
form expression using Jordan decomposition [31]. We omit the details. The result
in the case of the example is:

1 n 3 n n 3 3
g1(n) = DI (4\/5k‘1 — 4V/5¢} — 5k + 5vV5kin — 5ctn — 5v/5¢] n)

where ¢; :=1++/5 and k; := 1 — /5. As mentioned, ga(n) = g1(n + 1).
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Once we have the closed-form expressions, we can ask Mathematica to solve
the limit; it does so easily: lim, oo g1(n)/g2(n) = 2/(1 + v/5) (the reciprocal of
the golden ratio). Tools such as Mathematica can solve a broad class of limits
using, e.g., Gruntz’s method [29].

Computing the Jordan decomposition is currently the bottleneck for the sym-
bolic method. Our experiments with Mathematica suggest that it cannot com-
pute the Jordan decomposition for even moderately sized matrices, the run-time
being exponential in the dimension of the matrix. There have been several recent
attempts to improve the state of the art in Jordan decomposition [28] and we
are hopeful that this sub-problem will soon be feasible to compute for large
matrices.

Numerical Method: In this method, we compute h(g1(K),g2(K)) for large
K, which we call a K-approximation. Although we have not yet established
an error bound on the difference between the K-approximation and the true
value of the limit, the K-approximation appears to converge relatively quickly.
For instance, in the case of Example 3, the K-approximation for K = 15 and
K = 20 are 0.6180344 and 0.6180339 respectively, which do not differ until the
seventh decimal place. Our current approach is to compute the K-approximation
for, e.g., K = 8192 and K = 9000 and determine at which decimal place they
differ to establish the precision of the K-approximation for K = 9000. We can
also plot intermediate K-approximations against K.

A naive implementation of K-approximation does not scale. Instead, we
use the standard exponentiation by squaring technique to quickly compute K-
approximations for large K. For example, to compute ¢!! for some matrix &, it
suffices to compute £2, &4, and €8, since €11 = £- €2 ¢8. Note that £* = (¢2)? and
€8 = (%)%, hence the name exponentiation by squaring. We need only compute
log K squares and combine them per the binary representation of K. Further-
more, in our implementation, we found that we needed large datatypes (128
bit) to represent the entries of the matrix. As matrix power for large datatypes
appears to not be implemented in the linear algebra library we used (numpy),
we implemented this operation ourselves.

Although the examples in this section used h(z1,2z2) = x1/22, our method
generalizes to any aggregate conditionally represented by a scalar arithmetic
function h(z1,xa,...,24). This generality holds because the g; are constructed
independently of one another and combined according to h. For instance, if we
had h(z1,x2,23) = (21 + x2)/x3, we construct gs(n) as we did for g; and go.
We then take the limit or approximation of (g1(n) + g2(n))/gs(n) rather than

91(n)/ga(n).

Comparison: The symbolic method gives an exact, symbolic representation of
the fitness score, but unfortunately does not yet scale well, as we shall see from
the experiments in Sect.5 that follows. The numerical approach on the other
hand can compute in seconds an approximation of the fitness score. As we shall
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show, these approximations are precise enough to distinguish between systems
of different fitness.

5 Case Studies

We evaluate our framework on three case studies, described in detail in the
subsections that follow, and summarized in Table 1. The symbolic method did
not terminate after an hour for the larger two case studies (2PC and ABP)
due to limitations imposed by the state of the art in Jordan decomposition (c.f.
Section4.2). Therefore, Table 1 reports the results obtained by the numerical
method.

In each case study we compute the fitness score for different system variants
(column M). Column |M]| represents the size (total number of states) of the
system being measured, which is the product of all distributed processes. Time
refers to the total execution time, in seconds. Column @y (Mgi92) refers to the
K-approximation of the fitness score with K = 8192, and likewise for K = 9000.
As can be seen, the two approximations are very close within each row (identical
up to at least the 3rd decimal point), which indicates convergence. The reason
we report the fitness score for K = 8192 instead of another number, say K =
8000 or K = 8500, is efficiency: 8192 the largest power of two less than 9000,
and in order to compute the fitness score for K = 9000 we need to compute it
anyway for K = 8192. Our results can be reproduced using a publicly available
artifact, which is structured, documented, and licensed for ease of repurposing
[23].

Let us remark that in the 2PC and ABP case studies, the systems being
measured were automatically generated by a distributed protocol synthesis tool,
which is an improved version of the tool described in [5,6]. As our goal in this
paper is fitness evaluation, we omit discussing the synthesis tool. But, as men-
tioned in the introduction, evaluation of automatically synthesized systems is a
promising application of our framework.

All case studies use the Q,,, aggregate function. Additionally, we use three
variations of the fitness function in Fig. 5. This parametric fitness function sug-
gests the possibility of constructing a library of general, reusable fitness func-
tions. Although it was straightforward to construct fitness functions for our
purposes, this library would further reduce that burden for users.

In the rest of this section we provide further details on each case study. Some
supporting figures and intermediate results are provided in Appendix A.5 of [22].

5.1 Case Study #1: Simple Communication Protocol

This section treats the communication protocol presented in Example 1. We
instantiate the framework to measure the average rate at which send-ack
sequences are executed and apply this instance of the framework to M and
M’ (Fig.1). The python representations of all simple communication protocol
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Table 1. A summary of the numerical method results of the three case studies.

case study M | |M] | total time (sec.) | Qf(Msgi92) | Qf(Magooo)
simple comm | good | 3 0.0052 0.249970 | 0.249972
simple comm | bad |5 |0.006 0.138165 |0.138168
2PC H 58 1041 0.0833 0.0832
2PC Al |30 10.25 0.07856 0.07857
2PC A2 |25 |0.1 0.0833 0.0832
ABP HH |144 |9.1 0.016864 |0.016859
ABP HA |144 |86 0.015435 |0.015430
ABP AH |144 (8.7 0.015218 0.015212
ABP AA 144 |86 0.01391 0.01390

processes and fitness functions are available in toy_automata.py of the arti-
fact [23].

Recall that ¥ = {s,t,a}. Let fi(w) := ‘the number of send-ack sequences
of the form st*a in w’. For instance (brackets [ and | added for emphasis),
f1(aat[sa][sta]as[stta]stt[sa]) = 4. Additionally, let fo(w) := |w| (the length of
w) and let the fitness function be f := (f1, fo). The functions fi, fo can be
represented as the DFA shown in Fig. 5, with L = {s} and R = {a}. This fitness
function is measuring the number of send-ack sequences per unit of discrete
time, which is analogous to the traditional measure of throughput in distributed
systems.

Fig.5. The DFA representations of f; and f» for the case studies, parameterized by
the set of labels X, as well as a set of left endpoints L C X" and right endpoints R C X.
L = ¥\ L and likewise for R.

As reported in Table 1, the system that uses the good receiver has a fitness
score of about 0.25 and the system using the bad receiver a score of about 0.138.
These scores are interpretable in that they have units: send-ack sequences per
unit of discrete time. Hence, the framework deems the good receiver as more
fit and this determination aligns with our intuitions. Because this example is
relatively small, Mathematica was able to compute the exact fitness scores of
these systems. The system that uses the good receiver has a fitness score of
exactly 1/4 (obtained after 34s) and the system that uses the bad receiver has

a score of exactly 5_25/5 ~ 0.138 (obtained after 563s).
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5.2 Case Study #2: Two Phase Commit (2PC)

Two phase commit (2PC) is a protocol for making transactional changes to
a distributed database atomically; if one sub-operation of the transaction is
aborted at one remote database, so too must the sub-operations at all other
remote databases. Although each iteration of 2PC is terminating, it is typical
to assume there will be infinitely many such iterations, and our model reflects
this. In our model of 2PC, a user initiates a transaction by synchronizing with
a transaction manager on the label x. The transaction is complete when the
transaction manager synchronizes with the user on label fail or succ. We omit
the details of the intermediate exchanges between the transaction manager and
database managers. The python representations of all 2PC processes and fitness
functions are available in _2pc_automata.py of the artifact [23].

The fitness function for this case study is as depicted in Fig. 5, with L = {z},
R = {fail, succ}, and X' has a total of 18 labels. This fitness function measures
the rate at which transactions are initiated and then completed.

We study three 2PC implementations, each using a different transaction man-
ager LTS. The system labeled H in Table1 uses a previously manually con-
structed transaction manager that the synthesis tool was also able to discover
automatically, while the systems labeled A1 and A2 use new transaction man-
agers generated by the synthesis tool. The automatically generated transaction
managers have 12 states each and it is therefore hard to tell at a glance which
will give rise to the most efficient protocol. Our tool automatically reports, in
fractions of a second, a fitness score of about 0.083 for both systems H and A2,
and a score of about 0.079 for system A1l. These fitness scores have units: trans-
actions per unit time. Hence, in the same amount of time, A1l completes about
5% fewer transactions than H or A2.

5.3 Case Study #3: Alternating Bit Protocol (ABP)

The Alternating Bit Protocol (ABP) allows reliable communication over an unre-
liable network. As with the prior two case studies, we use the fitness function
depicted in Fig. 5, except with L = {send}, R = {done}, and X of size 12. Sim-
ilar to case study #1 we are measuring the rate of send-done sequences. The
python representations of all ABP processes and fitness functions are available
in abp_automata.py of the artifact [23].

In [6], the authors present a method to automatically synthesize (distributed)
ABP sender and receiver processes. Here, we evaluate the fitness of the ABP
variants that use these various synthesized processes. Together the synthesized
sender and receiver processes have 14 states, which again makes manual determi-
nations about the fitness very challenging—even more so due to the distributed
nature of the problem. It is no longer necessarily a question of which sender
or receiver is better than the other sender or receiver, but a question of which
combination of sender and receiver is best. Once again, our framework allows to
automatically make this determination in a matter of seconds.



Decoupled Fitness Criteria for Reactive Systems 101

The systems are ranked by fitness in the following order: HH, HA, AH, AA.
H stands for human-designed (and then also rediscovered during synthesis) and
A stands for newly discovered during synthesis. The first position is for the
sender process and the second for the receiver. In this case study, the newly
discovered processes do worse than the manually constructed processes. The
difference in fitness scores is meaningful: in the same amount of time, AA will
complete about 18% fewer sequences on average. AH and HA will both complete
about 8.5% fewer sequences than HH.

6 Related Work

Our work is broadly related to the field of performance analysis and evalua-
tion. Mathematical models typically used there include Markov Chains, Markov
Decision Processes, Markov Automata, queueing models, Petri nets, timed or
hybrid automata, etc., e.g., see [9,15-17,25,34-36]. Our approach differs as our
mathematical framework uses neither timed nor probabilistic models such as the
ones above. Because we do not use stochastic models, our work is also different
from the work on probabilistic verification, e.g., see [8-10,18,33]. Our work also
differs from performance analysis approaches that use max-plus algebra based
frameworks such as the real-time calculus, e.g., see [30,38,44,45].

Our work is also related to non-boolean interpretations of temporal seman-
tics, such as the 5-valued robust temporal logic rLTL [7,43]. However, our moti-
vation is performance comparisons rather than robustness. Our framework also
differs from that of signal temporal logic (STL) [11,12,27,39-42], which is valued
over real-time traces. Our framework is over discrete traces, although there have
been recent STL extensions which handle both real and discrete time [26]. In
addition, our framework is parameterized by generic quantitative concepts (the
fitness and aggregate functions and the comparison relation) that are present
neither in rLTL nor in STL or its variants.

Our work is closely related to the field of quantitative verification, synthesis,
and games, e.g., see [1,2,13,14,19-21,32]. Typically, these works assign values to
weighted automata. These automata blend in a single model both the description
of the system and the description of any performance or fitness functions asso-
ciated with the system. In comparison, our framework decouples the description
of the system (e.g., a plain LTS without any weights) from the description of
the fitness function (e.g., a DFA). These works support aggregates like sup while
our framework is defined for more general aggregates, including averages.

Sensing cost [4] and propositional quality [3] are two other ways to measure
the fitness of a system. Sensing cost is a specific measure of fitness, whereas our
framework is a more general setting. The work on propositional quality is quite
general, like our work, but it uses a quantitative variant of LTL to assign scores
rather than DFA. This logic induces a sort of recursive computation that can
never be captured by a DFA. The logic is limited though in that it can only char-
acterize finite chunks of a trace at one time (and no limit is taken), whereas our
characterization applies to the infinite trace after taking a limit. Hence proposi-
tional quality and our fitness evaluation are fundamentally distinct.
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7 Conclusions and Future Work

We proposed a formal framework that assigns fitness scores to systems modeled
as finite LT'Ss. The main novelty of our framework is that it decouples the descrip-
tion of the system from the set of domain-specific parameters such as fitness and
aggregate functions, which determine the final fitness score. Furthermore, the
user defines these fitness scores and aggregate functions over partial runs, which
are easier for the user to reason about—our framework does the heavy lifting of
extending this reasoning to infinite traces. This decoupling and finite reasoning
make our framework more useable and its results more interpretable. Indeed, in
all of our case studies the scores are not merely numbers; they have meaningful
units, e.g., send-ack sequences per unit of time.

We used our framework to evaluate the automatically synthesized ABP pro-
tocols presented in [6] as well as our own automatically synthesized 2PC proto-
cols. We showed that some of these protocols are better than others. Inspired
by this application, we plan to investigate the use of our framework in proto-
col synthesis, specifically in synthesizing protocols that not only satisfy a given
correctness specification but are also optimal with respect to a fitness score, i.e.,
fitness-optimal synthesis (c.f. page 8).

We are also actively exploring ways to improve the scalability of the symbolic
method. In particular, we may be able to feasibly compute a simplified version
of the recurrence matrix & without sacrificing the accuracy of the final com-
puted limit. Additionally, we would like to generalize our method to aggregates
like min / max, which do not have conditional representations, and to systems
that cannot be represented as finite labeled transition systems. We suspect that
best /worst-case analysis reduces to the minimal cost-to-time ratio problem [37],
but in general aggregates with no conditional representation may be more chal-
lenging.
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A smart contract is implemented as immutable code executed on a blockchain
and may be seen as a special business process specifying a contractual agree-
ment on actions to be carried out by different roles. While smart contracts
offer advantages such as uncompromised (automated) execution even without
a trusted party, they can also be complex and difficult to design and understand.
This is even more problematic as they cannot be changed once deployed.

In a normal business process environment, different roles collaborate to
achieve a common business goal. In contrast, different roles in a smart con-
tract typically have adversarial interests. Therefore, smart contracts introduce
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new types of patterns of behavior, which have so far only been informally
described [19,30,50,52]. To provide an unambiguous understanding of the pat-
terns that can also provide the basis for formal specifications, we set out to
extend the study and formalization of process patterns to include these smart
contract patterns.

Solutions to adversarial-interest problems often use time- or data-related con-
straints between actions cutting across the process and the more standard use
of roles and sequential action dependencies. We find that a declarative nota-
tion involving data and time is appropriate for formalizing the new smart con-
tract process patterns. Moreover, smart contract languages exhibit a transac-
tional behavior of actions, where an action may be attempted but aborted if the
required constraints for executing it are not fulfilled. This suggests that individ-
ual actions have a life cycle, like sub-processes.

For these reasons, we use DCR graphs [38,43], which are by now a well-
established declarative business process notation that has been extended with
data [38], time [38], and sub-processes [43]. DCR graphs visually capture impor-
tant properties such as the partial ordering of events, roles of contract users,
and temporal function attributes. Using DCR graphs, it is possible to represent
a smart contract with a clear and concise model that is more expressive and
comprehensive than other types of models. As the design patterns we model
concern the high-level behavior of a smart contract under analysis, we elide tech-
nical details of the patterns’ implementation and execution. Therefore, we use
the term “high-level” design pattern for the patterns that DCR graphs capture
well, as they represent the underlying business process of the contract. Further,
DCR models are useful for analysis. We show that using DCR, graphs facilitates
the development of correct and reliable smart contracts by providing a clear and
easy-to-understand specification. More concretely, our contributions are:

1. We systematically identify and distinguish high-level design patterns from
low-level (implementation-specific) patterns in smart contracts (Table 1), and
demonstrate how we model them with DCR graphs by going through four of
the most complex ones (Sect. 3, Sect. 3, Sect. 3, and Sect. 3). The DCR models
of the rest of the 19 patterns may be found in the accompanying repository
[25].

2. We demonstrate how one can capture the design of a complete contract, not
just a design pattern, with the help of DCR graphs (casino example in Sect. 4).
The modeled contract has three of the design pattern models from this paper
incorporated, which helps to demonstrate the combinability of pattern models
to shape the final design of the contract.

3. As a result of a thorough analysis of real-world contracts, including popu-
lar contract libraries, we identify (and model) two new design patterns: time
incentivization (Sect.3) and escapability (Sect.3). Both of these patterns are
extensively used by the Solidity developer community but are not yet intro-
duced as design patterns in research literature [30,42,50,52].

Our application of these formalized design patterns in Sect. 4 shows that using
DCR graphs can facilitate the development of correct and reliable smart con-
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tracts by providing a clear and easy-to-understand specification. Moreover, DCR
specifications can provide a basis for automated (dynamic or static) analysis of
smart contracts, which we exemplified by preliminary runtime verification infras-
tructure and experiments in our tool paper [27].

Our usage of DCR graphs to model smart contracts and our focus on high-
level rather than low-level properties allows us to capture the key semantics of
the contract succinctly. We can verify properties (and likewise lack of vulnera-
bilities pertaining to these properties) related to roles and access control [4,5],
partial ordering of actions (function calls and transaction execution) [6], as well
as time-based vulnerabilities [7,9]. Furthermore, not being concerned with low-
level patterns and properties lets our approach remain cross-platform and not
tied to the features and limitations of a certain smart contract execution envi-
ronment. We believe that these patterns provide a systematic classification of
best practices for smart contracts in a similar way that software design patterns
shaped the design of traditional software and established a nomenclature for
it [31], while capturing aspects that are unique to smart contracts.

This paper is organized as follows: Sect.2 introduces smart contracts and
DCR graphs. Section 3 gives an overview of 19 smart contract design patterns,
which we formalize as DCR graphs. Section4 shows a case study on a casino
smart contract. Section 5 covers related work, and Sect. 6 concludes.

2 Background

2.1 Smart Contracts: Ethereum and Solidity

Ethereum [51], with its built-in cryptocurrency Ether, is still the leading
blockchain framework supporting smart contracts. In Ethereum, not only the
users but also the contracts can receive, own, and send Ether. Ethereum min-
ers look for transaction requests on the network, which contain the contract’s
address to be called, the call data, and the amount of Ether to be sent. Miners
are paid for their efforts in (Ether priced) gas, to be paid by the initiator of the
transaction.

A transaction is not always executed successfully. It can be reverted due
to running out of gas, sending of unbacked funds, or failing runtime assertions.
If a miner attempts to execute a transaction, a revert statement within the
transaction’s execution can undo the entire transaction. All the effects so far are
undone (except for the paid gas), as if the original call had never happened.

The most popular programming language for Ethereum smart contracts is
Solidity [17]. Solidity follows largely an object-oriented paradigm, with fields
and methods, called ‘state variables’ and ‘functions’, respectively. Each external
user and each contract instance has a unique address. Each address owns Ether
(possibly 0), can receive Ether, and send Ether to other addresses. For instance,
a.transfer (v) transfers an amount v from the caller to a.

The current caller, and the amount sent with the call, are always available via
msg.sender and msg.value, respectively. Only payable functions accept payments.
Fields marked public are read-public, not write-public. Solidity also offers some
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1 contract Casino {

2 address public operator, player; bytes32 public hashedNumber;

3 enum State { IDLE, GAME_AVAILABLE, BET_PLACED };

4 State private state; uint bet; Coin guess;

5 function addToPot() public payable byOp {...}

6 function removeFromPot (uint amt) public byOp, noActiveBet {...}

7 function createGame(bytes32 hash) public byOp, inState(IDLE) {

8 hashedNumber = hash

9 state = GAME_AVAILABLE;}

10 function bet(Coin _guess) public payable inState (GAME_AVAILABLE) {
11 require (msg.sender != operator);

12 require (msg.value > 0 && msg.value <= pot);

13 player = msg.sender; bet = msg.value;

14 guess = _guess; state = BET_PLACED;}

15 function decideBet (uint secret) public byOp, inState(BET_PLACED) {
16 require (hashedNumber == keccak256(secret));

17 Coin secret = (secret) 2 == 0)? HEADS : TAILS;

18 if (secret==wager.guess) {playerWins();} else {operatorWins();}
19 state = IDLE;}

20 }

Fig. 1. Solidity-code for casino (some details are omitted)
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Fig. 2. Commit and reveal design pattern

cryptographic primitives, like keccak256 for computing a crypto-hash. require (b)
checks the Boolean expression b, and reverts the transaction if b is false.
Solidity further features programmable modifiers. The contract in Fig. 1 uses
the modifiers byOp, inState(s), and noActiveBet, whose implementation is omit-
ted for brevity. These three modifiers expand to require (b), where b is msg . sender
== operator, state == s, and state != BET_PLACED, respectively.

2.2 Dynamic Condition Response Graphs

A dynamic condition response (DCR) graph defines a dynamic process declara-
tively as a graph, defined formally in Definition 1 below and exemplified in Fig. 2.
DCR graphs offer an alternative to state machines; instead of using transitions
to represent events, DCR graphs represent events as nodes (boxes). Events in a
DCR graph may be restricted to certain roles. Events can be enabled or disabled
by other events, which is represented by different types of arrows.
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The nodes of the graph constitute a set E of events labeled with roles and
an action, visualized in Fig. 2 as boxes with the action label in the middle and
the role label in the top bar. Nodes can be either input actions (denoted by a
flipped paper corner in the top right of the box containing the action label; in
this example, actions commit and reveal), computation actions (denoted by an
=-sign in the top right of the box containing the action label; in this example, the
decide action) or simple actions (in this example, the fail and commit actions).
Input actions receive a value from the environment when the action is executed,
which is associated with the event. Computation actions execute a computation
expression (that may refer to the current value assigned to itself or other events)
when the action is executed, which is then associated with the event. In this
example, the computation assigned to the decide action is the Boolean expression
commit = hash(reveal) (not shown graphically in Fig.2), which refers to the
values of the commit and the reveal actions.

The directed edges between nodes define rules for the execution of events. The
rules can be constraints or effects. An example of a constraint is the condition
rule, visualized in Fig.2 as an orange arrow with a bullet at the target. It
states that the event at the source of the edge (in this example, the commit
action) must have been executed at least once (or be excluded) for the event at
the target (in this example, the reveal action) to be executable.

Examples of effects are the exclude, include and response rules, visualized in
Fig. 2 as respectively a red arrow —% with a %-sign at the target, a green arrow
—+ with a +-sign at the target, and a blue arrow e— with a dot at the source.
The exclude (include) rule states that when the event at the source (in this case,
the decide action) is executed, the events at the target (in this case, the fail
and pass actions) are excluded (included). Excluded events cannot be executed
and are also ignored when determining constraints. The possibility for an event
to be excluded makes it easy to express defeasible rules [44]. For instance, in
Fig. 4, the bank can give a fine a month after a loan, except if the client, in the
meantime, pays the loan, in which case the event of the fine action is excluded.

In DCR graphs with data, rules may be guarded by Boolean expressions,
determining whether a rule is to be considered in the current state of the graph.
In this example, the guard decide of the exclude relation —% from decide to
fail means that fail is excluded if and only if the value of decide is true, which
is the case if the committed value provided when commit is executed is equal
to the hash of the value provided when reveal is executed. The response rule
e— denotes that if the event at the source (e.g., the commit action in Fig. 2) is
executed, then the event at the target (e.g., the reveal action in Fig. 2) must be
executed or excluded in the future.

The execution state of a DCR graph is given by a marking, which assigns state
information to each event. In the original version of DCR graphs [37], the mark-
ing of the graph assigned three Booleans to each event, denoting respectively if
the event had been executed, if it is required to be executed (or excluded) in the
future and if it is currently excluded. In this paper, we use an extended version
of DCR graphs, allowing both data, time and nested sub-processes, which is sup-
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ported by the online design tool.* This version of DCR graphs also adds two new
effect rules: A value relation ——, denoted by a grey arrow with an =-sign at the
target, with the effect of updating the value of the target event when the source
event is executed, and a cancel relation e—x, denoted by a brown arrow with a
x-sign at the target, with the effect of removing a possible pending execution
requirement (e.g., due to a previous activation of a response rule) of the target
event when the source event is executed.

For a DCR graph with data, the marking assigns the current data value (if
any) associated with each event, as exemplified above. For a DCR graph with
time, the marking additionally assigns time information to events, concretely,
how long ago an event was executed (if it has been executed) and a deadline for
when it is required to be executed (if it is required to be executed in the future).

In Definition 1, we give the formal definition of timed DCR graphs with sub-
processes and data. We combine timed DCR graphs with sub-processes [43] and
timed DCR graphs with data [38] and add a new type of edge denoting a value
effect, making it possible for one event to update the data of another event.

We assume a set of computation expressions Expg, with BExpg C Expg being
a subset of Boolean expressions. For every event e € F/, we assume an expression
e € Expe that denotes the current value of the event (as recorded in the marking).
We also assume a discrete-time model (i.e., time is represented as time steps
given as natural numbers) and let w denote the natural numbers (including 0)
and oo = w U {w}, i.e, the natural numbers and w (infinity).? Infinity is used
to represent a non-fixed deadline of a required event, i.e., that an event must
eventually be executed as known from classical liveness properties. This is the
default deadline of a response relation if the deadline is not given, as it is the
case for the two response relations in Fig. 2.

Definition 1. A timed DCR graph with sub-processes, data, and roles G is
given by a tuple (E,sp, D, M, —e, o— e—x, —o, —+ —% —= L 1) where

1. E is a finite set of events,

2. sp € E — E is an acyclic sub-process function, i. e., for all k > 1 sp*(e) #
sp(e), if sp(e) is defined.

3. D : E — Expg W {?} defines an event as either a computation event with
expression d € Expg or an input event ?,

4. M = (Ex,Re,In,Va) € ((E—w)x (E—o00)xP(E)x (E—V)) is the
timed marking with data,

5. C F x w x BExpg x F, is the guarded timed condition relation,

6. e— C E x 0o x BExpg x E, is the guarded timed response relation,

7. e=x,—0,—+,—%,—= C E x BExpg X E are the guarded cancel, milestone,
include, exclude and value relations, respectively,

8. L ="P(R) x A is the set of labels, with R and A sets of roles and actions,

9. I: E — L is a labelling function between events and labels.

! Available for free for academic use at dcrsolutions.net.
2 The ISO 8601 standard (www.iso.org/iso-8601-date-and-time-format.html) is used
in the design tool, allowing the use of years, months, days, and seconds.
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The sub-process function sp(e) defines a partial containment relation of
events, which allows an event to be refined by a sub-process defined by the
events contained in it. We call such a refined event a sub-process event. A sub-
process event gets executed when an event contained in it is executed, and no
events of the sub-process in the resulting marking are required to be executed
in the future.

As already informally described above, the marking M = (Ex,Re,In,Va)
defines the state of the process. Formally, the marking consists of three par-
tial functions (Ex, Re, and Va) and a set In of events. Ex(e), if defined, yields
the time since event e was last Executed. Re(e), if defined, yields the deadline
for when the event is Required to happen (if it is included). The set In is the
currently Included events. Finally, Va(e), if defined, is the current value of an
event.

Enabledness. The condition and milestone —<¢ relations constrain the
enabling of events and determine when events can be executed. As exempli-
fied above, a condition ¢’-—ee means that ¢/ must have been executed at least
once or currently be excluded for e to be enabled. A milestone ¢/—ce means
that ¢’ must either be currently excluded or not be pending for e to be enabled.
In the example in Fig. 2, the milestone relations ensure that the commit action
cannot be repeated as long as required executions of reveal, decide, fail, or pass
are pending. Formally, an event e is enabled in marking M = (Ex, Re,In,Va)
and can be executed by role r € R, if l(e) = (R',a) for r € R’ and (1) e is
included: e € In, (2) all conditions for the event are met: Ve’ € E.(¢/,k,d,e) €

(e € nA[[d]]ar) = Ex(e’) > k and (3) all milestones for the event are met:
Ve' € E.(¢/,k,d,e) € —o.(¢/ € InA[[d]]asr) = Re(e’) is undefined and (4) e is
not contained in a sub-process event, or sp(e) is enabled and can be executed by
role r.

In the DCR graph in Fig. 2, the only enabled event is the event commit. It
is enabled because it is included and the source events of the two milestone
rules are not initially required to be executed. The reveal and decide events are
blocked by condition rules, and the fail and pass events are disabled because
they are initially excluded (marked by a dashed border).

We refer the reader to [38,43] for a more detailed definition and explanation
of the execution semantics of timed DCR graphs with data and sub-processes.

3 Smart Contract Design Patterns as DCR Graphs

Due to the high stakes involved in applications, ensuring the safety and security
of smart contracts is crucial. To address this, both the Solidity documentation
and the developer and smart contract security community have put forth a range
of recommendations. A considerable number of these recommendations are now
known as design patterns [31], because they are widely adopted as a solution
to recurring design problems. These patterns promote the creation of contracts
that are designed with safety and security in mind, mitigating potential risks
and safeguarding users’ assets in the design phase.
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Fig. 3. Classification of smart contract high-level design patterns (upper part of
Table 1)

We collected these design patterns from academic design pattern surveys
[19,30,40,50,52], documentation of Solidity [17] and the Ethereum Foundation
[15], and recommendations by a popular contract auditing company [22]. These
design patterns are also confirmed by their occurrence in popular libraries and
contracts such as OpenZeppelin, SolidState Solidity, and Aragon OSx [10,14,16,
45,48].

First, we identify the design patterns representing high-level behavior rather
than implementation- and platform-specific patterns (Table 1). The latter con-
cerns features inside a function (the execution of which we model as an event
in DCR graphs). The analysis of low-level patterns is orthogonal to our work
and can be handled, e. g., by runtime analysis of code [32]. We then classify the
high-level patterns into the following four categories (see Fig. 3):

1. Time-based constraints: Time-based patterns impose constraints on when
activities can be performed, which typically include deadlines and delays.

2. Roles and access control: Role-based access control [46] restricts access to
given functions to predefined roles.

3. Action dependencies and contract staging: High-level design of a smart
contract may impose an ordering on any pair of activities.

4. Structural patterns: These patterns impose a certain structure on the con-
tract business process (and the implementation as a result) and are created
by combining other design patterns.

Many patterns combine aspects of several categories; Fig. 3 depicts a classifica-
tion of 19 design patterns we have identified. We elucidate these patterns further
below. Also, we describe DCR, graphs for selected design patterns here; the oth-
ers are available on GitHub.? Table 1 gives an overview of references of the design
patterns, libraries that implement them, and their respective DCR models.

3 https://github.com/mojtaba-eshghie/SmartContract DesignPatternsinDCRCGraphs.
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Table 1. Smart contract design patterns and their respective DCR graph models.
High-level patterns (upper part of the table) are further categorized in Fig. 3.

Design Pattern Libraries DCR Model
High-level Patterns
Time constraint [19] [45] GitHub, §3
Time incentivization [3,8,11,12,14] GitHub, §3, §4
Automatic deprecation[52] — GitHub, §3
Rate limitation[50] [22] GitHub, §3
Speed bump[50] [22] GitHub, §3
Safe self-destruction[19,52] [45] GitHub, §3
Ownership / Authorization / Access Control [19,30,52] [10,45,48] GitHub, §3, §4
Commit and reveal[52] GitHub, §3, §4
Circuit breaker / Emergency stop[50] — GitHub, §3
Escapability [1,2,33,36] GitHub, §3
Checks, effects, interactions[30,50] — GitHub, §3
Guard check[30] [29] GitHub, §3
Abstract contract states[52] [45] GitHub, §3, §4
Secure Ether transfer[30] — GitHub, §3
Oracle [19,52] — GitHub, §3
Token [19] [45] GitHub, §3
Pull over push[52] [45] GitHub, §3
Upgradability[42, 52] [45] GitHub, §3
Governance[19,40] [13,21,45] GitHub, §3

Low-level Patterns

Randomness [19,30] — X
Safe math operations[19] [45] X
Variable Packing[30,42] [45] X
Avoiding on-chain data storage[42] [45] X
Mutex[50] [45] X
Freeing storage [42] — X

1 We identify these as design patterns since they have been used as a recurring
solution in several real-world smart contracts but have not yet been considered a
design pattern in the literature.

In the following subsections, we delve into each design pattern, highlighting
its utility, and, for a chosen subset, offer the visual representation of their model
and a succinct description of the associated DCR, graph models. This study
provides supplementary details and examples for each pattern, along with the
DCR model semantics used, in our corresponding GitHub repository. We plan to
focus on comprehensive guidelines for smart contract modeling in future research.

3.1 Time Constraint. In multi-stage business processes, code execution must
adhere to specific stages. This can be achieved through time-based or action-
based dependencies. The former denotes stages solely based on elapsed
time [19]. This pattern prohibits calling a function until a specific time is
reached on the blockchain, represented by a delayed condition relation in
DCR graphs. The simplest form of this pattern is modeled directly using
a delayed condition DCR relation. Modeling more complex time constraints
where only part of a function should be executed or blocked based on time is
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Fig. 4. DCR model of time incentivization design pattern.

challenging and may require multiple guard conditions in DCR graphs. One
approach is to interpret Solidity’s require statements as guard conditions in
DCR graphs, connecting multiple activities to shape the business logic.
Time Incentivization. In Ethereum, smart contracts work as a reactive
system where specific function calls execute transactions. There are scenar-
ios where certain actions should be performed at a specific time or when a
specific condition is fulfilled. A lack of action may prevent progress, opening
up adversarial behavior (e.g., the eternal locking of assets). The purpose of
the time incentivization pattern is to motivate parties to cooperate even in
the existence of conflicting interests. The incentivization is typically done by
stipulating a deadline before which an actor shall make a move. The actor
that misses the deadline can afterward be punished by other actors, e.g., by
forfeiting the bets, as modeled in the casino contract (see Sect.4).

To demonstrate this pattern, we use the simple example of giving a loan and
then motivating the client to pay for the loan. Giving a loan is performed only
by bank role. In Fig. 4, immediately after giving the loan, the bank includes
—+ both the pay loan and fine activities. Without any more relationships,
this would mean that the bank might increase the interest on the loan without
giving the client enough time to pay for it. This issue is resolved by using the
pre-condition arrow from give loan to activity fine. As this pre-condition
arrow has a deadline attribute of P1M (one month), it will suspend the avail-
ability of fine to one month later. Without this pattern, the client could refuse
to pay the loan by not participating in any further transaction.

Despite the widespread usage of this pattern in popular smart contracts such
as Augur, MakerDAO, Compound, Aragon Court, and Synthetix [3,8,11,12,
14] to incentivize taking the next step by the actor(s), the current work is
the first one classifying it as a design pattern and formalizing it using DCR
graphs.

Automatic Deprecation. Automatic deprecation is the opposite of a time
constraint, stipulating a deprecation time (block number) after which a func-
tion is not executable anymore [52]. In Solidity code, such functions are typ-
ically enabled by a require statement checking at the function entry point
against the expiration. This means that a smart contract function can be
called and reverted, which is different from DCR model semantics, where an
activity is enabled only if it will successfully execute. We model this in DCR
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Fig. 5. Rate limitation pattern modeled in DCR graphs

by checking the deprecation condition on an exclusion arrow from another
activity to the target activity subject to deprecation.

Rate Limitation. Rate limitation imposes a limit on the number of success-
ful function calls by a participating user during a specific time period [22].
The more common type of this pattern that we analyze here explicitly limits
the total amount of transfers allowed during the defined period.

To model this pattern, we assume the sensitive activity is the withdraw oper-
ation. We present the model in Fig. 5. When the model is simulated, the only
included available activity to execute is set limit. The new period activity is
initially executed (tick the on activity box). The gray arrow valuerel from
new period to rate limiter copies value 0 to rate limiter every time new period
is executed. Each execution of new period sets a deadline and delay of one day
(P1D) for the given activity. Having such relationships (response and precon-
dition) on new period and assigning an automatic agent to the system (when
simulating the model) ensures that new period is indeed executed at exactly
one-day intervals. In Fig. 5, labels P1D on the reflexive pre-condition and
reflexive response e— arrows of new period impose this periodic execution.
Based on the purple milestone relation —o, if the current period amount
does not exceed the limit, role user can withdraw. Furthermore, having the
milestone relation from mew period to rate limiter occur periodically with
currentamount > limit ensures that if the current withdrawal of the period
exceeds the limit, withdraw will not be executable until the next execution of
new period. The new execution of new period resets the currentamount to 0
again.

Timed Temporal Constraint (Speed Bump). A speed bump is used to
slow down critical operations such as the withdrawal of assets, authorization
of significant actions, etc. [22]. It imposes a temporal barrier that gives enough
time to a monitoring system to detect a problematic activity and mitigate
it. This pattern is a specialized form of the time constraint pattern where
the participating user can only execute an action after a predefined time
period has passed (from the point the action request has been registered).
The wait time is modeled using a delay on a condition arrow from the activity
requesting the specified action to the actual action.

Safe Self-Destruction. It is possible to define a function in Solidity that
uses selfdestruct(address target) to destroy the contract intentionally and
send all Ether in the contract account to the target. Safe self-destruction
is about limiting the execution of the function to specific roles such as the
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administrator. [19,52]. The simplest way to achieve this is to refine the access
control pattern (Sect. 3). However, guard check and time constraint patterns
(Sect. 3 and Sect. 3) can also be used to ensure safety.

Access Control. Access control restricts access to desired functions to only a
subset of accounts calling them [19,30,52]. A common instance of this pattern
is to initialize a variable owner to the contract deployer and only allow this
account to successfully call certain functions. Here, we can nicely exploit that
access control is built into DCR, graphs as a first-class citizen, in the form of
roles assigned to activities. Each activity in a DCR model can be limited to
one or more specific roles. In simpler scenarios, roles are assigned statically to
accounts when a contract is deployed on the blockchain. In general, however,
access rights can be assigned dynamically. DCR graphs support this using
activity effects from an external database source. This feature allows changing
the roles of activities as a result of an activity being executed.

Commit and Reveal. In a public permissionless blockchain platform such
as Ethereum, transaction data is public [52]. Therefore, if a secret is sent along
with a transaction request, participants in the blockchain consensus protocol
can see the secret value even before the transaction is finalized. On the other
hand, the party holding the secret should commit to it before other parties act,
so the secret cannot be changed after the fact. The commit and reveal pattern
addresses this problem and works in two phases. In Phase 1, a piece of data
is submitted that depends on the secret (which itself is not yet submitted).
Often, that data is the crypto-hash of the secret, such that the secret cannot
be reconstructed. Phase 2 is the submission (and reveal) of the secret itself. We
use a combination of condition, milestone, and response relations to enforce
the ordering of actions in the commit and reveal pattern in Fig.2. Here,
the activity reveal is blocked initially by the condition relation from commit
to reveal , and is enabled once a user commits. The commit makes reveal
pending (by the response relation arrow). Finally, the milestone relation from
the pending reveal to commit means that unless a reveal happens, no other
commit is possible. The decision is then made using the decide activity based
on committed and revealed values.

Circuit Breaker (Emergency Stop). This pattern enables the contract
owner to temporarily halt the contract’s normal operations until a manual
or automatic investigation is performed [50]. Other contract functions, such
as those based on timed temporal constraints (Sect.3), can also trigger the
circuit breaker. To model this design pattern, we categorize activities into two
subsets: activities that are available in the normal execution of the contract
and those that are only available when the circuit breaker is triggered. There
is a milestone relationship —< between circuit breaker grouping and all other
DCR nodes. The existence of this milestone helps to disable the execution
of all of these activities by making the circuit breaker pending. In Fig. 6, the
activity panic executed by the monitor role makes the circuit breaker pending
(panic e— circuit breaker). This means unless revive activity in the circuit
breaker group is executed, none of the buy, sell, transfer, and panic activities
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are executable. Executing contingency instead will enable a contingency plan
(related to Sect. 3).

Escapability. There have been cases where a vulnerability in the contract
triggered by a certain transaction led to funds being locked in the contract [36].
To prevent this, a smart contract can have a function whose logic is indepen-
dent of the main contract logic; when triggered, it can withdraw all assets in
the contract to a certain address. This new address can be the upgraded ver-
sion of the contract that contains a patch for the vulnerability. Escapability is
arguably the complementary pattern for the circuit breaker pattern (Sect. 3),
as it concerns the functionality behind the contingency activity in Fig. 6 for
the circuit breaker. This functionality often consists of transferring assets to
an escape hatch. Despite being used by the community [1,2,36], the current
work is the first one promoting it as a design pattern.

Checks, Effects, Interactions. This pattern is concerned with the order
of certain activities, especially when interactions with other contracts (exter-
nal calls) happen [30,50]. External calls can be risky, as call targets cannot
necessarily be trusted. One risk is that the called contract calls back into the
calling contract before returning, purposefully abusing the calling contract’s
logic [28]. To prevent such exploits, the caller first performs checks on its
bookkeeping variables (variables keeping the balance of tokens, assets, etc.).
Then, it modifies these bookkeeping variables based on the business logic
(effects). Last, there are interactions with (i.e., calls to) other contracts. In
DCR graphs, we specify this strict ordering via inclusion/exclusion relations
among the respective activities.

Guard Check. A guard check validates user inputs and checks bookkeeping
variables and invariants before the execution of the function body (mainly as a
require statement) [29]. This pattern is often applied using function modifiers
in Solidity and represented using guard conditions on DCR relations.
Abstract Contract States. In most processes, action dependencies impose
a partial order on action executions that a smart contract has to follow, as
shown in the casino contract (Sect.4). In Solidity, a state variable of type
enumeration can mimic a finite state automaton [52], whose state transitions
enforce the set of executable functions, encoding a partial order among action
executions.

In DCR graphs, such dependencies (partial orderings of actions) can be repre-
sented explicitly. If the ordering between activities does not matter, no arrows
are required. Therefore, DCR graphs can make contract states obsolete at the
modeling level. If there is a strong reason for modeling the abstract contract
states instead of the action dependencies they imply, it is still possible to
model them using DCR graphs. This is done by grouping activities of the
same state into the same group in DCR graphs and using arrows between
state groupings to reflect state transitions of the system.

Secure Ether Transfer. This structural design pattern imposes a design
choice between various ways of sending Ether from one contract to the other
(via send, transfer, or call) [30]. Using each of them requires a distinct way of
ensuring the target contract cannot harm the contract sending Ether. As a
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structural design pattern, Secure Ether Transfer imposes certain guard checks,
mutual exclusions, and ordering of actions to ensure that an external call
(especially to transfer Ether) is not exploitable by a malicious party. Therefore,
this pattern can be represented in DCR graphs as action dependency relation
in combination with the guard check (Sect.3) and mutex (Tablel) design
patterns.

Oracle. Oracles enable smart contracts to incorporate off-chain data in their
execution and push information from a blockchain to external systems [19,52].
The oracle pattern employs an external call to another service smart contract
(data source) to register the request for off-chain data. This registration call
information should also be kept in bookkeeping variables inside the contract
itself. When the data is ready in the service contract, it will inform the main
contract about the result by calling a specific callback function. To model
this, the callback function of the smart contract is excluded by default and is
included when the smart contract calls an oracle.

Token Design Patterns. Tokens represent assets, their behavior, and man-
ageability [19]. Ethereum smart contracts and token standards (such as ERC-
20, ERC-721, and ERC-777) enable developers to use tokens according to spe-
cific requirements. DCR graphs can model both tokens and their interacting
contracts. The ERC-20 token standard model included in the accompanying
repository to this work involves inclusion/exclusion relations to model the par-
tial ordering of activities. Tokens and contracts that use this model typically
involve several other design patterns (most notably Sect.3 and Sect. 3).
Pull Over Push. A contract might need to send a token or Ether to other
accounts. The “pull over push” pattern discourages pushing tokens or Ether
to the destination as a side-effect of calling a function. Rather, it encourages
exposing a withdraw function that users of the contract can call [52] for this
reason. This inclination towards pull is based on the fact that when sending
Ether or tokens via any external call (even when adhering to patterns such as
Sect. 3), the receiver may act unexpectedly before returning control. We model
this pattern in a DCR graph by having an extra activity for the withdraw
functionality.

Upgradability. This design pattern consists of up to five parts: (1) The
proxy keeps addresses of referred contracts. (2) The data segregation part
separates the logic and data layers by storing data in a separate smart con-
tract. (3) The satellite part outsources functional units to separate satellite
contracts and stores their addresses in a base contract, allowing the replace-
ment of their functionality. (4) The register contract tracks different versions
of a contract and points to the latest one. (5) While keeping the old con-
tract address, the relay pattern uses a proxy contract to forward calls and
data to the newest contract version [52]. Data segregation, satellite, and relay
are platform-dependent low-level patterns, which we do not capture with our
DCR graph model. Our upgradability pattern model (Table 1) instead explic-
itly includes activities for the register and proxy parts.

Governance. On-chain governance is a crucial component of decentralized
protocols, allowing for decision-making on parameter changes, upgrades, and
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management [19,40]. The governance pattern is typically used to allow token
holders or a group of privileged users to vote on proposals and make decisions
that affect the contract’s behavior. This pattern works in conjunction with
other patterns, such as guard check (Sect.3) and role-based access control
(Sect. 3).

client client
buy Ot— g —O  sell
circuit-breaker
Ye¢———— admin adimii »%0
monitor ) —% h % client
contingency revive
panic transfer
— —_

Fig. 6. Circuit breaker design pattern DCR model

4 Modeling and Analysis of a Casino Smart Contract

As an example of how patterns modeled in DCR graphs come into play when
modeling a concrete smart contract scenario, we present a simple casino con-
tract [26]. It uses four design patterns identified in Table 1: time incentivization,
role-based access control, commit and reveal, and abstract contract states. This
endeavor demonstrates how utilizing and combining the DCR model of several
design patterns into one model captures the intended smart contract design.

The casino has two explicitly declared roles, operator and player. It also
contains three abstract states (see Sect.3): IDLE, GAME_AVAILABLE, and
BET_PLACED. Three modifiers check the pre-conditions of each function
based on the roles and the state the contract is in.

Figure 7 shows the DCR model of this contract. The activities all reflect func-
tions of the same name, except subprocess casino, which everything is grouped
under. This subprocess reflects the behavior of the deployed contract, which
includes a suicidal closeCasino function that selfdestructs, shown by an exclu-
sion arrow from closeCasino to the subprocess in Fig. 7. Without a subprocess,
an exclusion arrow would go from closeCasino to all other activities, which is
visually unappealing. Furthermore, we do not model the actual states of the
contract, instead choosing to order the activities by inclusion —+ and exclusion
—% arrows.

When the casino contract is deployed, it is in the IDLFE abstract state. It
is possible to create a game, add to the pot, remove from it, or self-destruct.
Creating a game will change the abstract state to GAME_AVAILABLE, which
enables anyone in the Ethereum network to place a bet and take the role of the

4 The scenario was originally provided by Gordon Pace.



Capturing Smart Contract Design with DCR Graphs 121

player (as a result). The function decideBet checks if the player is the winner by
comparing the guess with the secret number. This gives both the player and the
operator a 50 % chance of winning the game. In the model, a response arrow e—
from placeBet to decideBet emphasizes that decideBet has to execute at some
point and should not block the game from continuing. However, since continuing
the game at this point depends on the operator making a transaction, it is
possible for a malicious operator or buggy reverted decideBet function to lock
the funds the player puts in the game. Furthermore, after a player places the bet,
the operator should not be able to change the actual secret stored. Therefore,
three patterns are used in the model to provide the following functionality:

— A time incentivization pattern (Sect.3) ensures that continuing the game
is the favorable option for the casino operator. Figure 7 shows the required
mechanism, where timeoutBet becomes available with a desirable delay (here
P1D, one day) to provide the player with an option when the operator is
unable or unwilling to make a transaction to decideBet. Calling this function
after the timeout guarantees the player wins the game and motivates the
operator to decide the game in time.

— A commit and reveal pattern (Sect.3) is used to ensure when operator cre-
ateGame is called, the operator commits to a secret without sending it. The
revealing phase of this pattern is performed in decideBet, where the secret is
submitted, checked, and compared to the player’s guess.

— A role-based access control pattern (Sect.3) to confine player and operator
roles to their respective activities.

The abstract contract states pattern (Sect. 3) used in the implementation (Fig. 1)
is not needed in the model (Fig.7): The model’s partial ordering provides the
same semantics without the complications of abstract contract states.
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Fig. 7. Casino contract model.



122 M. Eshghie et al.

As mentioned in Sect. 1, DCR specifications provide a basis for automated
analysis, to wverify that the implementation of the contracts adheres to their
models.

We have implemented a runtime monitoring tool “Clawk” [27]. Clawk cap-
tures transactions from the Ethereum client and executes an instance of the
DCR graph model in tandem. For each Ethereum transaction, Clawk checks if
the DCR graph model permits a corresponding action in the model. If this is
not the case, the tool reports a violation.

By leveraging runtime information, our framework enables automated run-
time verification. While runtime verification in the blockchain domain is typically
associated with the performance overhead of contract or platform instrumenta-
tion [32,34,41], we address this concern by placing the monitor off-chain. If any
deviations from the specification are detected, Clawk generates alerts, which can
be used to enhance the contract’s implementation or enable a circuit breaker pat-
tern in the contract implementation (cf. Sect. 3).

5 Related Work

Smart contracts often involve multiple dependent transactions, a challenge that
has been addressed through various approaches. Sergey and Hobor discuss the
non-deterministic nature of transaction ordering decided by miners [47], while
other works focus on commutativity conditions to exploit interleavings [18] or
identify serializable transactions in Ethereum [23]. These issues have also been
modeled using finite state automata, which can lead to “bad states” in certain
scenarios (e.g., when most of the actions are not accessible) [24]. DCR graphs
offer a more elegant solution in such cases. Transactions and their dependen-
cies can be graphically represented, as demonstrated by Chen et al., who use
this to identify potential security issues [20]. Our work uniquely combines these
general properties [49] with specific features like access control [39] to provide a
comprehensive framework for smart contracts.

Chen et al. use graphs to analyze transactional dependencies and security in
smart contracts, but their approach is statistical and less precise than ours [20].
While general properties of smart contracts focus on transactional integrity (not
creating or destroying funds in the contract) [49], specific features can be modeled
through access control [39] or finite-state machines [35]. To our knowledge, our
work is the first to systematically apply a combination of these two aspects to
smart contracts in terms of general and reusable patterns.

6 Conclusion and Future Work

Smart contracts are critical yet complex pieces of software that encode business
processes in an executable form on a blockchain. We collected 19 smart contract
design patterns that dissect complex smart contracts into smaller reusable com-
ponents, making it easier to reason about them. DCR graphs are an ideal way to
formally model the semantics of these patterns, supporting the concepts of time,
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data, and sub-processes. We demonstrate their usefulness on the casino smart
contract that combines multiple patterns.

The contract DCR models serve as a repository of reusable templates for
developing more secure and efficient smart contracts across various applications
and smart contract execution platforms. This not only aids in the initial design
phase but also has uses in monitoring the contract behavior, allowing for auto-
mated verification [27], which reduces the risk of vulnerabilities. Future direc-
tions of our research include an extensive evaluation of the Clawk tool, com-
binations of static or dynamic analysis of low-level patterns [32] with runtime
monitoring against our high-level design patterns, as well as automated discovery
of the models from the contract transaction history.

References

1. A decentralized escape hatch for DAOs. https://hackingdistributed.com/2016/07/
11/decentralized-escape-hatches-for-smart-contracts/. Accessed 29 Aug 2023
2. Implement  escape  hatch  mechanism  contracts . Issue  #1 .
OpenZeppelin/openzeppelin-contracts. https://github.com/OpenZeppelin/
openzeppelin-contracts/issues/1. Accessed 29 Aug 2023
3. The Maker Protocol White Paper — Feb (2020). https://makerdao.com/en.
Accessed 29 Aug 2023
4. SWC-105 - Smart Contract Weakness Classification (SWC). https://swcregistry.
io/docs/SWC-105/. Accessed 01 Sept 2023
5. SWC-106 - Smart Contract Weakness Classification (SWC). https://swcregistry.
io/docs/SWC-106/. Accessed 01 Sept 2023
6. SWC-114 - Smart Contract Weakness Classification (SWC). https://swcregistry.
io/docs/SWC-114/. Accessed 01 Sept 2023
7. SWC-116 - Smart Contract Weakness Classification (SWC). https://swecregistry.
io/docs/SWC-116/#time_locksol. Accessed 01 Sept 2023
8. Synthetixio/synthetix: Synthetix Solidity smart contracts. https://github.com/
Synthetixio/synthetix. Accessed 29 Aug 2023
9. Timestamp Dependence - Ethereum Smart Contract Best Practices.
https://consensys.github.io/smart-contract-best-practices/development-
recommendations/solidity-specific/timestamp-dependence/#avoid-using-
blocknumber-as-a-timestamp. Accessed 01 Sept 2023
10. Aragon OSx Protocol (2023). https://github.com/aragon/osx. Accessed 29 Aug
2023
11. Aragon/aragon-court: Aragon (2023). Accessed 29 Aug 2023
12. Augur (2023). https://github.com/AugurProject/augur. Accessed 29 Aug 2023
13. Chainbridge-solidity (2023). https://github.com/ChainSafe/chainbridge-solidity.
Accessed 29 Aug 2023
14. Compound Protocol: Compound (2023). Accessed 29 Aug 2023
15. Ethereum development documentation (2023). https://ethereum.org/en/
developers/docs/. Accessed 29 Aug 2023
16. Smartcontractkit/chainlink (2023). https://github.com/smartcontractkit/
chainlink. Accessed 29 Aug 2023
17. Solidity documentation (2023). https://docs.soliditylang.org/en/latest/. Accessed
29 Aug 2023


https://hackingdistributed.com/2016/07/11/decentralized-escape-hatches-for-smart-contracts/
https://hackingdistributed.com/2016/07/11/decentralized-escape-hatches-for-smart-contracts/
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/1
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/1
https://makerdao.com/en
https://swcregistry.io/docs/SWC-105/
https://swcregistry.io/docs/SWC-105/
https://swcregistry.io/docs/SWC-106/
https://swcregistry.io/docs/SWC-106/
https://swcregistry.io/docs/SWC-114/
https://swcregistry.io/docs/SWC-114/
https://swcregistry.io/docs/SWC-116/#time_locksol
https://swcregistry.io/docs/SWC-116/#time_locksol
https://github.com/Synthetixio/synthetix
https://github.com/Synthetixio/synthetix
https://consensys.github.io/smart-contract-best-practices/development-recommendations/solidity-specific/timestamp-dependence/#avoid-using-blocknumber-as-a-timestamp
https://consensys.github.io/smart-contract-best-practices/development-recommendations/solidity-specific/timestamp-dependence/#avoid-using-blocknumber-as-a-timestamp
https://consensys.github.io/smart-contract-best-practices/development-recommendations/solidity-specific/timestamp-dependence/#avoid-using-blocknumber-as-a-timestamp
https://github.com/aragon/osx
https://github.com/AugurProject/augur
https://github.com/ChainSafe/chainbridge-solidity
https://ethereum.org/en/developers/docs/
https://ethereum.org/en/developers/docs/
https://github.com/smartcontractkit/chainlink
https://github.com/smartcontractkit/chainlink
https://docs.soliditylang.org/en/latest/

124

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

M. Eshghie et al.

Bansal, K., Koskinen, E., Tripp, O.: Automatic generation of precise and useful
commutativity conditions. In: Beyer, D., Huisman, M. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems, pp. 115-132. Lecture Notes in Com-
puter Science, Springer International Publishing, Cham (2018). https://doi.org/10.
1007/978-3-319-89960-2_7

Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns. In: Brenner, M., et al. (eds.) FC 2017. LNCS,
vol. 10323, pp. 494-509. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70278-0-31

Chen, T., et al.: Understanding Ethereum via graph analysis. ACM TOIT 20(2),
1-32 (2020)

Compound: Compound v2 Governance. https://docs.compound.finance/v2/
governance/. Accessed 29 Aug 2023

Consensys: ethereum smart contract best practices (2023). https://consensys.
github.io/smart-contract-best-practices/development-recommendations/
precautions/. Accessed 29 Aug 2023

Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart
contracts. In: PODC, pp. 303-312. ACM (2017)

Ellul, J., Pace, G.J.: Runtime verification of ethereum smart contracts. In: 2018
14th European Dependable Computing Conference (EDCC). IEEE (2018). https://
doi.org/10.1109/EDCC.2018.00036

Eshghie, M.: A comprehensive collection of DCR graph model of business process-
level (contract-level) design patterns in smart contracts (Aug 2023). https://github.
com/mojtaba-eshghie/SmartContractDesignPatternsinDCRGraphs. Accessed 29
Aug 2023

Eshghie, M.: mojtaba-eshghie/CLawK (2023). https://github.com/mojtaba-
eshghie/CLawK /blob/925bf9c9afe344c¢763963¢0e40098¢66420d1d6a/server/
monitor/contracts/source/Casino.sol. Accessed 29 Aug 2023

Eshghie, M., Ahrendt, W., Artho, C., Hildebrandt, T.T., Schneider, G.: CLawK:
Monitoring Business Processes in Smart Contracts (2023). https://doi.org/10.
48550/arXiv.2305.08254. Accessed 29 Aug 2023

Eshghie, M., Artho, C., Gurov, D.: Dynamic vulnerability detection on smart con-
tracts using machine learning. In: EASE 2021, pp. 305-312. ACM (2021)
etherscan.io: HOLDIT — Etherscan. http://etherscan.io/address/
0x24021d38DB53A938446eCB0a31B1267764d9d63D. Accessed 29 Aug 2023
Fravoll: Solidity Patterns (2023). https://fravoll.github.io/solidity-patterns/.
Accessed 29 Aug 2023

Gamma, E., Helm, R., Johnson, R., Johnson, R.E., Vlissides, J.: Design patterns:
elements of reusable object-oriented software. Pearson Deutschland GmbH (1995)
Gao, J., Liu, H., Liu, C., Li, Q., Guan, Z., Chen, Z.: EASYFLOW: keep ethereum
away from overflow. In: 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-Companion), pp. 23-26 (2019).
https://doi.org/10.1109/ICSE-Companion.2019.00029, ISSN: 2574-1934

giveth.io: common-contract-deps (2021). https://github.com/Giveth/common-
contract-deps/blob/094d36028eab30444314395016817735¢57¢9d77 /contracts/
Escapable.sol. Accessed 29 Aug 2023

Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sagiv,
M., Zohar, Y.: Online detection of effectively callback free objects with applications
to smart contracts (2018). https://doi.org/10.48550/arXiv.1801.04032

Guth, F., Wiistholz, V., Christakis, M., Miiller, P.: Specification mining for smart
contracts with automatic abstraction tuning. arXiv:1807.07822 (2018)


https://doi.org/10.1007/978-3-319-89960-2_7
https://doi.org/10.1007/978-3-319-89960-2_7
https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-70278-0_31
https://docs.compound.finance/v2/governance/
https://docs.compound.finance/v2/governance/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/precautions/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/precautions/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/precautions/
https://doi.org/10.1109/EDCC.2018.00036
https://doi.org/10.1109/EDCC.2018.00036
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs
https://github.com/mojtaba-eshghie/CLawK/blob/925bf9c9afe344c763963e0e40098c66420d1d6a/server/monitor/contracts/source/Casino.sol
https://github.com/mojtaba-eshghie/CLawK/blob/925bf9c9afe344c763963e0e40098c66420d1d6a/server/monitor/contracts/source/Casino.sol
https://github.com/mojtaba-eshghie/CLawK/blob/925bf9c9afe344c763963e0e40098c66420d1d6a/server/monitor/contracts/source/Casino.sol
https://doi.org/10.48550/arXiv.2305.08254
https://doi.org/10.48550/arXiv.2305.08254
http://etherscan.io/address/0x24021d38DB53A938446eCB0a31B1267764d9d63D
http://etherscan.io/address/0x24021d38DB53A938446eCB0a31B1267764d9d63D
https://fravoll.github.io/solidity-patterns/
https://doi.org/10.1109/ICSE-Companion.2019.00029
https://github.com/Giveth/common-contract-deps/blob/094d36028eab30444314395016817735e57e9d77/contracts/Escapable.sol
https://github.com/Giveth/common-contract-deps/blob/094d36028eab30444314395016817735e57e9d77/contracts/Escapable.sol
https://github.com/Giveth/common-contract-deps/blob/094d36028eab30444314395016817735e57e9d77/contracts/Escapable.sol
https://doi.org/10.48550/arXiv.1801.04032
http://arxiv.org/abs/1807.07822

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Capturing Smart Contract Design with DCR Graphs 125

Explained: The Akutars NFT Incident (2022) - Halborn Blockchain Security Firm:
Ethical Hackers, Infosec & Pen Tests. https://halborn.com/blog/post/explained-
the-akutars-nft-incident-april-2022. Accessed 29 Aug 2023

Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: Honda, K., Mycroft, A. (eds.)
Proceedings Third Workshop on Programming Language Approaches to Concur-
rency and communication-cEntric Software, PLACES 2010, Paphos, Cyprus, 21st
March 2010. EPTCS, vol. 69, pp. 59-73 (2010). https://doi.org/10.4204/EPTCS.
69.5

Hildebrandt, T.T., Normann, H., Marquard, M., Debois, S., Slaats, T.: Decision
modelling in timed dynamic condition response graphs with data. In: Marrella, A.,
Weber, B. (eds.) BPM 2021. LNBIP, vol. 436, pp. 362-374. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-94343-1_28

Liu, Y., Li, Y., Lin, S.W., Artho, C.: Finding permission bugs in smart contracts
with role mining. In: SIGSOFT ISSTA 2022, pp. 716-727. ACM (2022)

Liu, Y., Lu, Q., Zhu, L., Paik, H.Y., Staples, M.: A systematic literature review
on blockchain governance. J. Syst. Softw. 197 (2023)

Ma, F., Fu, Y., Ren, M., Wang, M., Jiang, Y., Zhang, K., Li, H., Shi, X.: EVM:
from offline detection to online reinforcement for ethereum virtual machine. In:
2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 554-558 (2019). https://doi.org/10.1109/SANER.
2019.8668038, ISSN: 1534-5351

Marchesi, L., Marchesi, M., Destefanis, G., Barabino, G., Tigano, D.: Design pat-
terns for gas optimization in Ethereum. In: IEEE IWBOSE, pp. 9-15 (2020)
Normann, H., Debois, S., Slaats, T., Hildebrandt, T.T.: Zoom and Enhance: action
refinement via subprocesses in timed declarative processes. In: Polyvyanyy, A.,
Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp.
161-178. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_12
Nute, D.: Handbook of logic in artificial intelligence and logic programming, vol.
3, chap. Defeasible Logic. Clarendon Press, Oxford University Press (1994)
OpenZeppelin:  OpenZeppelin  Contracts. https://github.com/OpenZeppelin/
openzeppelin-contracts. Accessed 29 Aug 2023

Sandhu, R.S.: Role-based access control. In: Advances in Computers, vol. 46, pp.
237-286. Elsevier (1998)

Sergey, 1., Hobor, A.: A concurrent perspective on smart contracts (2017). http://
arxiv.org/abs/1702.05511

Solidstate: SolidState Solidity (2023). https://github.com/solidstate-network/
solidstate-solidity /blob/de7c9545ac015f42a03aa3a678000eclecdcl4ad /contracts/
access/access_control/AccessControl.sol. Accessed 29 Aug 2023

Wang, H., et al.: Oracle-supported dynamic exploit generation for smart contracts.
IEEE Trans. Dependable Secure Comput. 19(03), 1795-1809 (2022)

Wohrer, M., Zdun, U.: Smart contracts: security patterns in the Ethereum ecosys-
tem and solidity. In: IEEE IWBOSE, pp. 2-8 (2018)

Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1-32 (2014)

Woéhrer, M., Zdun, U.: Design patterns for smart contracts in the Ethereum ecosys-
tem. In: iThings/GreenCom/CPSCom/SmartData, pp. 1513-1520 (2018)


https://halborn.com/blog/post/explained-the-akutars-nft-incident-april-2022
https://halborn.com/blog/post/explained-the-akutars-nft-incident-april-2022
https://doi.org/10.4204/EPTCS.69.5
https://doi.org/10.4204/EPTCS.69.5
https://doi.org/10.1007/978-3-030-94343-1_28
https://doi.org/10.1109/SANER.2019.8668038
https://doi.org/10.1109/SANER.2019.8668038
https://doi.org/10.1007/978-3-030-85469-0_12
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
http://arxiv.org/abs/1702.05511
http://arxiv.org/abs/1702.05511
https://github.com/solidstate-network/solidstate-solidity/blob/de7c9545ac015f42a03aa3a678000ec1ec4c14a4/contracts/access/access_control/AccessControl.sol
https://github.com/solidstate-network/solidstate-solidity/blob/de7c9545ac015f42a03aa3a678000ec1ec4c14a4/contracts/access/access_control/AccessControl.sol
https://github.com/solidstate-network/solidstate-solidity/blob/de7c9545ac015f42a03aa3a678000ec1ec4c14a4/contracts/access/access_control/AccessControl.sol

l‘)

Check for
updates

An Active Learning Approach to
Synthesizing Program Contracts

Sandip Ghosal'®) | Bengt Jonsson', and Philipp Riimmer!2

! Uppsala University, Uppsala, Sweden
sandipsmit@gmail.com
2 University of Regensburg, Regensburg, Germany

Abstract. Contracts capture assumptions (preconditions) and guaran-
tees (postconditions) of functions in a software program, and are an
important paradigm for documenting program code, for program under-
standing, and to enable modular program verification. In this paper, we
focus on contracts for stateful software modules, for instance modules
implementing data-structures like queues. Such modules offer different
kinds of functions to their environment: observers, which are pure func-
tions used to query the state of the module; and mutators, which can
change the module state. We present a novel technique to synthesize
contracts for the mutators of a module, in which pre- and postconditions
are expressed as Boolean combinations of the observers. Our method
builds on existing algorithms for active learning of register automata to
model the possible behaviours of the stateful module. We then present
techniques for synthesizing contracts from a learned register automaton.
The entire method is fully black-box and automated. Based on our pro-
posed approach, we develop a tool called CoGent that generates a set of
contracts for a mutator from a given register automaton of a module.
Finally, we evaluate our tool using the APIs for various data structures.

1 Introduction

The annotation of program functions with contracts, consisting of pre- and post-
conditions, serves several purposes. Contracts are an important form of docu-
mentation, and are as such widely used to describe the intended use of library
and APT functions. Contracts give rise to the Design-by-Contract (DbC) method-
ology [18], by stating both the assumptions made about the states in which a
function may be called, and the guarantees established in return by the func-
tion. In formal verification, contracts are the main vehicle to decompose larger
programs into smaller units that can be analysed in isolation (e.g., [6,7]).

It is non-trivial, however, to come up with correct contracts for a given func-
tion. In most of today’s code bases, functions are documented only with unstruc-
tured text, or with informal contracts in which pre- and postconditions are stated
in natural language. Like any kind of formal specification, the process of writ-
ing formal contracts (with pre- and postconditions being logical formulas) is
an extremely time-consuming and error-prone process, and is in fact sometimes
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considered the main bottleneck preventing application of formal methods in an
industrial context.

Over the last years, researchers have therefore considered the automated
inference of formal contracts from implementations (e.g., [1,2,4,5,13,19,20,22]).
Such inferred contracts can serve as documentation of existing programs, and as
auxiliary annotations in verification. However, although various approaches to
contract inference have been proposed, methods that are (i) scalable enough to
handle real-world code bases, (ii) precise enough to generate correct and complete
contracts, (iii) refined enough to produce contracts that are human-readable so
far remain elusive.

In this paper, we present a new approach to automatically infer contracts for
software modules. Our approach starts with applying existing active black-box
learning methods [8,9] to build a behavioural model of a program in the form of a
finite-state register automaton. We then construct contracts for all mutator func-
tions of the software module in terms of the available observer functions: for this,
state transitions associated with a mutator are analysed, and the effects of the
transitions are summarized using observers. Under certain assumptions on the
shape of the automaton, the computed contracts are guaranteed to describe only
the behaviour of the module that is reachable, i.e., they implicitly take module
invariants into account. This is because the reachable states of the automaton
correspond to the module states that are reachable from some designated initial
state.

The contributions of this paper are:

— A new black-box framework for synthesizing program contracts for software
modules (Sect.4).

— An algorithm to extract program contracts from finite-state register automata
(Sect. 4).

— An implementation of our approach in the tool CoGent (Sect. 5), and an evalu-
ation of our method using software modules taken from the Java API (Sect. 6).

Outline: The remainder of this paper is structured as follows. Section 2 illus-
trates program contracts with an example of a stateful data structure that serves
as a running example for this paper. Section 3 describes the semantics of pro-
gram contract, and introduces to basic concepts and notations for dealing with
register automata and active automata learning. Section 4 outlines the steps for
synthesizing program contracts with illustrations using the running example.
Section 5 describes the implementation details of our tool, CoGent, and Sect. 6
presents its evaluation on various data structures. Section 7 compares our app-
roach with some of the earlier attempts for synthesizing program contracts in
the literature, followed by the conclusions in Sect. 8.

2 DMotivating Example

As an illustration, consider the Java class BoundedList in Fig.1. It contains
methods BoundedList() for constructing a list object, 1ist, of maximum size
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public class BoundedList { public boolean contains(Integer e
private LinkedList<Integer> list; ) {
private int maxSize; return list.contains(e);
}
public BoundedList (){
maxSize = DEFAULT_SIZE; public boolean isEmpty () {
list = new LinkedList<Integer return (list.size == 0) 7
>0 true: false;
¥ ¥
public void push(Integer e) { public boolean isFull() {
if (maxSize > list.size()) list. return (list.size == maxSize) ?
push(e); true : false;
¥ }
}

public int pop() {
return list.pop();
}

Fig. 1. A module for a BoundedList (in Java)

{(p = q) N —isFull()} push(p) {contains(q)}

{ (=(p = q) A —contains(q))

V (isFull() A —contains(q)) } push(p) {—contains(q)}

Fig. 2. Contracts for the BoundedList module in Fig. 1

defined by maxSize. The class further contains the methods push and pop, which
are mutators, and the observer methods contains, isEmpty, and isFull. The
class BoundedList internally uses the LinkedList class available in JDK v1.8.
The method push takes an integer as an input parameter and inserts the inte-
ger into the list. Method pop does not accept any parameter but removes an
element from the 1ist and outputs the removed integer. The method contains
returns 7True if the argument passed in the method already exists in the 1list,
and False otherwise. Methods isEmpty and isFull return True if the 1ist is
empty and full respectively, otherwise, False. The module serves as a running
example for illustrating our proposed approach.

A contract relates a method call with the module states immediately before
and after that call. Being in a black-box setting, we cannot refer directly to the
internal module state. Instead we refer to the module state indirectly via the
return values of calls to observer methods. An observer method does not modify
the state of the module, and is used to extract information about the module
state.

Let a condition be a Boolean combination of observer calls f(r1,...,7m),
where 71, ...,7, are variables of the appropriate types, and constraints formu-
lated using the predicates from some background theory. In this paper, we define
a contract for a method m with parameters pq,...,p, in a module to be of the
form

{P} m(p1,...,pn) {Q}
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where P, called the precondition and @, called the postcondition, are conditions.
The conditions P, @ can contain variables p1, ..., p,, as well as further variables
used to relate pre- and post-states. As a simplifying assumption, and without loss
of generality, every variable in P or () that does not occur among the p1,...,p,
has to occur as an argument of some observer in P or (). Let the parameters of
the contract be pq,...,p, together with additional variables appearing in P, Q.

A contract {P} m(p1,...,pn) {Q} is valid if, for every valuation of variables
occurring in the contract, whenever m is called in a reachable state of the module
in which P is True, the method call m(ps,...,p,) terminates and leaves the
module in a state in which Q is True.

As illustration, for the module BoundedList in Fig. 1, we aim to synthesize
contracts for the mutators push and pop. The contracts may include the given
Boolean observer methods contains, isEmpty, and isFull, as well as relations
between the occurring parameters. To this end, we first compute a model of the
module in terms of a register automaton. While the behaviour of a software
module can in general not be described by a finite register automaton, such
a finite automaton can be derived for data structures with bounded capacity.
For BoundedList with maxSize = 2, for example, the computed automaton has
four locations and two registers, see Fig. 3. The register automaton captures the
reachable behaviour of both the mutators and the observers.

To generate contracts for a mutator m, we then consider the transitions
that are associated with m. Such transitions describe how the return values of
observer methods can change as a result of calling m: transitions can update the
values of registers, and the observers are described by location-specific guards.
We present an algorithm, which for each location generates a location-specific
contract for m from its outgoing m-transitions; as a second step, the location-
specific contracts are then combined to obtain an overall contract for m.

In general, we would like generated contracts to be both valid and mazimal,
by which we mean that the precondition cannot be weakened without making
the contract invalid. Two example contracts for the push method are given
in Fig.2. We can observe that the first contract in Fig.2 is valid, but it is
not maximal, since the postcondition could also be established by assuming
contains(q) already in the precondition. The second contract is both valid and
maximal.

3 Background

In this section, we give background for the contract synthesis approach, described
in Sect.4. The synthesis approach works by using active automata learning to
obtain a register automaton model of the stateful behaviour of the module. The
register automaton then forms the basis for contract synthesis. In this section,
we describe program contracts, register automata and active learning.



130 S. Ghosal et al.

3.1 Contracts

Throughout the paper, we assume a background theory, i.e., a (many-sorted)
first-order language with constant, function, and relation symbols, with fixed
interpretation over the appropriate domains. Terms and formulas are constructed
as usual from those symbols, as well as from variables taken from a set V. A
valuation p is a mapping from variables V to their domains. Valuations are
extended to terms and assertions in the usual way. We write u |= ¢ to express
that ¢ evaluates to True in pu.

We assume a set M of methods, each with a signature that determines the
number of input parameters, their types, and the return type of the method. We
assume a distinguished subset of M, the set of observer methods: an observer
method is special in that it does not modify any state variables. Throughout the
paper, we assume that each observer method returns a Boolean value. The other
methods are called mutators.

A method call is a term of form m(dy,...,d,), where m is a method action
and dy,...,d, are data values from the appropriate domains. A parameterized
method call is a term of form m(py,...,pn), where pi,...,p, are variables; in
this context we sometimes call them formal parameters of the method call.

As mentioned in Sect.2, a condition is a Boolean combination of observer
calls f(r1,...,7m), where rq,...,r,, are variables of the appropriate types, and
constraints formulated using the predicates from the background theory. We say
that a condition P entails condition @, written P = (@, if the formula P — Q is
valid when every observer method is considered as an uninterpreted first-order
predicate.

A contract is a triple {P} m(p1,...,pn) {Q} consisting of a precondition P,
a mutator call m(py,...,pn), and a postcondition Q.

3.2 Register Automata
We assume a set of registers x1, za, . . ..

Definition 1 (Register automaton). A register automaton (RA) is a tuple
A = (L1y,X,T), where L is a finite set of locations, lg € L is the initial
location, X maps each location | € L to a finite set X (1) of registers, where in
particular X (lg) = 0, and I is a finite set of transitions. Fach transition in I’
s of form

pyp— -—_— /
<lam(p17 e 7Pn)7g,€out793i1 = Ciyy ey Ty, T eimal >7

where I € L is a source location, I" € L is a target location, m(p1,...,pn) is a
parameterized method call, g is a guard, i.e., a conjunction of negated and non-
negated relations over py,...,pn and X (1), €our is an expression over pi,...,Pn
and X(1), and x;, = e;,...,x;, = e; is an assignment which updates the
registers x;,,...,x; in X (') with the values of expressions e;,, ... e; . In this
work, we assume that each expression e;; is either a register in X (1) or a formal
parameter in P, ..., Pn- m]



An Active Learning Approach to Synthesizing Program Contracts 131

We write T, p, and € for tuples of registers, parameters, and expressions. Let
us formalize the semantics of RAs. A state of an RA A = (L,lg, X, ') is a pair
(I, ) where I € L and p is a valuation over X'(I), i.e., a mapping from X () to the
appropriate domains. The initial state is the pair (ly, po) where pg is the empty

mapping. A step of A, denoted (I, i) @/ uleou), (', '), transfers A from (I, u)
to (I, 1) on the method call m(d), returning p(esyt), if there is a transition

(I,m(D), g, €out, Tiy = €iyy..., i, = ¢€; 1"y € I such that

~ u = g[d/pl, i.e., d satisfies the guard g under the valuation u, and
— ' is the updated valuation which maps z; to u(e;) when x; is in z;,, ..., z;
and maps other registers x; in X' (I') to p(z;).

A state (I, p) is reachable if there is a sequence of steps

my(dy)/oy
—_

dg)/o n(dn)/on
(lo, to) (o) G, pa) 2292792, g0 oy e ) IO g

leading from the initial state (lg, uo) to (I, u).

We can now define validity of a contract relative to a register automaton A.
Let P be a condition, let o be a valuation of the variables in P, and let (I, u) be
a state of A. We say that P is true in (I, u) under o, denoted (I, u) | o(P), if
o(P) evaluates to true when each observer call in o(P), of form obs(dy,...,d,),
is replaced by the value returned when calling obs(dy, ..., d,) in (I, u).

Definition 2. A contract {P} m(p1,...,pn) {Q} is valid for a RA A if for any
assignment o of values to the parameters of the contract, and any reachable state
(I, p) of A with (I, ) = o(P), we have that

— there is an output o and state (I', 'y with (I, p) ma@rpa)l/o, ', 1y, and
— for any such output o and state (I', 'y it holds that (I', 1) = o(Q).

Example

Figure 3 showcases such a RA that serves as a model for capturing the behaviour
of the BoundedList API (cf. Fig.1) when the maximum capacity of the list
is set to 2. The language for the model consists of sequences of API method
calls. An execution of such a sequence may result in modifying the state of
the list, causing state transitions, thereby producing an output sequence that
adheres to the expected I/O behaviour of the methods within the sequence.
The RA is composed of nodes, each representing a specific state of the list, and
edges that signify state transitions. Each edge is labeled to denote the actions
performed by a method during execution. In the following, we illustrate the
labels corresponding to the edges for a mutator and an observer:

~ pop() [ true — {x1 := 22} .. contains(q)[ (z1 =¢q)V (z2 =¢q)
) I (i) true

Consider a state ¢ where the list has two elements stored in registers z; and
o, with z; holding the most recently pushed element. In this state, a state
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contains(q)[Jtrue
false

isFull()[[true
false

isPypty() [true

pop() Jtrue

exception

push(p)[[true
€

gop() [true—{}
1

isFull(),isEmpty()[true
false

contains(q) [l (z1=q)
true

contains(q)[Jtrue
€
isFull(),isEmpty()[[true
€

contains(q) |~ (z1=q)

pop() [true—{zi:=z2}
1

push(p)[[true—{zs:=z1,z1:=p}
€

isEmpty () [[true
false

contains(q) [ (z1=q)V(z2=q)
true

push(p) [Jtrue

€
isFull()[Jtrue
true
contains(g)[~(z1=¢)A~(z2=q)
false

Fig. 3. Register automaton modeling a list (Fig. 1) with maximum capacity 2

transition occurs when the method pop() (a mutator) is invoked, as indicated by
an edge labeled with (7). This label indicates that the method’s guard condition
is satisfied (true) and it outputs the recently pushed element stored into z; while
moving the second element x2 into x1, thereby releases x2. In fact, a call to pop()
always outputs the last stored element unless the list is empty, in which case it
throws an exception while leading to a trap state. The mutator push, however,
in /5 does not change the state as the list has reached its maximum capacity.
We use the notation € to denote the void return type for method push. On the
other hand, a method call contains(q) (an observer) in ¢5 checks if an element
passed by the parameter ¢ is present in the list, is labeled with (4¢), meaning the
method outputs true upon satisfying the condition (x; = ¢) V (x2 = ¢). Note
that the label (iz) has no register assignments since observers do not modify
register values and therefore, do not change the module state. In some cases
we represent a single label for more than one method calls, method signature
separated by comma (¢, ), those exhibit similar behaviour.

3.3 Active Learning of Register Automata

The first step of our contract generation uses active automata learning (AAL) to
automatically learn a register automaton model of the system under test (SUT).
AAL is an automated black-box technique which a priori needs know only a
module’s methods and their signatures. Classical AAL learns finite automata or
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Mealy machines from tests, using, e.g., the classic L* algorithm [3] or the more
recent TTT algorithm [16]. These, and other AAL algorithms are implemented
in LearnLib [15]. Finite-state models do not capture how parameter values in
method calls affect the module state and successive method calls. In order to
capture data aspects of module behaviour, finite-state models can be, and com-
monly are, equipped with variables, sometimes called registers. Variables can
store the values of data parameters; they can influence control flow by means of
guards, and the control flow can cause variable updates. Finite state machines
with variables are often called extended finite state machines (EFSMs). We will
employ a specific such model, namely register automata (RAs), in which regis-
ters are used as variables. An extension of AAL to learning of RAs is SL* [9],
which has been implemented in RALib, an extension of LearnLib [8].

The SL* algorithm must know the set of methods and their signatures. Like
other AAL algorithms, it operates in two alternating phases: hypothesis con-
struction and hypothesis validation. During hypothesis construction, sequences
of method calls are submitted on the SUT, and the corresponding return values
are observed to collect information about the module behaviour. When certain
convergence criteria are met, the AAL algorithm constructs a hypothesis, which
is a minimal deterministic RA that is consistent with the observations so far. To
validate that the hypothesis agrees with the behaviour of the SUT, learning then
moves to the validation phase, in which the SUT is subject to a conformance
testing algorithm which aims to validate that the behaviour of the SUT agrees
with the hypothesis. If conformance testing does not find any counterexample,
learning terminates and returns the current hypothesis as the inferred model
of the SUT. If a counterexample (i.e., a sequence of method calls on which the
SUT and the hypothesis disagree) is found, the hypothesis construction phase
is re-entered to build a more refined hypothesis. If the loop of hypothesis con-
struction and validation does not terminate, this indicates that the behaviour of
the SUT cannot be captured by a deterministic RA whose size and complexity
is within reach of the employed learning algorithm. Still, even in these cases, the
last constructed hypothesis can be used as an approximate model of the SUT.

4 Contract Synthesis

In this section, we describe our approach for inferring contracts for a module.

4.1 Learning a Behavioural Model

The first step of our approach is to obtain a register automaton model of the
module. Sometimes, such an automaton model is readily available and can be
supplied directly for generating contracts. Otherwise, such a register automaton
can be learned using AAL as described in Sect.3.3. Recall that AAL is fully
automated and black-box, but may have practical limitations on the size of
the learned model. For these reasons, we may modify the module so that its
behaviour can be captured by an RA of modest size. A typical modification for
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container modules is to bound their capacity so that they become “full” for a
small number of contained items: this will not change the set of valid contracts,
as long as they do not count the number of contained items. For our running
example such an automaton is shown in Fig. 3.

4.2 Generating Contracts from a Register Automaton

Given a register automaton model of our module, we present an algorithm for
synthesizing contracts for each mutator method m. Recall that a contract is of
form {P} m(p1,...,pn) {@}. Our methodology considers synthesizing contracts
for one postcondition at a time. This means, our algorithm synthesizes contracts
of the above form, given as input a postcondition @, as well as a set Viopns of
variables that can occur in P; the set V.on¢- should include pq,...,p, and the
variables in @. In our running example, a starting postcondition @ could be
contains(q), where ¢ is a parameter, or even —contains(g). In the following
description, we will use generation of preconditions P in contracts of form

{P} push(p) {contains(q)}

to illustrate the successive steps in our algorithm. The generation of contracts
proceeds through the following steps.

Step 1: Generating Weakest Preconditions: For each location [, we derive
the weakest precondition wp;(m, @), i.e., the weakest condition on the registers
of [ under which m will terminate and yield a state in which @ evaluates to
true. This can be done using standard techniques (e.g., [11]). For each location
I, let [Q]: be the condition on the registers of | and parameters of @ under
which @ evaluates to True. The condition [Q]; can be obtained from @ by
replacing each nonnegated observer call 0bs(p) by the disjunction of the guards
of transitions from [ in which 0bs(p) return True, and analogously for negated
observer calls. Then, letting t¢1,...,t, be the outgoing transitions from [ for
method m, wp;(m, Q) is obtained as

wpi(m, Q) = \/gz A Ao = QI len /v ei /1,]) (1)

where g; is the guard, [} is the target location, and x;, = e;,,...,2;,, =€, is
the assignment of ¢;.

Hllustration: Let us illustrate the generation of the weakest precondition

wpy, (push(p), contains(q)) for the method push(p) relative to the postcondition
contains(q), where [; is the location in the RA fragment depicted in Fig. 4. Here,
l1 is the location representing a bounded list containing a single element stored
in the register x1. The transition from ¢; to £, is the only transition from I; for
the method push. It inserts a second element into the list, causing two elements
to be stored into the registers z; and x5. We first obtain [contains(q)];, as
(g = 1 V ¢ = x2). Using Eq. (1), we then derive the weakest precondition
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contains(q)[[(¢g=z1)V(g=z2)
True

Fig. 4. The single transition for the method push from location ¢, together with the
transition for contains from location /5.

push(p)[| True— [zo:=x1,x1:=p)
€

wpy, (push(p), contains(q)) as (¢ = x1Vq = x2)[x1/x2,p/x1], 16, (p = q) V(21 =
q). m]

Step 2: Generating Location-Specific Preconditions: The weakest pre-
condition wp;(m, Q) is not adequate as a precondition, since in general it men-
tions registers, while a precondition can only refer to the module state through
observer calls. Therefore, in each location I, we generate location-specific pre-
conditions Pre;(m, Q) such that [Pre;(m,Q)]; implies wp;(m, Q). To this end,
define the set O as containing all possible parameterized method calls 0bs(D)
whose parameters p are taken from V,.,.¢-. Next, let C; be the set of formulas,
which are either (i) of form [obs(p)]; or of form [—obs(p)]; for a parameterized
observer call obs(p) in O, or (ii) a (nonnegated or negated) relation between
variables in Veontr. We generate Pre;(m, @) as a disjunction of conjunctions of
formulas in C;, where each disjunct is obtained as a minimal conjunction of
formulas in C; which implies wp;(m, Q). The generation of Pre;(m,Q) can be
performed using a SAT/SMT-solver by observing that the validity of

(e1 A+ Aeg) — wpr(m, Q)

is equivalent to unsatisfiability of

(01 JARERIAN Ck) A _‘wpl(va)a

implying that we can obtain minimal conjunctions ¢; A --- A ¢; with the above
properties by asking a SAT/SMT-solver to produce minimal unsatisfiable sub-
sets (MUS) of formulas in C; U {(—wp;(m, @))}. From each of these we obtain
a conjunction of formulas in C; by first removing —wp;(m, @), and replacing
each conjunct of form [obs(D)]; (or [-0bs(p)];) by the corresponding parameter-
ized observer method call 0bs(p) (or —obs(p)). We discard conjunctions, such as
0bs(p) A\ —obs(p), which are syntactical contradictions. Since the generation of
minimal unsatisfiable subsets may not explicitly generate the empty set of con-
juncts (which is equivalent to False), we finally add, for each non-parameterized
observer obs() for which [obs()]; is True, the disjunct —obs(); by symmetry we
add the disjunct —0bs() if Jobs()]; is False. These disjuncts are redundant in the
location-specific precondition at location [, but may be non-redundant in another
location !" where [obs()];s is neither True nor False; in such a case they allow
to form weaker global preconditions in Step 3. The result is our sought location-
specific precondition Pre;(m, @), structured as a disjunction of conjunctions over
formulas in O.
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isFull(),isEmpty()[ True
False

Fig. 5. Observers in location ¢; in the automaton for BoundedList

Tllustration: In Step 1, we obtained wpy, (push(p), contains(q)), the weakest
precondition in location I1, as (p = q) V (1 = ¢). In Fig. 5, we show a frag-
ment of the learned RA, showing calls to observers in location ;. To construct
Pre;, (push(p), contains(q)), we collect in C; the guards for contains(q) (i.e.,
(¢ = 1)) and for —contains(q) (i.e., =(¢ = 1)) together with equalities and
dis-equalities between occurring parameters. By interacting with a SAT/SMT
solver, we identify the following minimal unsatisfiable subsets:

(i) {(p=q), ~wpi, (push(p), contains(q))}
(ii) {(g = 21), ~wpy, (push(p), contains(q))}

which, after removing the negated weakest preconditions, yields the following
two minimal disjuncts to be used in the precondition: (i) (p = ¢), and (ii)
contains(q). Since none of these disjuncts entails the other, we use both when
forming the formula in DNF, as ((p = ¢) V contains(q)). As the final step,
we consider unparameterized observer calls that always return True or Fulse
in location [;. Considering that in I;, the list contains one item, these are
—isEmpty() and —isFull(). Therefore, we add the two disjuncts isEmpty() and
isFull(). By making them antecedents in an implication, we can then write
Pre;, (push(p), contains(q)) in the following way:

(—isFull() A —isEmpty()) — ((p = ¢) V contains(q)).

O

Step 3: Generating Global Preconditions: After obtaining location-specific
preconditions, we can finally obtain a location-agnostic precondition Pre(m, Q)
as the conjunction

Pre(m,Q) = /\ Pre;(m, Q) (2)

leL

over location-specific preconditions for all locations. The so obtained formula for
Pre(m, Q) is then simplified to a formula which is equivalent in each reachable
location of the RA. The simplification transforms it into disjunctive normal form
(DNF), and then pruning disjuncts that are either infeasible, i.e., evaluating to
false in each location (this can be determined by inspecting the RA for the
module), or redundant, i.e., entailed by some other disjunct.

Hlustration: In Step 2, we obtained the following location-specific preconditions
for postcondition contains(gq) while synthesizing contracts for method push:
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location ¢y (empty list): {(—=isFull() A isEmpty()) — (p = ¢)}
location ¢, (full list):  {(isFull() A —isEmpty()) — contains(q)}
other locations ¢; : {(—isFull() A —isEmpty()) — ((p = ¢) V contains(q))}

Then, taking the conjunction of the above preconditions and applying the sim-
plification techniques described in Step 3, we obtain the global precondition as
follows:

((p =¢q) A—isFull()) V contains(q)

which is the sought precondition for our final contract. O

4.3 Correctness and Optimality

In this section, we state and prove that our technique generates valid contracts
(Theorem 1) which, under some conditions, are also maximal (Theorem 2).

Theorem 1 (Contract Validity). If our method synthesizes a contract of
form {P} m(p1,...,pn) {Q} for an RA A, then this contract is valid for A.

Proof: The theorem follows by observing that the steps our methods produce
results with the desired properties:

Step 1: For each location [, the generated weakest precondition wp;(m, @) has
the property to guarantee that a method call of form m(p1, ..., p,) in location
l is guaranteed to terminate and result in a state where ) evaluates to true.
This follows by standard techniques for computing weakest preconditions.

Step 2: For each location I, the location-specific precondition Pre;(m, Q) gen-
erated in Step 2 has the property that [Pre;(m,Q)]; — wpi(m, Q). This
follows from the observation that [C;]; — wpi(m, Q) for each disjunct C; in
[Pre;(m, Q)]:-

Step 3: Since Pre;(m, Q) is a conjunct of Pre(m,Q), it follows that Pre(m,Q)
entails Pre;(m, Q) for any [, hence [Pre(m,Q)]; — [Pre;(m,Q)];. Thus, if
[Pre(m,Q)]; is true in [, then a method call of form m(p1,...,p,) in I is
guaranteed to terminate and result in a state where @) evaluates to true.
Since [ is arbitrary, the theorem follows. O

We say that an RA is fully reachable if for each location [ and valuation p of
the registers X'(I) of I, the state (I, u) is reachable.

Theorem 2 (Synthesis of Maximal Contracts). Let A be a fully reachable
RA, let m be a method, let the condition @ and set of variables Vipnsr be the
input to our contract generation. If the condition R is such that its parameters
are in Veontr and the contract {R} m(p1,...,pn) {Q} is valid for A, then our
method synthesizes a contract of form {P} m(p1,...,pn) {Q} such that R = P.
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Proof: Let R be a condition as above. Put R in DNF. Assume that ¢; A--- Acy
is a disjunct of R. Consider a location ! of A. Since {R} m(p1,...,pn) {Q} is
valid for A, the corresponding condition [c1]; A+ - Afcx]; guarantees that calling
m(p1,...,pn) in l is guaranteed to terminate and result in a state in which @
holds. Since wp;(m(p1,...,pn), Q) is the weakest formula with such a property,
it follows that [e1]; A - -+ A [er]i implies wp;(m(p1,...,pn), @). If none of [c1];,
..+, [ex]s is False, our MUS generation will then find a subset of [e1], - . ., [cx]
which implies wp;(m(p1,...,pn), @), and generate the conjunction of the corre-
sponding subset of ¢i,..., ¢, as a disjunct of Pre;(m, Q). If some [¢;]; is False,
then ¢; will be added as a disjunct of Pre;(m, Q). In both cases, the result is
that Pre;(m, @) is entailed by R. Since P is obtained as the conjunction of the
different Pre;(m, Q) for | € L, this implies that also P is entailed by R. O

The condition that A be fully reachable in Theorem 2 shows that our tech-
nique may generate unnecessarily strong preconditions if some states are not
reachable in A. This deficiency can be addressed by adding a procedure for gen-
erating invariant, which for each location [ generates a characterization Inv; of
the valuations p such that (I, ) is reachable. The formulas Inv; are then used
in Step 2, but generating minimal disjuncts ¢; A -+ - A ¢x such that

(c1 A+ Aeg A Invy) — wpi(m, Q)

is valid. We leave this extension as future work.

5 Implementation

We implement the strategies outlined in Sect. 4 in a Python tool called CoGent,
abbreviation of Contract Generator. We build CoGent in integration with z3
SAT/SMT solver [10] for checking SAT/UNSAT of logical entailments and iden-
tifying minimal unsatisfiable subsets. For this purpose, we use z3 Python library,
z3py [12], as the constraint solver. In addition, we have used the Python library
Sympy [24] for simplification of Boolean expressions to conversion to DNF.

In our work, we first learn the RA model of the target API using the tool
RAlib [8,9]. RAlib utilizes a given test harness tailored to the target API in
order to learn the automaton. The test harness maps each method from the API
to a symbol for learning the model. Next, we operate CoGent by giving inputs an
XML representation of the automaton model and the target mutator for which
we are interested in synthesizing contracts. The tool automatically identifies the
observers (following the observer semantics) present in the API and generates
pre and postconditions for the mutator. These conditions are quantifier-free first-
order logic expressed in terms of Boolean valuations of observers and relation
between input parameters. Thus the tools RA1ib and CoGent in combine offer a
comprehensive solution to synthesizing contracts for the mutators from an API.

Figure 6 shows the architecture of our tool where each step described in this
paper is represented as a Python module (depicted as a box). The module Driver
runs the contract synthesis engine by operating modules for performing steps 1
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Fig. 6. Architecture of Contract Synthesis Engine

and 2 in rounds for every location in the automaton and each possible post-
condition. While in step 2, the module Solver utilizes z3py API for checking
SAT/UNSAT and eventually deriving MUSes that yield the set of precondi-
tions. Once the module Driver accumulates all location-specific preconditions
for a mutator, it delegates the task of synthesizing global contracts to a module
that merges the preconditions wrt. each postcondition. Additionally, it simplifies
the merged contract with the help of Simplifier, which inherits some of the
functions provided by Sympy.

6 Evaluation

We evaluate our contract generation tool by synthesizing contracts for some of
the modules from Java SEv8, and the Contiki-NG OS. We generate contracts for
the mutators from those modules using the supplied Boolean observers including
isFull and isEmpty methods for handling size bounds. The maximum size for
each data structure is set to 3. Table 1 outlines the details of our tool evaluation.
For each module, the number of non-whitespace, non-comment lines of code is
mentioned within brackets. The average running time (in seconds) for model
learning and synthesizing contract for a mutator are recorded in columns 4 and
5, respectively, using RA1ib and CoGent tools. In RA1ib, the maximum number of
attempts to find counterexamples is set to 1000 per hypothesis. Column 6 shows
the number of locations in the automaton, and column 7 indicates the total
number of contracts generated by the tool. The final column specifies maximum
number of disjuncts obtained after simplifying the preconditions for the contracts
generated by our tool for each module. Following we illustrate a few contracts
generated for two mutators from Contiki-NG list module.

Contiki-NG, a widely used open-source OS for IoT, includes a critical list
module, which has unique characteristics compared to typical list implementa-
tions. This module is designed to be highly resource-constrained, where the API
allocates a memory block by releasing it if it has been pre-allocated. Addition-
ally, the list can function as both a stack and a queue, but storing a block in
either way requires removing it first if it already exists in the list.
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Table 1. Interfaces for Evaluating Our Approach to Synthesizing Contract

Modules Mutators Observers Runtime(s) | # # | max.
RAlib | CoGent | locs. | cont. | disj.
Contiki-NG insert(e,e2), contains(e), 51.2 121.02 |52 19 3
List (45) pop(), push(er), isFull(),
add(e), isEmpty()
remove(e)
HashMap put(k,v), containsKey(k), 3.33 12.07 |15 14 7
(1916) remove(k) containsValue(v),
isEmpty(),
isFull()
Stack (93) push(e), isEmpty(), 1.6 0.6 21 8 3
pop() isFull(),
contains()
PriorityQueue add(e), isEmpty(), 5.4 11.7 53 21 5
(704) remove(e), isFull(),
poll() contains()
BoundedList push(e), pop(), isEmpty(), 15.74 10.97 |21 |12 3
(43) insert(e, e2) isFull(),
contains()

To evaluate this module, we create a Java class that simulates the behaviour
of the Contiki-NG list module, treating memory blocks as integer elements,
and generate contracts for the mutators. In the following, we discuss the con-
tracts generated for two specific mutators: add and insert, which establish the
aforementioned behaviour. The add method takes an input element through p,
removes it if it already exists in the list, and then appends the element at the
end. On the other hand, the insert method receives two parameters: p; and ps.
It removes po if it is present in the list and inserts it again after p;.

Here are two of the contracts generated for the add and insert methods:

i {isEmpty() V (contains(p) A —isFull())} add(p) {—isFull()}
ii {isEmpty() V (contains(ps) A —isFull())} insert(pi,p2) {—isFull()}

Contract (i) for method add demonstrates that adding an element that is already
present in the list will not result in the list becoming full. This is because the
method removes the element before adding it again. Similarly, contract (ii) shows
that the list cannot become full if the parameter ps is already present in the list.

Contract Validation: Next, we validate the synthesized contracts for the
mutators listed in Table1 leveraging symbolic execution [17], a program veri-
fication technique that explores different execution paths to test the validity of
the contracts. Symbolic execution treats inputs as symbols representing arbi-
trary values and systematically explores feasible code paths with symbolic input
values.
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To validate contract for a mutator, we generate an arbitrary pre-state that
can be reached after a bounded-length sequence of calls to mutators with sym-
bolic parameters. Symbolic execution is then performed on the targeted mutator,
under the assumption correspond to the precondition from synthesized contract.
The postcondition is treated as an assertion checked after symbolic execution
to identify any execution paths that fail to satisfy the postcondition for certain
parameter values. If the postcondition remains valid throughout symbolic exe-
cution, the contract is considered to be valid for all module states. We utilize
the Symbolic(Java) PathFinder tool (SPF) [21] to facilitate contract validation.
Using the above setup, we successfully validated all contracts obtained through
our proposed method, confirming that none of them are invalid. For a detailed
implementation for contract validation, we encourage to refer to [14].

7 Related Work

We give an overview of the most related areas of research. For a broader survey
of existing contract synthesis approaches, we refer the reader to [2].

Our work can be seen as an approach to precondition inference: given a
method m with a given postcondition @, produce a precondition P which guar-
antees that ) will hold when the method returns. Data-driven approaches to this
problem (e.g., [22]) start from a set of features, i.e., predicates over m’s inputs;
they collect “good” test inputs (causing @) to be satisfied) as well as “bad” test
inputs (causing @ to be falsified), which induce feature vectors (valuations of the
features) for “good” and for “bad” inputs. A classification algorithm can then
be used to separate “good” from “bad” inputs, producing a precondition. Padhi
et al. [20] augment this technique by the ability to learn new features, when the
existing ones are not sufficient to separate “good” from “bad” inputs. Astorga et
al. [4,5] further build on this technique to be able to give guarantees relative to
a given test input generator: a precondition is safe if the test generator cannot
find a test input that satisfies the precondition and violates the postcondition;
it is mazimal if it includes all inputs found by the test generator that satisfy the
postcondition. Our method is data-driven as well, as active automata learning is
a black-box method and works by executing test cases. Our method differs from
existing inference methods in the intermediate step of constructing a register
automaton, and is, thus, able to discover which states of a system are reachable.

Molina et al. [19] use an analogous technique for generating postconditions
for a given precondition, in which the method is executed with an exhaustive set
of inputs, and postconditions are generated from the observed outputs using a
genetic algorithm. Dynamic methods have also been used to infer program invari-
ants. Ernst et al. [13] developed the Daikon system, which infers likely invari-
ants by observing program executions. The obtained invariants are restricted
to conjunctive Boolean expressions. The approach has later also been extended
to generate likely program contracts. At the moment, it is not clear whether
our method can be extended to synthesise postconditions, although this is an
interesting avenue of future research.
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There are also several white-box approaches to synthesize contracts. Alpuente
et al. [1] apply a symbolic execution engine, which explores program paths reach-
able for given a precondition P. For each path, the engine produces a path
condition and symbolic values of program variables, from which correspond-
ing postconditions are synthesized. Singleton et al. [23] present an algorithm,
based on symbolic execution, to extract human-readable concise contracts from
strongest postconditions. Alshnakat et al. [2] use solvers for constrained Horn
clauses (i.e., model checkers) to generate program contracts that are sufficient to
verify given properties of a program. It remains to be investigated how our app-
roach compares, in terms of the required runtime and readability of contracts,
to white-box approaches.

8 Conclusion

We have presented a novel approach to synthesizing method contracts for state-
ful software modules, specifically those implementing data structures like stacks,
queues, etc. Assuming that the modules are equipped with observer methods for
querying the module state, and mutators for modifying it, our technique synthe-
sizes contracts for the mutators, where pre- and postconditions are expressed as
Boolean combinations of observer calls together with equalities between param-
eters to observers and mutators. Our proposed technique first learns a model
of the module’s behaviour, utilizing existing algorithms for active learning of
register automata. On the basis of the learned model, our technique automati-
cally synthesizes preconditions for any given postcondition. We prove that, under
some assumptions, the obtained preconditions are the weakest possible. We have
developed a tool called CoGent based on our approach, which generates contracts
for mutators from a given register automaton where the contracts cover reachable
behaviours (module locations). Our implementation provides evidence that this
approach can successfully synthesize contracts for various stateful Java modules.
As additional evidence, we validate obtained contracts using symbolic execution.

In future work, we plan to extend our approach to handle non-Boolean
observers and inequalities between input parameters and registers during the
model learning phase. This extension will enable the inference of preconditions
in a more expressive language. In addition, we will enhance contract synthesis
with location-specific invariant generation, to handle some cases in which invari-
ants about registers are needed to prevent the synthesis of unnecessarily strong
preconditions (see Sect. 4.3).
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Abstract. Ranged program analysis has recently been proposed as a
means to scale a single analysis and to define parallel cooperation of dif-
ferent analyses.

To this end, ranged program analysis first splits a program’s paths
into different parts. Then, it runs one analysis instance per part, thereby
restricting the instance to analyze only the paths of the respective part.
To achieve the restriction, the analysis is combined with a so-called range
reduction component responsible for excluding the paths outside of the
part.

So far, ranged program analysis and in particular the range reduction
component have been defined in the framework of configurable program
analysis (CPA). In this paper, we suggest program instrumentation as
an alternative for achieving the analysis restriction, which allows us to
use arbitrary analyzers in ranged program analysis. Our evaluation on
programs from the SV-COMP benchmark shows that ranged program
analysis with instrumentation performs comparably to the CPA-based
version and that the evaluation results for the CPA-based ranged pro-
gram analysis carry over to the instrumentation-based version.

Keywords: Software verification - ranged program analysis * program
instrumentation

1 Introduction

Assessing whether developed software meets given quality criteria is an inte-
gral part of the development process. Software verification, which aims to prove
whether software satisfies user-specified correctness properties like assertions, is
one means to assess the quality. Today, many different automatic software verifi-
cation tools exist, which employ different verification approaches and, thus, have
different strengths and weaknesses. Instead of enhancing existing or developing
new verification approaches, another option for improving on state-of-the-art
verification technology is to combine the strengths of existing approaches. One
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strategy is to apply the idea of the divide-and-conquer principle and let different
verification approaches or tools jointly solve a verification task.

This principle has already been put into practice in several combina-
tions [3,14,19,24] including combinations of testing and verification tools [2,17].
However, the combinations studied therein mostly work in a sequential manner:
tools alternate in working on the task, either cyclically or in sequence. Thereby,
the task to be solved is successively getting smaller with every run of a verifier
until solved. Splitting the verification task into different parts and then jointly
working on these parts in parallel may reduce the overall time after which the
result becomes available. Although this type of parallel approach can also be
used for scaling verification, it has mostly been used to scale symbolic execu-
tion [28,30,32,33,36].

Recently, Haltermann et al. [20] proposed ranged program analysis to gen-
eralize the idea of ranged symbolic execution [30], one of the techniques used
to scale symbolic execution. Like ranged symbolic execution, ranged program
analysis splits the program paths to be analyzed into different parts (so-called
ranges). To this end, an ordering < on program paths is defined and a range
[1, 2] fixed to be the set of paths such that m < 7 < w5 holds for each path
7 in the set. In contrast to ranged symbolic execution, ranged program analysis
allows using analyses other than symbolic execution to inspect a range and in
particular also permits using different analysis approaches for different ranges.
To restrict an analysis to inspect the paths of its range only, ranged program
analysis combines the analysis with a so-called range reduction component. It is
synchronously executed with the “real” analysis and is responsible for excluding
the paths outside the range.

So far, ranged program analysis and in particular the range reduction com-
ponent have been defined in the framework of configurable program analy-
sis (CPA) [7], which limits the applicability of the approach. In this paper, we
further generalize the concept of ranged program analysis and make it appli-
cable to arbitrary, off-the-shelf verification tools running arbitrary analyses. To
this end, we propose range instrumentation as an alternative to restricting an
analysis to a range and implement it as a standalone tool. The idea of our range
instrumentation is to encode the input range into the program by adding addi-
tional statements to the program. Afterward, the resulting range program only
contains the paths specified in the input range given to the range instrumenta-
tion. As a range program is syntactically just a normal program, we can give it
to any verification tool for analysis.

We experimentally evaluate our instrumentation-based ranged program anal-
ysis on tasks from SV-COMP using the off-the-shelf verifiers Klee [11], Sym-
biotic [12] and Ultimate Automizer [22] as well as the CPA-based symbolic
execution CPASE implemented in CPACHECKER [8], which we require to com-
pare instrumentation-based ranged program analysis with the CPA-based one
from [20]. Our evaluation reveals that instrumentation-based ranged program
analysis performs comparably to CPA-based ranged program analysis and that
the results for instrumentation-based ranged program analysis are in line with



Ranged Program Analysis via Instrumentation 147

int pow2(short x){

0 long res = 0;

1 int ctr = 0;

2  while(ctr < x){ S

3 res = X —(ctr<x)

4 ctr++; y pS

5 } assertE( )
res==x*x M

6 assert(res==x#*x);

7 return res; return res N

8 } @ \/\H‘t 1’0.\';\

(a) Example program pow2  (b) CFA P for pow2 (¢) Execution tree for pow2

Fig. 1. Example program pow2, the corresponding CFA and execution tree. (Color
figure online)

the previous observations for CPA-based ranged analysis. In addition, we show
that our instrumentation-based approach outperforms the approach based on
residual program generation [3], which Haltermann et al. [20] originally men-
tioned as a way to generalize ranged program analysis to an arbitrary verifier.

2 Background

In this work, we aim to verify programs written in C. To explain the employed
concepts of ranged program analysis, we start by introducing notations on pro-
grams and by defining (path) ranges.

2.1 Program Syntax and Semantics

To ease representation, we consider in this paper C-programs with numeric vari-
ables only!. Formally, we use a control flow automaton (CFA) P = (L,{y,G) to
model a program, where L is a set of program locations, with initial location
ly € L,and G C L x Ops x L are the control flow edges. A control-flow edge
g = (4;,9,¢;) describes the statement g € Ops that is executed at location ¢;
thereby leading to location ¢;. The set Ops contains all possible operations (on
integer variables from a set Var), like assume-statements (boolean operations
over the integer variables, denoted BEzpr) or assignments. We assume that pro-
grams are deterministic except for the input values and that branches only occur
at assume-statements. To be able to later define an ordering on paths, we employ
an indicator function Bp : G — {T, F, N} on control-flow edges indicating for
each g € G whether g is an assume-statement representing the T'(rue) branch,
the F'(alse) branch or N(o) branch (in case g is not an assume statement).
Figure 1a shows our running example program pow2, which calculates the
square (22) of the input  using addition. It contains an error (i.e., the assertion
at line 8 is not always fulfilled) as the result for every negative number x is 0.

! The implementation covers the GNU C-standard.



148 J. Haltermann et al.

Ranged Program Analysis
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Fig. 2. Conceptual overview of ranged program analysis for two ranged analyses (Color
figure online)

Figure 1b contains the corresponding CFA, where we draw assume-statements g
with Bp(g) = F dashed and all other edges solid.

In this work, we focus only on the syntactic paths of the program: A syn-
tactical program path m = £y 2%, ¢; 92, ... 9~, (, is a sequence of program
statements, such that (1) it starts at the beginning of P in ¢y and (2) adheres to
the control-flow (i.e., ¢;_1 25 ¢; € G). We denote the set of all program paths
of a CFA P by Paths(P).

2.2 Program Ranges

The goal of ranged program analysis is to divide the program into so-called path
ranges, such that each range can be analyzed individually and in particular also
in parallel. Ranges are intervals of paths. To fix the paths inside a range, we
first need an ordering < on execution paths. Intuitively, we order paths with
respect to their branch decisions, where an edge representing the true branch
(of an assume statement) is smaller than the edge representing the false branch.
Formally, for two paths m = £y 2% ¢4 92, ... 92, ¢, and 7’ = (] 9, 2 9,
...g—:’wfﬁnEPaths(P),wedeﬁneﬂ'S?T',ifElOﬁk;Sn:VlSiSk:giz
giN((n=kAm=>n)V(m>kAn >k ABp(gks1) = TABp(g),,,) = F)). Using
this ordering, we can also represent the program paths as an execution tree. An
execution tree is a tree where nodes are labeled with the assume operations of
the program and the paths in the tree are ordered w.r.t. <. We depict a part of
the execution tree of the example program in Fig. 1c.

Using the ordering on paths, we define a range [m;, 7] as the set of paths
s.t. V€ [m, my,) :m < w<m, holds. To be able to describe (partially) unbounded
ranges, we use the two additional paths 7. , w7 ¢ Paths(P), s.t. Vr € Paths(P) :
7. <7 <77 holds. Consequently, [r.,77] = Paths(P). As previously stated,
programs are expected to be deterministic except for the input. Hence, a test
case T, 7 : Var — Val mapping all (input) variables to concrete values of Val,
induces a path m, € Paths(P), obtained by executing the program using the
test inputs. Now, we can define a range by two test cases 7 and 7o, using the
induced paths 7., and m,,. Therefore, we may write |1, 72| instead of [m,,, 7r,].
In Fig. 1c, we highlight the path 7, induced by 7 ={r+ 3} in green and 7,

1
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induced by 7 = {z+ 0} in blue. The range [r,,, 7] contains the paths to the
blue, green, and black leaves. Note that |7, , 7] =[mr,77].

2.3 Ranged Program Analysis

The idea of ranged program analysis, first proposed for symbolic execution [30]
and then generalized in [20], is to split the program to be verified in ranges and
analyze each range in parallel. A conceptual overview of the ranged program
analysis, which considers two ranges, is given in Fig. 2. First, a set of ranges is
generated by the Splitter. In the example, a path that can be generated by a
Splitter is 7., highlighted in green in Fig. 1c. Using this test case, we can divide
the program into two ranges 7., 7] and [r,,,77]. Next, two ranged analyses
verify both ranges of the program in parallel. Finally, when both analyses com-
pleted their tasks, the partial verification results are joined by a Joiner to a final
answer. In case one analysis reports a property violation, the other is stopped,
and the violation is reported as the final answer. As the program from Fig. 1la
violates the assertion for any negative number, Ranged Analysis 2, which analyzes
the range containing the error, reports a counter-example.

3 Ranged Program Analysis via Instrumentation

The concept of a parallel composition of different ranged analyses (as proposed
in [20]) currently has the following major limitation: The range reduction, used to
restrict a program analysis to a certain range, is defined for configurable program
analyses only. Hence, using off-the-shelf tools for a ranged program analysis is
currently not possible. To address this shortcoming, we propose using program
instrumentation to encode the ranges directly into the program.

3.1 Instrumenting Programs with Ranges

For instrumentation, we semantically encode range constraints into the program.
For this, we add additional constraints to the program execution to exclude exe-
cution paths that are out of range. However, execution paths cannot be excluded
in hindsight (i.e. we cannot decide not to take a branch after we have taken it).
Thus, our instrumentation has to exclude out-of-range paths before the branch is
taken. To be able to exclude execution paths early, we make the following three
observations for a given range [r.,,7,,] and a finite prefix 7 of m € Paths(P):

1. It is necessary to track whether  is a prefix of mr, or m,,. If there exists a
finite prefix 7., of m,, (or a prefix 7,, of 7.,), such that 7= @, (or #="7,,),
then 7 is potentially included in [7.,, 7, ].

2. Only local branching decisions matter. Let ## = ¢y 9%, .. In=t, ¢, | 9, ¢,
and let 7, =0y 2 ... In=t, ¢, 4 92, 4, be a finite prefix of an arbitrary
bound 7. If Bp(grn) =T and Bp(g,) = F, then for all continuations =
of # we have m, < m. If Bp(g,) = T and Bp(gr,) = F, then 7 < 7.
Symmetrically, if 7, € # (or # £ 7, resp.) then 7, £ 7 (or 7 £ 7, resp.).
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Ranged Analysis

‘ 1
|
] Test Case N Off-the-shelf 1 N
i : "
Task | Ty —— Sequences | Range In§tru S :
| . 5715512 mentation . 1
' _| Transformation Analysis
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Fig. 3. Construction of a ranged analysis from an off-the-shelf program analysis for a
range -, ,7r,] defined by two test cases 71,72

3. Inclusion is early decidable. If m; L7 or @ £ m,,, then m cannot be included
in [m,, 7] (as there exists no continuation of # included in the range).

Note that as soon as ., L7 or # £ 7., for a prefix @ we can safely abort the
execution of the complete path 7 since the path cannot be in the range (obser-
vation 3). In addition, as soon as we can decide that 7,, < 7 and 7 < 7., (obser-
vation 2) we do not have to restrict the execution any further. In the following,
we exploit these observations to instrument relevant branching points (such as
loops and branches) in the program by adding additional range constraints.

3.2 From Test Cases to Branching Decisions

Computing 7, for a given test case T requires an execution of the program or
a semantical analysis of P. However, as soon as we derived 7., the decision of
whether a path is in a given range is purely syntactical. In fact, based on our
observations in Sect. 3.1, it is sufficient to decide whether the current execution
path performs the same branching decisions as the path induced by the test
case for the lower or upper bound. To simplify the instrumentation process, we,
therefore, transform test cases 7 into sequences of branching decisions s, taken
when following 7, and describing the same syntactic path 7. Now, to compute
the sequence s, of branching decisions, we start by computing 7, for a given test
case 7 provided by the splitter. Then, we generate the sequence s, by applying
the recursively defined function 7p: Paths(P)—{T, F'}*:

Tolls 20 0, 5, ) = {xofp(g 91, ) if o = Bp(g:) € {T, F)
Tp(t; 24 --+) otherwise

For a given range [71, 73], we apply the sequence generator to the test case for
the upper and lower bound to generate the sequences s, and s,,. The generated
sequences are then used for instrumentation.

Example. Let us consider our example program in Fig. 1 with the given range
[11,72] (11 = {x — 3} and 72 = {x +— 0}). Based on the induced paths shown
in Fig.lc, the sequence generator generates two sequences 7p(mw; ) = s, =
(T,7,T,F) and Tp(7,,) = s,, = (F) for the lower and upper bound respectively.
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3.3 Instrumentation-Based Ranged Analysis

Using the observations of Sect. 3.1 and our sequence generator, we now instru-
ment the program for a given range [11,72] as shown in Fig.3: We start by
transforming the range bounds 71, 72 into sequences of branching decisions s,
and s,, respectively. Then, we instrument the program independently for both
the lower and upper bound explained next.

Readout. Based on the given sequences of branching decisions s, = (bg, b1, . . ., by)
with b; € {T, F'}, we define a readout function R, : N — {T, F'} as follows:

R (x) = \/ (x=1i)Va>n,
bi=T

which is T if the predicate in the function evaluates to true and F' otherwise.
During instrumentation, we use function R,_ to read out the branching decision
of the bound at the current branching point (e.g., a loop head or an if statement).
To keep track of the branching decisions taken by the path induced by the lower
(upper) bound at the current branching point, we introduce new counter variable
lcounter (ucounter) for the lower (upper) bound. The counters are incremented
for each branching decision taken in the program.

Keeping Track of Branching Decision. To keep track of whether the execution
path is on the lower path 7, or upper path 7.,, we introduce two new Boolean
variables on_1lpath and on_upath for the lower and upper path, respectively.
Now, as soon as the execution path leaves the lower or upper path at a branching
point, the execution is either aborted (since the path can never be in range) or
we disable all instrumentations for the lower or upper path, respectively. For
this, we guard our instrumentation using the two variables. This allows us to
disable the instrumentation by setting on 1lpath (or on_ upath) to false. We
abort the execution with a special abort function.

We instrument the code independently for both the upper and lower bound.
During instrumentation, we instrument all branching points? represented by two
edges 0;_1 25 0; and (;_; %, ¢; with Bp(g;) =T and Bp(g;) = F.

Leaving the Lower Bound s, . For the lower bound, we handle the following
two cases: (1) the execution path leaves the lower path with Bp(g;) = T and
R, (lcounter) = F and (2) the execution leaves the lower path with Bp(g;) =
F and R, _(lcounter) = T. For handling the former case, we add the following
instrumentation directly after the branching decision g;:

if (on_lpath) { if([[ Rs, (lcounter)= F 1]) abort(); lcounter++; }

In other words, if the execution path branches to the true side with Bp(g;) =T
and the lower path follows the false side (i.e. R, (lcounter) = F') then any
continuation of the execution path is smaller than the lower path and we abort
the execution. Now, if the execution path leaves the lower path with Bp(g;) = F

2 In our implementation, we only instrument branching points that occur on the paths
induced by the lower bound or upper bound.



152 J. Haltermann et al.

1 unsigned int on_lpath = 1; 1 unsigned int on_upath = 1;
2 unsigned int lcounter = 0; 2 unsigned int ucounter = 0;
3 int pow2(short x){ 3 int pow2(short x){
4 long res = 0; 4  long res = 0;
5 int ctr = 0; 5 int ctr = 0;
6 while(ctr < x){ 6  while(ctr < x){
7 if (on_lpath){ 7 if (on_upath){
8 if (lcounter == 3) abort(); 8 on_upath = (ucounter != 0);
9 lcounter++; 9 ucounter++;
10 b 10 }
11 res += x; 11 res += x;
12 ctr++; 12 ctr++;
13 ) 13}
14  if(on_lpath){ 14 if (on_upath){
15 on_lpath = (lcounter == 3); 15 if (ucounter != 0) abort();
16 lcounter++; 16 ucounter++;
17 [ ¥ 17 [}
18 assert(res == x * x); 18 assert(res == x * x);
19 return res; 19 return res;
20 } 20 }
(a) A lower bound instrumentation (b) An upper bound instrumentation

Fig. 4. Range programs generated using instrumentation for pow?2

and Rs_ (lcounter) = T, all continuations of the execution path will be greater
than the lower path and, therefore, we can safely disable the instrumentation
for the lower bound by setting on_1lpath = 0. We instrument the false branch
after g; accordingly. Finally, as a result of our lower bound instrumentation, all
execution paths are aborted that are not in [7.,,77].

Leaving the Upper Bound s.,. For the upper bound, we abort the execution if the
execution path leaves the upper path with R;_ (ucounter) = T and Bp(g;) = F.
For this, we add the following instrumentation after g;:

if (on_upath) { if([[ Rs,, (ucounter) =T 11) abort(); ucounter++; }

If the execution path leaves the upper path with R (ucounter) = F and
Bp(g;) = T, all continuations of the execution path will be smaller than the
upper path and, therefore, we can disable the upper bound instrumentation by
setting on_upath = 0. Now, by instrumenting a program with our upper bound
instrumentation, all execution paths are aborted that are not in [7.,7,].

To restrict the set of execution paths to |7, 7r,] = |77, 77| N [7L, 7] and
therefore create a range program with the range [71, 72|, we apply both the lower
and upper bound instrumentation one after another.

Example. Let us again consider the example in Fig.1 with the given range
[71, 2] and corresponding sequences s, = (T,7T,T, F) and s, = (F). For obtain-
ing the range program, we apply both the lower bound and upper bound instru-
mentation. For brevity, we only show the program P instrumented independently
for the lower bound [7,,,77] (using the sequence s, ) in Fig.4a and the upper
bound [r.,7.,] (using s,,) in Fig. 4b. Note that we perform some optimizations
on the code. For example, lcounter==3 is equivalent to R, (lcounter) = F'
and ucounter!=0 is equivalent to R, _ (ucounter) =T.
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3.4 Handling Underspecified Bounds

In practice, C programs can contain other sources of non-determinism besides
inputs, e.g. user inputs via scanf () or other functions like srand (). We handle
them analogously to inputs, as the (random) values returned by these external
functions can also be contained in a test case. We call a test case 7 underspecified
if it does not provide concrete values for all sources of randomness or inputs,
and thus, 7 induces a set P, of paths. In [20], underspecified test cases repre-
senting a range bound are handled by splitting at the smallest path min(P;).
To accommodate for this splitting behavior, we adapt our instrumentation to
handle underspecified bounds: 7 generates a sequence s, for the common pre-
fix of all paths in P, for an underspecified bound represented by a test case 7.
During instrumentation, if we are still on the common prefix path of P(7), we
check whether the next branching decision is specified in s;. If not, we abort if
it is an upper bound or deactivate all checks by setting on 1lpath=0 for a lower
bound.

4 Implementation

To show that we can use off-the-shelf tools in ranged program analysis, we realize
the instrumentation described in Sect. 3. We also extend the existing implemen-
tation from [20] to support the use of range programs as exchange format instead
of ranges. For the evaluation, we employ the best-performing splitter from [20],
namely LB3. We implemented the transformation from test cases to sequences
explained in Sect. 3.2 within the splitter to generate the correct input format
needed for the instrumentation.

Instrumentation. We implement the instrumentation as a standalone compo-
nent in Python. First, we use an AST parser? to identify all branching points
in the program. Then, we instrument the program as defined in Sect. 3.3, using
the sequences generated for the test cases. Our implementation supports the
instrumentation of (GNU) C programs except for switch-statements.

Reduction for Generating Range Programs. Instead of instrumentation,
Haltermann et al. proposed to use residual program generation |3] for generating
arange program [20]. To compare the proposed idea with the instrumentation, we
build a standalone component called Reducer. We realized this idea by modifying
the range reduction from [20] to take a range described by two sequences as input
and used the existing residual program generator [3] to generate a range program,
containing all paths within the given range.

Verifiers. For the evaluation of our instrumentation-based ranged analysis tech-
nique, we need off-the-shelf verifiers for the analysis of the instrumented pro-
grams. As off-the-shelf verifiers, we selected the last two winners of the soft-
ware verification competition [5,6]: SymBioric and ULTIMATEAUTOMIZER. SYM-
BIOTIC [12| combines slicing [34] with a sequential portfolio of three symbolic

3 https://tree-sitter.github.io/tree-sitter /.
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executions performed by KLEE [11], Slowbeast’s [13] backward symbolic exe-
cution with loop folding, and Slowbeast’s forward symbolic execution. Uvrri-
maTeAuToMIZER (UAUTOMIZER) [22,23] applies counterexample guided abstrac-
tion refinement to iteratively refine an overapproximation of a program’s error
paths, which is represented by an automaton. In each iteration, the approach
picks an error path from the current overapproximation. If the path is infea-
sible, UAUTOMIZER constructs a Floyd-Hoare automaton [23] explaining the
infeasibility of that and similar paths and then removes all paths accepted by
the Floyd-Hoare automaton from the current overapproximation. The approach
stops if a feasible counterexample is found or the overapproximation becomes
empty.

Besides the two verification approaches that make use of abstraction tech-
niques, we also use two different tools employing symbolic execution: We employ
KLEE [11] as a standalone tool and use the symbolic execution from CPA-
CHECKER (8] (already used in [20]) to be able to compare the CPA-based and
the instrumentation-based ranged program analyses.

5 Evaluation

The evaluation presented in [20] shows that CPA-based analyses can benefit
from being used within ranged program analysis. With range instrumentation
and range reduction, we can now employ off-the-shelf verifiers in ranged program
analysis. We thus want to investigate whether CPASE, KLEE, SymBioTic, and
UAUTOMIZER also benefit from an application within a ranged program analysis.
To this end, we study the following three research questions:

RQ1 How does instrumentation-based ranged program analysis compare to the
CPA-based version?

RQ2 How does range instrumentation compare to range reduction?

RQ3 Do off-the-shelf analyses benefit from using instrumentation-based ranged
analyses?

5.1 Evaluation Setup

All experiments were run on machines with an Intel Xeon E3-1230 v5 @ 3.40 GHz
(8 cores), 33 GB of memory, and Ubuntu 22.04 LTS with Linux kernel 5.15.0.
To increase the reproducibility of our results, we employ BencHExEc [9] for
the execution of our experiments. Each tool is given a task (a program plus
specification) per verification run. It either computes a proof (program fulfills
specification) or raises an alarm (program violates specification). Each run is
limited to 15 GB of memory, 4 CPU cores, and 15 min of CPU time, which yields
a setup comparable to the one used in SV-Comp. We used all tasks from the
SV-BeNncHMARKS for the specification reach-safety used in the SV-Cowmp [15],
in total 10229 tasks. The specification reach-safety is fulfilled by a program,
if all calls to the function reach error are unreachable’.

4 In the benchmark, reach error is called whenever an assert is violated, cf. Fig. 1.
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Table 1. Results of CPACHECKER’s symbolic execution used in CPA-based and
instrumentation-based ranged program analysis.

correct incorrect

overall proof alarm proof alarm
CPAsE(CPA) 1648 584 1064 5 57
CPAsE(Instrument) 1612 583 1029 5 58

5.2 RQ1: Comparison of the CPA-Based and Instrumentation-Based
Ranged Program Analysis

Evaluation Plan. To analyze the performance of the instrumentation- and the
CPA-based approach, we compare the effectiveness (number of correctly solved
tasks) and efficiency (time taken to compute an answer), of the CPA-based
ranged program analysis for symbolic execution (CPASE(CPA)) from [20] with
CPASE(Instrument). CPASE(Instrument) uses the instrumentation to generate
range programs given to CPACHECKER’s symbolic execution employed as an off-
the-shelf tool. For efficiency, we are interested in the time consumed overall (wall
time), as the consumed CPU time is not that meaningful in our setting, where
several analyses run in parallel.

Effectiveness. Table 1 shows the number of correct answers given overall, also
splits it into the number of correct proofs and alarms. In addition, it provides the
number of incorrect proofs and alarms. We first observe that employing CPA-
CHECKER’s symbolic execution as an off-the-shelf tool on a range program does
not decrease the overall effectiveness drastically. Compared to CPASE(CPA), it
computes in total only 36 fewer correct answers. There are 73 tasks correctly
solved by CPASE(CPA), for which CPASE(Instrument) exhausts the resource
limits. We also observe that there are 37 tasks, where CPASE(Instrument) can
compute the correct answer, but CPASE(CPA) runs into a timeout. Nearly all
of these tasks contain a specification violation. Intuitively, there exist some tasks
for which the instrumentation impedes the exploration of the violating path, but
also other cases where it eases their exploration.

Efficiency. To analyze the efficiency
of instrumentation-based ranged analysis
compared to CPA-based, we compare the
wall time taken by both to compute a cor-
rect answer, in case a range is generated.
For each of these tasks, the log-scale scat-
ter plot in Fig. 5 contains a data point that
compares the time taken by CPASE(CPA) o . T a—

(x-axis) and the time taken by CPASE- Wl time for CPAs(CPA (5

(Instrument) (y-axis). The solid, diagonal

line means that both analyses take the Fig.5. Wall time of CPAsE(CPA) and
same time, while the dashed lines below CPAsE(Instrument)

and above indicate that one analysis takes twice as long as the other. The most
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Table 2. Results of CPAse, KLEE, SymBioTiC, and UAUTOMIZER used in
instrumentation- and reduction-based ranged program analysis.

correct incorrect

overall proof alarm unique proof alarm

CPASsE(Instrument) 1612 583 1029 185 5 58
CPAsE(Reduce) 1515 566 949 88 5 60
KLEE(Instrument) 2968 1293 1675 192 7 2
KLee(Reduce) 2783 1283 1500 7 773
SyMBIOTIC(Instrument) 3881 2185 1696 235 95 1
SymBioTIC(Reduce) 3765 2217 1548 119 80 5
UAuToMIZER (Instrument) 3964 2925 1039 562 22 0
UAvuToMIZER(Reduce) 3483 2557 926 81 20 1

important observation is that CPASE(Instrument) has a comparable overall exe-
cution time to the CPA-based approach for the vast majority of all tasks.

Having a closer look, we realize that for complex tasks, where CPASE(CPA)
takes more than 100s, CPASE(Instrument) is slightly faster, as it takes in the
median only the 0.92-times of the runtime. The runtime decrease is based on
the fact that we do not need to run the range reduction analysis in parallel
when using the instrumentation for generating a range program. The additional
overhead caused by generating the ranged programs is negligible, as the instru-
mentation takes in most cases less than a second.

Based on the experimental results, we conclude that using instrumentation-
based ranged program analysis instead of the CPA-based approach causes
only a little overhead.

5.3 RQ2: Comparing Range Instrumentation and Range Reduction

Evaluation Plan. To analyze the performance of both approaches for generat-
ing range programs, we compare the effectiveness and efficiency of range instru-
mentation and range reduction of CPAcHECKER’s symbolic execution, KLEE,
SymsioTic, and UAUTOMIZER in combination as ranged program analyses.

Effectiveness. Table2 contains the computed answers of the four tools, once
using the instrumentation and once the reduction to generate the reduced pro-
gram. We report the number of overall correct answers, of correct proofs and
alarms, and additionally the number of tasks solved uniquely by using range
instrumentation or range reduction. It also contains the number of incorrect
proofs and alarms. First and foremost, we observe that using instrumentation
to generate the range program increases the number of overall correctly solved
tasks for all four tools. The increase ranges from 6.4% for CPASE to 13.8%
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Fig. 6. Scatter Plots comparing the wall time of instrumentation- and reduction-based
ranged analysis

for UAUTOMIZER. The number of incorrect answers does not change for KLEE
and CPASE, but decreases when using SYMBIOTIC(Reduce) or UAUTOMIZER-
(Reduce). For SYMBIOTIC(Reduce) and most cases of UAUTOMIZER(Reduce),
the decrease lies in the fact that the tools do not compute an answer.

We observe the largest difference in the effectiveness of reduction and instru-
mentation for UAUTOMIZER. The majority of tasks solvable by UAUTOMIZER-
(Instrument) but not by UAuTOMIZER(Reduce) belong to the category called
eca (383/562). Due to the task’s artificial structure in that category, the size
of the range program generated using the reducer increases by several orders
of magnitude. The version of UAUTOMIZER employed in the experiments fails
to process those large range programs and does not compute a result. Here, we
observe one major advantage of instrumentation compared to reduction: The
size of the range program generated is bounded by a constant factor and does
not depend on the range.

Efficiency. To compare the efficiency of instrumentation- and reduction-based
ranged analyses, we depict in Fig.6 the scatter plots comparing the overall
time taken to compute the solution for the four tools. For CPASE, SymBIoTIC,
and KLEE, we notice that versions using instrumentation are faster than the
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reduction-based ones, more precisely, the reduction-based analysis takes in the
median 1.2-times as long for CPASE, 1.4-times for Symsioric and 1.3-times for
KLEE. For UAUTOMIZER, the reduction-based instance is slightly faster than
the instrumentation-based instance, in the median it takes 0.94-times the wall
time of it.

Range programs generated using instrumentation are generally easier and
faster to solve for ranged analyses than those generated using reduction.

5.4 RQ3: Comparison of Instrumentation-Based Ranged Analysis
with Standalone Execution

Evaluation Plan. To investigate, if the standalone analyses benefit from being
used within ranged program analysis, we compare the performance of each of
the four tools with the instrumentation-based ranged program analysis. For the
performance, we again focus on effectiveness and efficiency.

Table 3. Results of standalone execution and instrumentation-based ranged program
analysis for CPASE, KLEE, SymBIOoTIC and UAUTOMIZER.

correct incorrect

overall proof alarm unique proof alarm

CPASE 1597 585 1012 - 5 27
CPASsE(Instrument) 1612 583 1029 86 5 58
KLEE 2982 1294 1688 - 7 3
KLEE(Instrument) 2968 1293 1675 7 7 2
SYMBIOTIC 3917 2232 1685 - 7 1
SyMBIOoTIC(Instrument) 3881 2185 1696 79 95 1
UAUTOMIZER 4240 3096 1144 - 23 0
UAuToMIZER (Instrument) 3964 2925 1039 24 22 0

Effectiveness. In Table 3, we summarize the results for the standalone analyses
and the ranged program analyses using instrumentation. Again, we report correct
and incorrect proofs and alarms. In addition, Table 3 contains for each of the
ranged analyses the number of uniquely solved tasks, i.e. the number of tasks
only solved by the ranged analysis and not by the standalone analysis.

Taking a look at CPASE, we observe that it benefits from being used as
a ranged analysis, as the number of overall solved tasks increases by 15 tasks.
Moreover, CPASE(Instrument) can solve 86 tasks that are not solved by CPASE
standalone. The incorrect alarms additionally raised by CPASE(Instrument) are
most likely not caused by an error in the instrumentation, as we can also observe
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Fig. 7. Scatter Plots comparing the wall time of instrumentation-based ranged analysis
and the standalone analysis for different tools

additionally raised incorrect alarms for the same tasks for the CPA-based and
reduction-based ranged analysis (c.f. Table 1 and Table 2).

For KLEE, the second symbolic execution, we observe a comparable effective-
ness. The tasks that are only solved by KLEE standalone could not be solved by
KLEE(Instrument) within the given resource limits. If we double these limits, all
of them could be solved. There are 7 tasks uniquely solved by KLEE(Instrument).
In all cases, KLEE(Instrument) detects the property violation within the given
resource limits, as using a ranged program analysis allows it to search in different
parts of the program in parallel.

SymeioTic and UAUTOMIZER, the two techniques that aim for finding
abstractions, perform not as well as the tools employing symbolic execution.
In total, they compute 36 resp. 276 fewer correct answers. Again, we observe
that the instrumentation-based ranged program analysis can compute 79 correct
proofs and alarms for SymBrotic and 24 for UAUTOMIZER that are not reported
by the tools standalone. We thus confirm the findings from the previous work.

Efficiency. In Fig. 7, we compare the wall time of the four tools running stan-
dalone on the x-axis to the ranged analyses using instrumentation on the y-axis.
The overhead of generating the sequences and the range program, completed
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within a few seconds, has a huge effect on tasks that are solved by the stan-
dalone analysis in less than ten seconds. Hence, the ranged analyses need in the
median between 2.3-times (for UAUTOMIZER) and 3.0-times (for SymBIoTIC)
as long as the standalone analysis. For more complex tasks, the advantages of
sharing the work between two instances running in parallel are observable, as
all four instances of the ranged analysis can solve tasks faster than the stan-
dalone analysis. Unfortunately, encoding the ranges directly into the program
using instrumentation and thereby introducing new variables that need to be
tracked, shows that the instrumentation-based ranged program analysis is as
fast as Symeroric for complex tasks taking more than 100 s to solve and slightly
slower (1.1-times increase) for KLEE and CPASE.

The evaluation confirms the findings from [20]: All analyses can benefit from
being used within ranged program analysis, as each solves tasks not solved
by the respective standalone analysis. Again, analyses employing symbolic
execution benefit the most. The overhead of ranged analysis reduces for more
complex tasks.

5.5 Threats to Validity

We have conducted the experiments on the SV-BENCHMARKS, the largest avail-
able dataset for C program verification. Although it is widely used, especially in
the SV-Cowmp, our findings may not completely carry over to other real-world C
programs. Currently, the instrumentation does not cover concurrent programs.
Moreover, we do not support external functions, as the source code is needed for
instrumentation.

It is unlikely that the implementation suffers from bugs, as the findings
from [20] carry over to our evaluation. The additional incorrect answers for
CPASE(Instrument) are also observable for CPASE(CPA), and we randomly
selected and analyzed tasks where SYMBIOTIC(Instrument) computes additional
incorrect proofs manually, validated that the range program contains a property
violation, and cross-verified them using UAUTOMIZER and KLEE.

The fact that the performance of CPASE(CPA) and CPASE(Instrument)
are comparable may be caused by using different formats for defining ranges. To
account for this, we also have analyzed if there is a performance difference caused
by the use of different formats. As the instrumentation requires a sequence as
input, we updated CPASE(CPA) to also be able to process sequences as input
and compared it with CPASE(CPA), observing no significant difference (cf. [21]).

The data collected may deviate in a reproduction study due to a different
experimental setup or environment. To account for small, expected measurement
errors, we restrict the presentation of our data to two significant digits.
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6 Related Work

While there are several strategies for combining different verification approaches,
we focus on combinations that like us divide the search space and let different
verification approaches check different parts of the search space. Combinations
like CoDiDroid [27], distributed assertion checking [35], or the compositional
tester sketched in conditional testing [4] statically decompose the verification
task into separate subtasks, which can be executed in parallel. Furthermore,
several sequential or interleaved cooperation approaches restrict the subsequent
verifiers to the yet uncovered search space, e.g., not yet covered test goals [4],
open proof obligations [24], or yet unexplored program paths [1-3,14,16,17,19].
Like us, several of those approaches [3,4,14,16,19] encode the restriction within
the program. Instead of forwarding the not yet explored state space, some tech-
niques split the program paths in advance and then run different instances of
the same analysis in parallel on different parts of the state space. For example,
conditional static analysis [29] considers program branches to realize the split
of program paths while concurrent bounded model checking techniques [25,26]
rely on thread interleavings, but only Nguyen et al. [26] encode the split result
as programs. In contrast, Yin et al. [37] dynamically split the input space if
the abstract interpreter returns an inconclusive result and parallelly analyzes
the different input partitions with the abstract interpreter. Meanwhile, parallel
symbolic execution approaches [28,30,32,33,36] and ranged model checking [18]
split execution paths. Often, they partition the execution tree, thereby relying
on input constraints [32], path prefixes [31], or ranges [18,28,30,36] to describe
the partitions. In contrast, GenSym [33| divides the execution tree into linear
path segments, i.e., it splits at every branching point. The partitions them-
selves are generated dynamically based on the already explored symbolic exe-
cution tree [10,28,30,33,38] or statically from an initial shallow symbolic exe-
cution [31,32] or tests [28,30,36]. While most symbolic execution approaches
symbolically interpret the program, GenSym [33] compiles the symbolic execu-
tion of a program P into a new program. Recently, Haltermann et al. [20] took
on the idea to split program paths into ranges and analyzing those ranges in
parallel. Instead of only supporting symbolic execution, their approach supports
arbitrary configurable program analyses during the parallel analysis. To restrict
a configurable analysis to the paths in a range, they suggest combining that
configurable program analysis with a range reduction component. In this paper,
we propose an even more general solution that can be applied to arbitrary off-
the-shelf analysis tools. To this end, we encode the restriction to ranges into the
program code, the language understood by analysis tools.

7 Conclusion

Ranged program analysis is a technique for analyzing different program parts
(so-called ranges) with different verifiers or verifier instances in parallel. The
original, CPA-based approach is limited to verifiers specified in the framework
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of configurable program analysis [7]. This paper lifts ranged program analysis
to support arbitrary verifiers. Instead of restricting a verifier to its range dur-
ing its execution, we instrument the restriction into the program code before
running the verifier. Our evaluation demonstrates that instrumentation indeed
allows us to plug existing verifiers into ranged program analysis. Furthermore, it
shows that ranged program analysis with instrumentation performs comparably
to the CPA-based approach and that the findings for CPA-based ranged program
analysis also apply to ranged program analysis with instrumentation. In addi-
tion, it reveals that ranged program analysis with instrumentation is superior to
reducer-based ranged program analysis, which Haltermann et al. [20] mention
for lifting ranged program analysis to arbitrary verifiers.

Data Availability Statement. All experimental data and our open-source imple-
mentation are archived and available in our supplementary artifact [21].
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Abstract. Attack trees (ATs) are an important tool in security analy-
sis, and an important part of AT analysis is computing metrics. However,
metric computation is NP-complete in general. In this paper, we showcase
the use of mixed integer linear programming (MILP) as a tool for quan-
titative analysis. Specifically, we use MILP to solve the open problem of
calculating the min time metric of dynamic AT's, i.e., the minimal time to
attack a system. We also present two other tools to further improve our
MILP method: First, we show how the computation can be sped up by
identifying the modules of an AT, i.e. subtrees connected to the rest of the
AT via only one node. Second, we define a general semantics for dynamic
ATs that significantly relaxes the restrictions on attack trees compared to
earlier work, allowing us to apply our methods to a wide variety of ATs.
Experiments on a synthetic testing set of large ATs verify that both the
integer linear programming approach and modular analysis considerably
decrease the computation time of attack time analysis.

Keywords: Attack trees - Quantitative analysis + Optimization -
Mixed integer linear programming

1 Introduction

(Dynamic) Attack Trees. Attack trees (ATs) are a promi- Q Q

nent methodology in security analysis. They facilitate secu-

rity specialists in identifying, documenting, analyzing and

prioritizing (cyber) risks. An AT is a hierarchical diagram

that describes a system’s vulnerabilities to an adversary’s @ Q
attacks. Despite their name, ATs are rooted directed acyclic
graphs. Roots of AT's represent the adversary’s goal, while the
leaves represent basic attack steps (BAS) undertaken by the adversary. Each inter-
nal root is labeled with a gate, determining how its activation depends on that of
its children. Standard ATs (SATs) feature only OR and AND gates, but many exten-
sions have been introduced to describe more elaborate attack scenarios [16]. One
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of the most prominent extensions are dynamic ATs (DATSs) [14]. DATSs introduce
a SAND (sequential AND) gate, which is activated only when its children are acti-
vated sequentially in the correct order. By contrast, an AND-node’s children can
be activated in parallel. An example is given in Fig. 1.

Quantitative Analysis. Quantitative analy-
sis aims at computing AT metrics. Such met-

rics formalize how well a system performs in
terms of security, and are essential when com-
paring alternatives or making trade-offs. Many
such metrics exist, such as the minimal cost,
minimal required skill, or maximal damage
of a successful attack. This paper focuses on [unlock safe | [cut open safe]
min time: the minimal time the adversary
needs to perform a successful attack, given
the duration of each BAS. This is impor-
tant, since attack success crucially depends on
time: attacks that take too long are not viable.
Insight in timing behaviors of attacks is there-
fore a key to devising effective countermea-
sures. For instance, a security operations centre
is interested in the time difference between the
fz.xstest viabh? att'ack gnd its average response . c o onened by cutting it open,
time [1]. Min time is especially relevant in by unlocking via obtaining the
the context of DATs: On many metrics, such  key and combination.

as cost/probability/skill, SAND and AND gates

behave identically. Thus, to compute those metrics, algorithms for SATs immedi-
ately generalize to DAT's. It is in the timing behavior that the difference between
SAND and AND manifests itself, so that novel computation algorithms are needed.

|break in | |open safe | | escape |

Fig.1. A DAT for a bank rob-
bery [4]. To rob a bank, attack-
ers must break in, open the safe,
and escape (in that order). The

Existing Algorithms for min time. The naive approach .
to calculating min time is to list all attacks that reach the

root, and to find the one that takes the least time; clearly

this is computationally prohibitive for larger ATs. A tree- ﬂ ﬂ
shaped DAT can be computed via a bottom-up (BU) algo-

rithm [14,23]. This algorithm works for general attributes e e °
(e.g. cost, probability, time), by using appropriate operators

at each gate. For DAG-shaped ATs, the BU algorithm does not always work,
because the values in different branches are no longer independent. For SATs
this is not a problem because the relevant operators are idempotent [17]. In
the DAT above, however, the BU algorithm of [14] calculates min time as
max(2 + 3,3 +4) = 7. However, the only successful attack is the one that acti-
vates the three BAS sequentially, and so min time equals 2+ 3 +4 = 9. Thus to
find min time for DAG-shaped DATSs new approaches are needed; in [5], efficient
computation for DAG-shaped DATs is left as an open problem.
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Integer Linear Programming. In this paper, we present a novel method to
calculate min time for general DATs based on MILP. We translate calculating
min time into a real-valued optimization problem, with a set of nonlinear con-
straints. We rewrite these into linear constraints by introducing auxiliary integer
variables at each gate; for SAND-gates this is nontrivial and requires a careful
analysis of the semantics, beyond the current literature (see below). Since dedi-
cated solvers exist for MILP, translating attack time analysis into MILP speeds
up computation time considerably.

Modular Analysis. To improve performance, we combine MILP with modular
analysis [9]: we identify modules in a DAT, i.e., subDATs whose only connections
to the rest of the DAT go via their root. We prove that min time can be computed
by analyzing the modules separately; this requires a detailed comparison of the
attacks on the larger DAT to the attacks on its modules. If a module is tree-
shaped or static, then we can deploy the bottom-up algorithm to further decrease
computation time. We integrate these modifications into our MILP algorithm.

Generalized Semantics. Another point we settle in this paper are general-
ized semantics for DATs. As SAND-gates require their children to be executed
consecutively, different branches in the DAT may impose conflicting restrictions
on the execution orders. To rule out these conflicts, [5] imposed well-formedness
criteria at the cost of ruling out some satisfiable DATSs. Furthermore, the corre-
sponding attack definition was overly restrictive, with some fastest attacks not
being recognized. This leads to an overestimation of min time. In this work we
extend the definition of a (successful) attack so min time is correctly defined.
This new definition applies to all DATSs, not just the well-formed ones.

Experimental Validation. For confidentiality reasons industrial DATs are
typically not disclosed to the general public [7,26]. Therefore, we create a test-
ing suite of 2400 synthetic DATS, obtained by combining smaller DATSs from
the literature via standard DAT composition methods, and we compare the per-
formance of four methods (modular versus nonmodular and enumerative versus
MILP). The experiments show that on larger DATs MILP outperforms enumer-
ative, and modular outperforms nonmodular. The code for the experiments, the
generated DATs and the experimental results are available in [22], and a version
with proofs is available at [21].

Contributions. Summarized our main contributions are:

1. A generalization of the poset semantics of [5] that significantly relaxes the
syntactic constraints on the use of SAND-gates.

2. A novel algorithm to calculate min time for general DATSs based on Mixed
Integer Linear Programming.

3. A modularization approach that yields significant speed ups by separately
handling fragments of the DAT that are static or tree-shaped.

4. Extensive experimental validation to evaluate the performance of the algo-
rithms.
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2 Related Work

Dynamic ATs were first formally defined in [14], with series-parallel graphs
semantics. These assume that each node must be activated separately for each of
its parents. Effectively, this makes any DAT tree-shaped, which limits the range
of scenarios that can be modeled.

Poset-semantics for DATs are used in [5]; here each node can be activated
only once, allowing more scenarios to be modeled. The calculation of time-related
metrics such as min time on DAG-shaped DATS is left as an open problem.

In [2,3,18,19,31] DATSs are modeled as priced-timed automata. This allows
for a detailed analysis, including min time calculation, by activating nodes from
the root either in parallel or sequentially, depending on gate type. However,
this approach does not consider satisfiability; hence the min time found via
this method can correspond to a non-existing attack. As such, this method only
calculates a lower bound to the actual min time.

Cyber security risks are also analyzed via time-to-compromise [24]. This
assigns an (exponential) probability distribution to the failure time of each
component, from which one finds the system failure pdf. This approach can
be extended to consider different attack scenarios [28]. The current paper’s DAT
approach allows for a more systematic way of studying different attack scenarios,
but we do not consider probabilistic data. Another way to incorporate stochas-
tics is to consider Bayesian fault trees [12,25], in which a node’s activation
depends probabilistically on that of its children. This allows for more detailed
modelling, but analysis is considerably more complicated: instead of a single min
time metric, there is a Pareto front of attack time and attack success probability.
Incorporating probability in these manners would be interesting for future work.

Time analysis of DATs falls into the wider framework of quantitative anal-
ysis on ATs. Existing approaches either focus on a single metric [4,6,7] or they
develop methods that apply to general classes of metrics [5,17,23]. The latter
case typically use algebraic structures like semirings, defining the metric in terms
of operators which are assumed to have certain properties.

3 Dynamic Attack Trees

This section reviews the definition of DATSs, and develops their semantics and the
man time metric. The notation introduced throughout the paper is summarized
in Table 1. The following definition of a DAT is from [5].

Definition 1. A dynamic attack tree (DAT) is a rooted directed acyclic graph
T = (N, E) where each node v € N has a type y(v) € {BAS,OR, AND, SAND} such
that v(v) = BAS if and only if v is a leaf, and every node v with v(v) = SAND has
an ordering of its set of children.

Note that a DAT is not necessarily a tree. If it is, we call it tree-shaped. The
root is denoted Ryp. For v € {BAS,OR, AND, SAND}, we write N, for the set of
nodes v with y(v) = v. The (po)set of children of v is denoted ch(v). If y(v) =
SAND and v has (ordered) children vy, ..., v,, we write v = SAND(vq,...,v,) for
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Table 1. Notation used in this paper.

Notation Meaning Section | Notation Meaning Section
T = (N,E) | Dynamic attack tree | Sect.3 mt(T, d), mt(T") | min time of DAT T Sect. 3.2
v(v) Type of v Sect. 3 Fr Time assignments of T' Sect. 4
R Root of T Sect. 3 M min time upper bound Sect. 4
Npas {v € N |~(v) =BAS} | Sect.3 zy Consecutive BAS pairs Sect. 4
Ty subDAT with root v | Sect.3 zy,yY, Zf,a,a' Auxiliary MILP variables | Sect. 4
By Set of BAS of T, Sect. 3 Ny Number of children of v Sect. 4
(Ar, <) Poset of attacks on T' | Sect. 3.1 | T}, Sub-DAT with root v Sect. 5
St Successful attacks Sect. 3.1 | v BAS replacement for T, Sect. 5
t(O, d), t(O) | Time of attack O Sect. 3.2 | TV T with T, replaced by © | Sect.5

convenience. We do the same for OR and AND, where the ordering of the children
does not matter. We write T, for the subDAG consisting of all descendants of v,
i.e. all v’ for which there is a path from v to v/, including v itself. Furthermore,
we let B, be the set of descendants of v in Npys. DATs can be represented
graphically as in Fig. 1.

A dynamic attack tree codifies the ways an attacker can make a system fail
by executing the basic attack steps, i.e., the nodes in Npys. A non-BAS node is
reached depending on its children, where OR and AND have the expected meaning,
and a SAND-node is reached if all children are reached in their given order. The
adversary’s goal is to reach Ry. These semantics are defined in Sect. 3.1.

In the literature, two interpretations of nodes with multiple parent nodes
exist, affecting both semantics and metrics. In the first interpretation, multi-
ple activation (MA), [14,23,32] each BAS can be activated multiple times, and
every parent of a node requires its own activation of that node. Thus SAND(a, a)
succeeds only if a is activated twice consecutively. By adding a copy of each node
for each of its parents, any DAT can be transformed into a tree-shaped one with
equivalent semantics and metrics. As a result, metrics can be calculated quickly
via a bottom-up algorithm [10], but MA cannot adequately model systems in
which one action has multiple independent consequences.

In single activation (SA) [5,15] each BAS is executed at most once, and a
node only needs to be activated once to count as an input for all its parents. In
SA SAND(a, a) cannot be satisfied, because a cannot be activated before itself. SA
is able to describe a much wider range of systems; although every SA represen-
tation can be turned into an equivalent MA representation, this process is both
computationally expensive as it is done by writing the corresponding boolean
function in disjunctive normal form. This rewriting also loses the meaning of the
intermediate nodes in the DAT, which typically represent intermediate attacker
goals. We therefore choose to analyze DATSs under the SA interpretation; since
every DAT is equivalent to a tree-shaped one under MA and MA and SA coincide
on trees, SA can model every scenario that MA can.

3.1 Semantics

We discuss DAT semantics, extending [5]. An attack consists of a set A of
attacker-activated BAS, and a strict partial order <, where a < a’ means a
is executed before a'.
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Definition 2. The set Ap of attacks on T is the set of strictly partially ordered
sets O = (A, <), where A C Npps. This set has a partial order < given by O < O,
for O =(A,<) and O' = (A’, <), if and only if AC A" and < C <.

We are interested in successful attacks, i.e., attacks that manage to reach the
root. Successful attacks, and the semantics of T, are defined as follows:

Definition 3. Let v be a node. We say that an attack O = (A, <) reaches v if:

v E NBAS and v S A,’

v =0R(v1,...,v,) and O reaches at least one of the v;;

v = AND(v1,...,v,) and O reaches all of the v;;

v = SAND(vy,...,v,) and O reaches all of the v;, and for all a € AN B,,,
a'€ ANB,,,, one hasa < d'.

B oo~

A is successful if it reaches Rp. The semantics of T is the set St of successful
attacks on T.

A SAND-gate v = SAND(vy,...,v,) is only reached if all ﬂ

of the BAS of v; have been (successfully) executed before

any of the BAS of v;;1 has started. By contrast, an AND-gate

allows its children to be executed in parallel. Contrary to the A A

static case (without SAND-gates), it is possible that Sy = @.

For example, Ssawp(a,q) = 9. Also, being successful is not e Q °

monotonous on the set of attacks, i.e., it is possible that O

is successful while O’ is not, even if @ < ’. For instance, in the DAT above

({a,c},{(a,c)}) is a successful attack, but ({a,b,c},{(a,c)}) is not. Note that

unlike the situation for SATSs, a gate’s activation does not simply depend on the

activation of its children, but also on the relative order on the BAS associated

to these children; this encodes the timing information essential to DATSs.
Definition 3 is not the only way one might define the semantics

of DATs. In fact, our semantics are based on those of [5], but ﬂ

differ on certain DATs; see Sect.3.3. We have chosen to interpret ]

the SAND-gate in a strict matter, so that it is activated only if

the entirety of the attack on v; has finished before the attack on A

v;y1 is started; in particular, v; and v;4; cannot share activated

BAS, which may be considered unwanted behaviour. There are o °

also other approaches, which unfortunately have other problems.

For instance, one could define succesful attacks bottom-up in a compositional

fashion, defining O to reach SAND(vq, vg) if there exists attacks 01, Oz such that

O is the parallel composition of @7 and Oy. However, under such a definition the

AT above ({a,b},{(a,b)}) is a succesful attack, whereas in our opinion this AT

should not be considered satisfiable. Yet another approach would be to assign a

starting and finishing time to each node, similar to what we do in Definition 5,

but this has the disadvantage of being more convoluted as an attack is now a

function N — R.
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3.2 The Min Time Metric

Min time is the minimal time it takes to perform a successful attack on a given
DAT. While other metrics exist for DATSs, min time is a fundamental time metric,
and calculating it efficiently for non-tree-shaped DATS is an open problem [5].

Min time is defined as follows: There is a duration function d: Ngs — R>o,
with d(a) denoting the time it takes to execute a. If a < a/, then the BAS o’
can only be started once a has been completed, while a and a’ can be activated
in parallel if such a relation does not exist. As such, we can define the total
duration of an attack t(O,d) and min time mt(T, d) as

80,d) = mg)lca)éham Z d(a mt(T,d) = min (0, d)

where the maximum is taken over the maximal chains (i.e., maximal linearly
ordered subsets) of the strict poset O. We will often omit d from the notation
and write t(O) if there is no confusion. Note that t is monotonous: if O < O’
one has t(O) < t(0’). Furthermore, mt(T") = oo if Sy = @.

Ezample 1. Figure2 depicts the bank robbery DAT of Fig.1 augmented with
durations for the BAS (we take the expected durations from the distributions
given in [4]). To calculate mt(7") one would first need to find Sy. While this
set is quite large, because of the monotonicity of t, the minimum is attained
at one of the minimal elements of the poset (Sr,<). There are two minimal
attacks, depending on whether the attackers choose to cut open the safe, or
unlock it. Abbreviating BAS names, we can represent these minimal attacks
as sets of chains as O; = {bi < cos < e} and Oz = {bi < fk < e, bi <
gc < e}. These have duration t(O;) = 1.00 + 0.67 + 0.20 = 1.87 and t(O03) =
max(1.00 + 0.50 + 0.20,1.00 + 1.00 + 0.20) = max(1.70,2.20) = 2.20. It follows
that mt(7") = min(1.87,2.20) = 1.87.

In the multiple activation scenario, min
time can be calculated by reshaping a DAT
into its canonical form [14], from which min

time is easily calculated. However, this tech-
nique does not carry over to our formalism,
as in the single activation scenario a canonical
form does not exist.

[ |
|break in | |open safe | | escape |
1.00 0.20

|un|ock safe | |cut open safel

3.3 Relation to Semantics of [5] 2o

In [5] attacks are called attacks only if they
satisfy the ordering constraints imposed by all
SAND-gates. This is defined only for well-formed
DATS, i.e., all these constraints are simultane-
ously satisfiable. More formally, that work only ~Fig- 2. The bank robbery DAT of
considers attacks that we call full in the follow- Fig-1 augmented with durations.

ing definition.
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Definition 4. Let T be a DAT. Define a relation T’ on Npyg by a T’ o iff
there exists a node v = SAND(vy,...,v,) and an i < n such that a € B, and
a € By,,,- Let £ be the transitive closure of C’. Then T is well-formed if C is a
strict partial order. An attack (A, <) on a well-formed DAT is full if < =C|4,
the restriction of C to A.

However, not all attacks will be full, because an attack may
not need to reach all SAND-nodes in order to reach the root, and
non-reached nodes should not put restrictions on attacks. Con-
sider the well-formed DAT on the right. Only ({a, b}, {(a,b)}) is
a full successful attack. However, ({a, b}, &) is a successful attack
as well. Hence non-full attacks are needed to fully describe the e °
semantics of well-formed DATSs, which motivates Definition 2.
Furthermore, our definition defines the semantics of general DATS, not just the
well-formed ones.

4 An MILP Approach to Min Time

This section describes a novel method to compute mt(7") based on mixed-integer
linear programming (MILP). Although MILP is NP-complete, a number of good
heuristics and solvers exist specifically for MILP, which can result in a low com-
putation time. We first show that min time can be found by solving an opti-
mization problem in Theorem 1, and then we describe how that optimization
problem can be rewritten into the MILP framework.

The building block of the new approach is the notion of time assignment,
which assigns to each node a completion time f, that respects all timing con-
straints in the DAT. If f, = oo then v is not reached at all. The formal definition
is stated below; recall that B, is the set of BAS-descendants of v, and N the set
of nodes in the attack tree.

Definition 5. Let T be a DAT. For a node v with children vy, ...,v, andi < n,
define Z} := B, x B,, ,. A time assignment is a vector f € [0, 0]V satisfying:

1. For each a € Ngpg one has f, > d(a);

2. For each v = OR(v1,...,v,) one has f, > min; f,,;
3. For each v = AND(v1,...,v,) one has f, > max; f,,;
4

For each v = SAND(vy, .. .,v,), the following must hold:

(a) it holds that f, > fu. ;

(b) If there is a i < n such that f,, = oo, then f, = oo;

(c) If there exist i < n and (a,a’) € Z? such that f, —d(a’) < fo < o0, then
fo = 0.

The set of all time assignments for T is denoted Fr.

The SAND-conditions can be understood as follows. 4a) tells us that v cannot
be reached before v,, and 4b) tells us that v cannot be reached if any of its
children is not reached. 4c) conveys that whenever there is an a € B,, that is
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activated (i.e., f, < 00), then in order for v to be activated, one must have
far—d(a’) > f, for all ' € B,,,,. Since for —d(a’) is the starting time of a’, this
means that a’ must be started after a is finished activating. It is more subtle
than simply requiring for —d(a’) > f, for all (a,a’) € Z?; that would ensure that
all SAND-gates impose ordering restrictions, not just those that are activated.

Note that f,, —d(a’) is the starting time of a BAS a’, so 4c) tells us that v
is only reached if the BAS-descendants of v;;; are started once those of v; have
been completed. We allow for a delay in completing node v, even when enough
of its children have been completed. Time assignments relate to min time:

Theorem 1. mt(T) = minser, fry-

This result allows us to calculate mt(7T") by solving the following optimization
problem.

minimize o, oo)v & fRy st. feFr. (1)

This is not a linear problem, due to the nonlinear constraints of Definition 5.
We use auxiliary integer variables to linearize these constraints. First, we need
to get rid of the oo in Definition 5, which we do by replacing it with a suitably
large real number. Define the constant M = 1+ > .y d(a). The following
lemma shows that if T is satisfiable, then to minimize (1) one can focus on the
f with f, € [0, M — 1] U o0.

Lemma 1. There is an f minimizing (1) for which Yv: f, € [0, M — 1] U oco.

This shows that we can use M to play the role of co where necessary. We
enforce this by demanding f, € [0, M], and we interpret f, = M to mean that v
is not reached. For a node v, let n, be its number of children, which are denoted
V1,...,Upn,. We then use standard MILP techniques [8] to rewrite Definition 5.

To rewrite the OR-condition, we introduce an auxiliary binary variable z} for
each v € Ngg and each ¢ < n,. The purpose of z} is to represent the truthfulness
of the statement “/ = argminy f,,,”. We can then represent f, > min; f,, by

> ay =1, Vi <y fo > fo, + Mz —1).

<1y

The latter is automatically satisfied if z} = 0, and reduces to f, > f,, if 2} = 1.
The former ensures that the latter must happen for at least one i, so together
these encode f, > min,; f,,. The condition for AND-gates can be rewritten as
Vi <yt fo 2 fo;-

Finally, we consider SAND-gates. For v € Ngpp, we introduce an auxiliary
binary variable ¥ that encodes “Ji < n: f,, = oo or FiI(a,a’) € ZV: fo —
d(a') < fa < 00.” Then we can write Definition 5.4 as f, > f,, , fo > My". To
ensure y¥ = 1 whenever one of the f,, equals co, we add the constraint Vi <

Ny: y* > w, which forces y” = 1 only when f,, > M — 1. Furthermore,
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to ensure y¥ = 1 whenever some a,a’ satisfy f, — d(a’) < fa, we would like to
add the constraint

Vi < ny¥(a,a’) € Z¢: y¥ > min { fa—fortd@) M_f, } . (2)

This forces y¥ = 1 only when both f,, — d(a’) < f, and f, < M. To get rid
of the minimum, we introduce an auxiliary variable 2! ., for each i < n, and
(a,a") € Z?¥ as we did for the OR-condition. We then replace (2) with

Vi < no¥(a,a') € Z0: y Z%‘W(a),z? y' > Mofe (12

i,a,a’ zaa)

Taking all of this together, it can be shown that the constraint f, € [0, M]
holds automatically for all ‘reasonable’ f (i.e., if this does not hold for f, then
f will not minimize fgr,) and can be replaced by f, € R. We then find that the
optimization problem (1) can be rewritten into the following MILP problem of
Fig. 3. Note that this optimization returns an f with fr, < M —1 if and only if
St # . Hence this optimization can also be used to determine whether T' can
successfully be attacked.

We note that this is not the only way to encode min time analysis into a
MILP problem; for instance, instead of using the constant M, one could intro-
duce an additional binary variable per node that denotes whether the node is
activated or not. We chose for this approach since this ensures we need fewer
optimization variables, even though this means that some equations such as (2)
are less intuitive. Note that we get quadratically many constraints above, which
is a consequence of the fact that we get a constraint for every pair (a,a’) in
Definition 3.4.

minimize fr, subject to:

Yv e N s fo €ER,
Va € Nass : fa > d(a),
Yv € N, Vi < ney sz €{0,1},
Vv € Nor, ¥i <y o 2 fo + M(zi - 1),
Vv € Nor : Z xy > 1,
i<ny
Vv € Nap, Vi < ny C fo 2 fois
Vv € Nsawp 1y’ €{0,1},
Vo € Nsmp, Vi < ny, Y(a,a’) € Z7 D Ziaa €10,1},
Vv € Nsawp Y f’UnU’
Yo € Nsun D fo > My”,
Vv € Neww, Vi < na Lyt > Hu M
Vv € Nsaw, Vi < Ny, V((LCL/) €z cyt > %ﬂl(al) - Z’;U,a,a’a
Yo € Nesmp, Vi < ny, Y(a,a’) € Z7 :yvzw+zma — 1.

Fig. 3. The MILP problem for calculating min time.
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5 Computation Time Reduction

In this section, we introduce an algorithm reducing the complexity of comput-
ing mt(7T"). The algorithm consists of two components: First, we show that a
bottom-up algorithm from [14] can be used to calculate min time for static (no
SAND-gates) and tree-shaped DATs. As the state of the art method, based on
binary decision diagrams [5], has exponential complexity, and the bottom-up
algorithm has linear complexity, this is a big improvement. Second, we split up
the calculation of min time into parts by identifying the modules of a DAT, i.e.
subDAGs that are connected to the rest of the DAT via only one node.

5.1 Bottom-Up Computation

An important tool is the algorithm
MT-BU introduced in [14] presented in
Algorithm 4. It attempts to calculate
mt(T") by traversing T bottom-up,
which only has linear time complex-
ity and is significantly faster than
the MILP approach of Fig.3. For
tree-shaped T it calculates min time
correctly, but for DAGs it fails to
account for the fact that two chil-
dren of a node may share BAS,

Input: Dynamic attack tree T, dura-
tion vector d € RNws
Output: Potential min time mt(7', d).
if «v(v) = BAS then
| return d(v)
else if v(v) = OR then
| return min, gy MT-BU(T,, d|B,,)
else if v(v) = AND then
return
max,uxedl(v) MT—BU(TU/, d‘Bv,)
else // ~(v) = SAND

which may be counted double. How-
ever, this double counting is only an
issue for SAND-gates, as the operators
min/max of OR/AND-gates are idem-
potent, i.e., min(z, z) = max(x, ) = x. This was first realized in [17], for attack-
defense trees under different semantics. However, min time based on these set
semantics can be proven to be equivalent to our definition in Sect. 3.2, yielding
the following result (Fig.4):

L return 3_ o, MT-BU(Zy . d|p,,)

Fig. 4. MT-BU for a DAT T.

Theorem 2 [14,17]. If T is tree-shaped or static, then MT-BU calculates mt(T').

5.2 Modular Analysis

Algorithm 4 only reduces complexity in the T Rr T° s Rrp
two relatively rare cases where the DAT is
static or tree-shaped. However, it is possible
to also reduce complexity when T is only
partially static and/or tree-shaped. A well-
established method in studying DATSs is to
consider the modules of T

T, ov

Fig. 5. Modular analysis.
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Definition 6 [9]. A module is a node v € N \ Npys such that all paths from
T\ T, to T, pass through v.

The root of T is always a module. If v is a module, then v is the only node
within T, with parents outside of T,,. Hence we can create a tree T by replacing
T, within T by a new single BAS ¥; the parents of ¥ in T are the parents of v in
T. Theorem 3 shows that min time can be calculated for T by first calculating
it for T, and then for 7. This is depicted in Fig. 5.

Theorem 3. Let T be a DAT, and let v be a module of T. Let T" be the node
obtained by removing v and replacing v itself with a new BAS ©. Then mt(T,d) =
mt(T?,d%) where d¥ is a duration function for TV given by

o fd@).
= {mun,dmv),

if @ € Npas \ B,

ifa=0.

While the statement seems intu-
itively true, the proof requires quite
a bit of work as one needs to develop
machinery to relate attacks on T' (and
their minimal chains) to attacks on
T, and T". Theorem 3 reduces com-

Input: Dynamic AT T, duration vec-
tor d € R™»s, Algorithm A to
calculate min time

Output: Min time mt(7T).

V < Module(T);
while V # @ do

plexity in two ways: We split the
tree into two parts whose total size
is the same as the original tree. Since
MILP is NP-hard, this can impact
computation time. Furthermore, the
smaller DAT T, can be static or tree-

Pick v € V of minimal height;
if T, is static then

‘ d“(f}) — MT—BU(ﬂ,,d
else

| d*(9) < A(T,d|B,);
for a € Npas \ B, do

B,);

shaped, in which case we can use
MT-BU (Fig. 6).

The resulting algorithm is dis-
played in Algorithm 6. Here Module
refers to an algorithm that finds the
modules of T'; this can be done with
linear time complexity [9]. Algorithm
Awoq makes use of an algorithm A that
calculates min time. For this, one can use naive enumeration or the MILP app-
roach of Fig.3, or potentially any new algorithm. Since the calculation of a
module’s min time value depends on its own modules, we act on the lower mod-
ules first, so Algorithm 6 handles the modules by ascending height. Note that
when T is tree-shaped, every inner node is a module, so Ay.q is equivalent to
MT-BU for any A.

We note that other definitions of min time, such as the automata-approach of
[18] and the multiple-activation definition of [14], also allow for modular decom-
position. However, as these definitions are not compatible with ours, we cannot
directly use these results, and we require a novel proof for Theorem 3.

L d¥(a) < d(a);
(T, d) < (T7,d");
L V<V {vh
return d(Rr) // Ry is a BAS now

Fig.6. Awa for a DAT T. The notation
T?,d" is from Theorem 3.
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6 Experiments

This section evaluates the performance of our methods. We compare the MILP
approach of Fig.3 (MT-MILP) to the enumerative approach (MT-Enum). For the
latter, rather than exhaustively generating all succesful attacks, we generate
bottom-up a set of candidate attacks that include all minimal succesful attacks,
hence certainly the optimal attack by the monotonicity of t. For this we gener-
alize the set semantics of [17] to dynamic ATs. We also compare MT-MILP and
MT-Enum to their modular counterparts.

Existing methods in the literature are Source |N| tree Durations
based on series-parallel graphs [14] and priced  [18] Fig. 1 12 no unknown
timed automata [18]. Their definitions of min  [18] Fig. 8 20 no unknown

time are not equivalent to ours. In our view, [18] Fig. 9 12 no unknown
methods with different definitions of min time  [3] Fig. 1 16 yes unknown
can only be compared with respect to com-  [4] Fig. 3 8 yes known
putation time if one of them is designed to  [4] Fig. 5 21 yes known
be an approximation or bound of the other; [4] Fig. 7 25 yes known

then one can compare the gain in computa- |
tion time versus the loss in accuracy. However, |
this is not the case here: the multiple activa-
tion definition is fundamentally different, and a Fig. 7. DATs from the literature
DAT constructed under this model represents used as building blocks. Trees
a system different from the same DAT in the from [11,17] are adapted from
single activation model. Therefore, we cannot attack-defense Tree.

directly compare performance to that of existing approaches.

In practice, attack trees can be very large [26,30]; however, for confidentiality
reasons these are typically not disclosed to the general public [7,26]. Hence to
our knowledge no established benchmark suites of DAT's exist, and the existing
literature typically considers test cases with only < 25 nodes [4,18]. For such
small DAT's, the computation of min time takes less than a second no matter
which algorithm is being used, which makes them unsuitable for testing difference
in algorithm performance. To address the deficiency of a benchmark suite of
large DATSs, we create a synthetic set of testing DATs. These are created by
combining DATSs from the literature into larger ones. Then, we compare (1) the
MILP method MT-MILP to the enumerative algorithm MT-Enum and (2) the effect
of modular analysis on performance time.

All experiments are performed on a PC with an Intel Core i7-10750HQ
2.8 GHz processor and 16 GB memory. All algorithms are implemented in Mat-
lab, and for MILP we use the YALMIP environment [20] to translate the opti-
mization problem into the Gurobi solver [13], a state-of-the-art optimizer that
can handle MILP problems. The code and results are available in [22].

| Fig. 2 20 yes unknown

11
17] Fig. 1 15 yes unknown

6.1 Generation of Testing DAT's

To create a testing suite large enough for a meaningful performance compari-
son, we do the following. As building blocks, we use a selection of DATSs from
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TT T\ /T
A AA AS

Fig. 8. The three ways of combining DATS.

the literature, shown in Fig. 7. For some, the duration of the BAS are random
variables, and we take the expected value for the duration; otherwise we take a
random duration from {1,2,...,10}. We use three methods for combining two
DATs Ty, Ts into a larger one (see Fig. 8):

1. We take a random BAS v from T; and consider the modular composition
by replacing v in 77 by 7T5. This represents a larger system, in which one
subsystem, represented by v in T}, is given its own DAT for more fine-grained
analysis.

2. We introduce a new root node v with a random label, and add edges (v, Ry, )
and (v, Rr,). This represents a system consisting of two separate subsystems.

3. We introduce a new root node v with a random label, and add edges (v, Rp,)
and (v, Rr,); we then pick random BAS b; from T} and bs from T5 and identify
them (with a new random duration in {1,2,...,10}). This represents a system
consisting of two subsystems that have a shared attack step.

These are not the only ways by which multiple DATs can be combined; for
instance, T7; and T5 could share multiple BAS. We selected these three methods
to capture some of the common ways DATSs are created by experts. Creating a
benchmark suite of large DATSs that resemble DATSs from industry is an impor-
tant avenue for further research, but beyond the scope of this paper.

We create two suites of testing DATs by combining the DATs from Fig. 7.
For the first suite, A, we combine DATSs using one of the three methods above
(drawn randomly) until the result has a given number of nodes. The resulting
will have many modules, as 77 is a module under the first method, and both
T, and 15 are modules under the second method. Therefore, we expect the
modular approaches to be very fast on the DATs in A. To also study DATs with
less modules, we create the second suite, B, by combining DAT'Ss using only the
third method. Again, one could assign other weights to the three combination
methods to obtain yet different testing suites, but A and B represent two of the
extremes of what DAT's can look like.

For a given muyin, we combine DATs randomly drawn from Fig.7 (either
via randomly drawn methods from the 3 above, or by method 3 only) until
IN| > nimin. We do this 5 times for each 1 < np, < 240, giving us two testing
sets A, B of 1200 DATs with 8 < |N| < 262. On average 26.6% of the nodes of
ATs in A, and 16.5% of the nodes of ATs in B are modules. Furthermore 54.2%
of the nodes of ATs in A, and 52.5% of the nodes of ATs in B are BAS.
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Table 2. Summary of the results. All times are in seconds. Failure denotes failure
to compute within 10 seconds. Asman contains 754 DATs with < 160 nodes, and A
contains 1200 DATs with < 262 nodes (including those of Asman). The sets Bsman and
B hold the same amount of DATSs of the same size; they are designed to contain less
modules.

-Asmall A
MT-Enum | MT-MILP | MT-Enumyoq | MT-MILPyogq | MT-MILP | MT-Enumyog | MT-MILPyoqa
Median time | 1.234 |0.906 | 1.461 1.680 1.422 | 2.797 3.070
Max time 10000 |7.984 | 12.656 6.656 19.125 | 10000 30.469
Failure 3.71% | 0% 0% 0% 0% 0.08% 0%
Bsmall B
Median time | 1.391 |0.938 | 1.469 1.656 1.266 |3.203 2.773
Max time 10000 |4.75 2326 9.484 4.75 10000 9.484
Failure 3.81% | 0% 0% 0% 0% 3.08% 0%
10° 10°
102 102
10! 10!
10° 10°
1071 1071
40 80 120 160 200 240 40 80 120 160 200 240
(a) A (b) B

Fig. 9. Median time (in seconds) of —a— MT-Enum, —#— MT-MILP, —e— MT-Enumyeq, ——
MT-MILPuoq, grouped by the number of nodes |N]|.

6.2 Time Comparisons

We measure the computation time of the four algorithms on the testing set; we
cap computation time per DAT at 10*s. We group the DATs depending on their
value of [|N|/20] and calculate the median per group: these are presented in
Fig.9. We use the median because it allows us to incorporate the computations
that were cancelled after 10* s. Since already 21.3% of the DATS of A, and 13.8%
of DATs of B, with 141 < |N| < 160 fail to compute for MT-Enum, we do not
continue testing this method for larger DATs. The subsets of A, B of DATSs
with |[N| < 160 is called Agman, Bsman, and consist of 754 resp. 761 DATs. The
results are also summarized in Table 2, and pairwise comparisons are presented
in Fig. 10.

On the testing set A, we see from Fig.9 that MT-Enum is by far the slowest
method, while MT-MILP is the fastest; the two modular approaches are slightly
slower than MT-MILP and have similar efficiency. While the inefficiency of MT-Enum
is to be expected, it is surprising that modular analysis for MILP has a net neg-
ative effect on computation time. One possible reason is that the Gurobi solver,
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which we treat as a black box, might incorporate strategies to reduce the MILP
problem complexity that are equivalent to modular analysis on the DAT side. At
any rate, the enumerative approach clearly shows the advantage of incorporating
the modular approach. These results are also reflected in Fig. 10(a)—(d).

10* 10* 10?
10? 10? 102 .
x X
10° &Q 10° 10°
1072 1072 1072
1072 10° 102 10* 1072 10° 10® 10* 1072 10° 10% 10%
(a) MILP, Enum on Asman  (b) Enum, Enumyea on Asman  (¢) MILPyoa, MILP on A
10* 10* 10*
102 102 102
x X x X,
10° 10° M 10°
X
1072 1072 1072
1072 10° 10%® 10* 1072 10° 10® 10* 1072 10° 10% 10%

(d) EnumMod, MILPMod on A (e) MILPM°d7 MILP on B (f) EnumMod, MILPMod on B
Fig. 10. Pairwise computation time comparisons of the four algorithms. The first algo-
rithm is the vertical axis while the second is the horizontal axis. Each mark is a DAT;

purple circles are computations aborted for exceeding 10%s. (Color figure online)

Interestingly, the difference in median computation time between MT-Enum
and MT-MILP disappears when considering the modular versions of these algo-
rithms, although the worst-case behaviour of MT-Enumy,q is considerably worse
than that of MT-MILPy.q (see Table 2). We hypothesize that this is due to the fact
that the DATs of A contain many modules. As a result, the ‘indecomposable’
sub-DATSs on which the algorithms MT-Enum and MT-MILP are called will typically
be small. Since the difference in computation time between these algorithms only
appears for larger DATSs, we do not see it in these experiments.

For testing set B, we again see that MT-Enum is by far the slowest. Furthermore,
for larger DATs MT-MILPy,q outpaces MT-Enumyoq considerably; see also Fig. 10(f).
This shows that also in a modular setting the MILP approach significantly speeds
up calculations for large enough DATSs. This is to be expected from our results
on set A as for larger DATs the ‘indecomposable’ subDATs on which MT-MILP is
invoked will be larger as well. Interestingly, on this dataset MT-MILP is slightly
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faster than MT-MILPy,q, as can also be seen from Fig. 10(e). This might be due to
the fact that on wide DATSs, the MILP methods of Gurobi are more efficient at
splitting up DATSs into modules than our Matlab implementation of the modular
decomposition algorithm. A detailed study into this difference in performance
would entail a comprehensive analysis into Gurobi’s Matlab implementation,
which is beyond the scope of this paper.

Taking A and B together, we can conclude that both the MILP approach
and modular analysis create a large decrease in computation time. While these
methods are slightly slower for small DATS, computation time for such DAT'Ss
only takes a few seconds anyway. By contrast, for larger DATs the difference
in computation time can go up to a factor 103. For DATs with large modules,
MT-Enumy.q loses out against MT-MILP and MT-MILPy.q, which behave similarly.

7 Conclusion and Discussion

This paper introduced two novel tools to calculate min time for DATs. First, we
introduced a novel MILP-based approach that finds min time by phrasing it as
an optimization problem. Second, we show how modular analysis can be used
to reduce the computation time of any min time calculation algorithm. In the
experiments, we compared these to the enumerative method. The experiments
show that for large DATs both MILP and modular analysis can have a big
impact on computation time. In particular, the MILP approach is consistently
fast on any input DAT, making it a reliable tool for quantitative DAT analysis
in practice.

There are several directions in which this work can be expanded. First, a
benchmark suite of DATSs is needed. For this it is important to find out what
sizes and properties are typical for DAT's used in industry, even if industry DAT's
themselves may not be published due to confidentiality reasons.

Second, modular analysis can also be used for other metrics, as has been
done for fault trees [27,29]. Since modular analysis is a very general idea, a good
approach would be to develop an axiomatization of metrics that can be handled
via modular analysis, so that the method can be applied to a large set of metrics
at once. Such a result is probably not hard to prove for metrics that are defined
bottom-up as in [17]; the challenge lies in metrics that are defined directly from
the semantics as in [5].

Third, our MILP approach can be combined with a Monte Carlo approach in
a stochastic setting where the precise BAS values are unknown. A more thorough
investigation can explore what guarantees such simulations can give for min time.
As Monte Carlo methods involve sampling a large sample, performance of the
min time calculation algorithm is important in such a study.
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Abstract. Smart contracts are programs stored on the blockchain, often
developed in a high-level programming language, the most popular of
which is Solidity. Smart contracts are used to automate financial transac-
tions and thus bugs can lead to large financial losses. With this paper, we
address this problem by describing a verification environment for Solidity
in Isabelle/HOL. To this end, we first describe a calculus to reason about
Solidity smart contracts. The calculus is formalized in Isabelle/HOL and
its soundness is mechanically verified. Then, we describe a Verification
Condition Generator to automate the use of the calculus. Our approach
can be used to verify the functional correctness of Solidity smart con-
tracts. To demonstrate this, we use it to verify a simple token imple-
mented in Solidity. Our results show that the framework has the poten-
tial to significantly reduce the verification effort compared to verifying
directly from the semantics.

Keywords: Smart Contracts - Solidity + Program Verification -
Isabelle/Solidity

1 Introduction

Blockchain [33] is a novel technology for storing data in a decentralized man-
ner, providing transparency, security, and trust. Although the technology was
originally invented to enable cryptocurrencies, it quickly found applications in
several other domains, such as finance (24|, healthcare [5], land management [12],
and even identity management [43]. According to McKinsey, blockchain had a
market capitalization of more than $150B in 2018 [8] and Gartner predicts its
business value to be $3.1T by 2030 [19].

One important innovation that comes with blockchains are so-called smart
contracts. These are digital contracts that are automatically executed once cer-
tain conditions are met and that are used to automate transactions on the
blockchain. For instance, a payment for an item might be released instantly
once the buyer and seller have met all specified parameters for a deal. Every
day, hundreds of thousands of new contracts are deployed managing millions of
dollars’ worth of transactions [42].

Technically, a smart contract is code that is deployed to a blockchain and that
can be executed by sending special transactions to it. Smart contracts are usu-
ally developed in a high-level programming language, the most popular of which
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is Solidity [18]. Solidity is based on the Ethereum Virtual Machine (EVM) and
thus it works on all EVM-based smart contract platforms, such as Ethereum,
Avalanche, Moonbeam, Polygon, BSC, and more. As of today, 85% of all smart
contracts are developed using Solidity [25] and according to a 2019 survey, Solid-
ity is by far the most popular language used by blockchain developers (in fact it
outranked the second most popular language by 100%) [38].

As for every computer program, smart contracts may contain bugs that can
be exploited. However, since smart contracts are often used to automate financial
transactions, such exploits may result in huge economic losses. For example, in
2016 a vulnerability in an Ethereum smart contract was exploited resulting in a
loss of approximately $60M [6]. More recently, hackers exploited a vulnerability
in the DeFi-platform Poly Network to steal $600M [34]. As another example, an
incorrectly initialized contract was the root cause of the Parity Wallet bug that
froze $280M [36]. In general, it is estimated that since 2019, more than $5B was
stolen due to vulnerabilities in smart contracts [13].

The high impact of vulnerabilities in smart contracts together with the fact
that once deployed to the blockchain, they cannot be updated or removed easily,
makes it important to “get them right” before they are deployed. As a result,
there has been a growing amount of work to verify smart contracts (see [2]| for
an overview). Most of the existing work focuses on the automatic detection of
certain types of vulnerabilities, such as re-entrancy, integer overflow/underflow,
or call-stack depth limit. However, they do not allow for the verification of general
functional correctness.

Thus, in the following paper, we present SSCalc, a framework for the
verification of the functional correctness of Solidity smart contracts. To
this end, the contributions of this paper are twofold. First, we describe
a calculus to reason about Solidity smart contracts. Our calculus extends tradi-
tional calculi, used to reason about sequential and object-oriented programs [3],
with new rules to capture the characteristics of smart contracts. We formal-
ized the calculus in Isabelle/HOL [35] and verified its soundness mechanically
from the formal semantics of Solidity developed in previous work [26]. Second,
we developed a verification condition generator (VCG) to automate the use of
the calculus. The VCG is implemented in Isabelle/Eisbach [30] and consists of
a set of proof methods, which can be used to verify contract invariants and
pre-/postconditions for (internal) methods.

To evaluate our approach, we verified a basic implementation of a token [39] in
Solidity with and without using the calculus. Our results show that the calculus
has the potential to significantly reduce the effort required to verify a Solid-
ity smart contract. Without the calculus, verification required ca. 3250 lines of
Isabelle/Isar code whereas using the calculus reduced it to ca. 700 lines.

2 Background

Our calculus is based on the denotational semantics of a subset of Solidity
described in [26-28]. Our subset supports the following features of Solidity:
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— Fized-size integer types of various lengths with support for overflow and cor-
responding arithmetic.

— Domain-specific primitives to transfer funds and query balances.

— Different types of stores, such as storage, memory, calldata, and stack.

— Complex data types, such as hash-maps and arrays.

— Assignment with different semantics, depending on the location of the
involved data types (deep vs. shallow copy of complex data types).

— An abstract gas model that can be instantiated with concrete gas costs for
each statement.

— Internal and external method declarations and the ability to transfer funds
with external method calls.

— Declaration of fallback methods which are implicitly executed with monetary
transfers.

2.1 Inductive Data Types

Our semantics is formalized in higher-order logic using inductive data types [9].
To this end, we use bold font for types and Roman font for type constructors.
For a datatype

ef

nat = Zero() | Suc(nat)
we shall often use the case construct to match a variable against constructors:

Zero() = Zero()

dec(z) = case x of {Suc(n) s

We shall also use

def

type, = LU{z. | z € type}

to denote the type that adds a distinct element L to the elements of type.

2.2 State Monad

Our semantics is defined using the concept of a state monad [14,40]. To this end
we first define a result type as follows:

result(n,e) = N(n) | E(e)

The type result is defined over two type parameters, n, and e, which denote the
type for normal and erroneous return values, respectively.
We can then define a state monad as follows:

sm(a,e,s) = s— result(a x s,e)

The monad requires three type parameters: type a for return values, type e
for exceptions, and type s for states. Such a monad either updates state s and
returns an element of type a or returns an exception of type e.
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2.3 State

In Solidity users and contracts are identified by addresses with associated bal-
ances. Moreover, a contract operates over different types of stores: a stack and
memory to keep volatile data, as well as storage to keep persistent data. Finally,
in Solidity computation consumes so-called gas. Thus, a state is defined as follows:

state = accounts x stack x memory x (address — storage) x nat

where accounts map addresses to balances and nat represents the available gas.
Data types stack, memory, and storage represent the different types of stores
and map locations to values (note also that each address has its private storage).
In the following, we use acc(st), sck(st), mem(st), sto(st), and gas(st) to access
the account, stack, memory, storage, and gas components of state st. Moreover,
we shall use

st(gas := g, acc := a,sck := k,mem := m, sto := s
to update the gas, account, stack, memory, and storage of state st to g, a, k, m,
and s, respectively.

2.4 Exceptions

In the following, we distinguish between two types of exceptions to signal erro-
neous executions. Thus, we define the following type for exceptions:

error = Cas() | Err()

An exception Gas occurs whenever a computation runs out of gas. All other
erroneous situations are captured by exception Err.

3 Calculus

In the following, we describe a weakest precondition calculus [17] to reason about
Solidity. To this end, we fix the following four parameters:

— ep: A procedure environment assigning contracts to their addresses.

— ad: The address of the contract to be verified

contract: The implementation of methods of the contract to be verified.

— fb: The implementation of the fallback method of the contract to be verified.

In addition, we assume that the procedure environment ep associates the address
ad of the contract to be verified with its implementation contract and fb:

ep(ad) = (contract, tb) |
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We can then define the weakest precondition for our state monad as follows:

wp : sm((), error, state) x (state — b) x (error — b) — state — b
! !/

wp(f, P, E) < \st. case f(st) of {E((e_)’ st') z ZEZ? )

where () denotes the unit type (the type with only one element ()) and b is the

boolean type. It defines the weakest precondition of statement f, state predicate

P, and exception predicate E. If f, executed in state st, terminates successfully

with state st’, the weakest precondition equals P evaluated over st’. On the other

hand, if the statement throws an exception e, the weakest precondition equals

E evaluated over e.

A user usually prefers to specify correctness criteria using Hoare triples
instead of weakest preconditions. Thus, we further introduce the validity of a
Hoare triple for a statement. To this end, we first specify the notion of a state
predicate and an exception predicate:

spred = accounts x stack x memory x (address — storage) — b

epred &£ error — b
Now we can define validity as follows:

{_} _{_H_}:spred x sm((),error,state) x spred x epred — b
{P} f {Q}E} = Vst. P(acc(st),sck(st), mem(st),sto(st))

gas(st’) < gas(st) A
Q(acc(st’),sck(st"), mem(st’),sto(st"))
E(e) = E(e)

= case f(st) of

A Hoare triple {P} f {Q}{E} is valid if for every state st that satisfies the
state predicate P, statement f either terminates in a state st’ that satisfies state
predicate @ or leads to an error e that satisfies error predicate E. Note that we
also require that execution does not increase the amount of available gas.

To validate our definitions, we proved the following lemma about the rela-
tionship between the validity of Hoare triples and weakest preconditions:

Lemma 1.

Vs. P(acc(s),sck(s), mem(s),sto(s))

Py THOHE) = = wp(f, (As. Q(acc(s),sck(s), mem(s),sto(s))), E,s)

3.1 Basic Rules

Our calculus includes rules for all the basic statements: wp__ SKIP for the empty
statement, Wp__ ASSIGN for assignments, Wp__ COMP for compositions, wp_ITE
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for conditionals, and wp_ WHILE for while loops (which require the specifica-
tion of an invariant). These rules are mostly standard; and thus, they are not
discussed further here.

There are, however, two particularities worth mentioning. First, each rule
needs to deal with the case that there might not be enough gas available to exe-
cute a statement. Second, assignments are somewhat special in Solidity because
the semantics of assignments depend on the location of the expression on the
left and right. Each side may evaluate to a location on either stack, calldata,
memory, or storage. Thus, when verifying an assignment in Solidity, we must
consider 16 different cases and two additional error cases.

3.2 Method Invocation

In Solidity, a contract may have two types of methods. Internal methods can

only be called internally from within the same contract. External methods, on

the other hand, can only be called by other contracts. In addition, a Solidity

contract has a designated fallback method. This method is invoked whenever

the contract receives some payments or if a method is called that does not exist.
The following rule allows us to verify (recursive) method calls:

WPpP_EXTERNAL_INVOKE_TRANSFER
VSt/' gaSSt/ §gas st = P(i7p7p/7pf,p/f75t/) F Q(iapaplvpfvplf78t)
P(i,p,p',ps, 0}, st')

where predicates P and @ are defined below and A + C denotes that C is
derivable from A in our calculus.
The rule requires the specification of several parameters:

— 4: An invariant for the contract’s private storage and balance.
— p,p’: Pre/postconditions for each internal method.
- Dy, p}: One pre/postcondition for the contract’s fallback method.

We can then use the rule to establish a predicate P for an arbitrary state st’
by proving @ for an arbitrary state st. While proving @, the rule allows us to
assume P for all states st’ with less (or equal) gas than st.

In the following, we are going to discuss predicates P and @ in more detail.

Predicate P. This predicate is defined as follows:

P(i.p,p,ps. Py, st) = Pe(i,st) APi(p,p, st) A Pa(ps,py, st) A Pre(i, st)
It establishes the weakest precondition for method calls and transfer statements.

P,(iv, st). This predicate establishes the weakest precondition for external
method calls. In Solidity, external method calls can be used to invoke meth-
ods of other contracts deployed to the blockchain. Moreover, it is possible to
transfer funds from the caller to the callee with each call. In the following, we
use External(ad’, i, ze, val) to denote an external method call where
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— ad’ is an expression denoting the address of the called contract.

— 1 is the identifier of the method to be called.

— ze is a list containing actual parameters for the method.

— wal is an expression denoting the amount of funds sent with the call.

Predicate P, (iv, st) can now be defined as in Fig. 1, where address(ev) denotes
the address associated with an environment ev, expr(ez, ev, cd, st, g) evaluates
an expression ex using an environment ev and calldata cd in a state st, ng is the
updated gas value gas(st)—costs(External(ad’, , ze, val), ev, cd, st), [z] converts
a string to an integer, and E denotes the exception predicate Ae. e = Gas V e =
Err.

Yev, ad’, i, ze, val, cd.
address(ev) = ad A (1)
(Vadv,g,v,t,g’. adv # ad A adv € dom(ep) A
expr(ad’, ev, cd, st(gas := ng), ng) = N((V(adv), V(TAddr)), g) A
expr(val, ev, cd, st(gas := g), 9) = N((V(v), V(t)), )
= iv(sto(st)(ad), [acc(st)(ad)] - [v] )) (2)
= wp(stmt(External(ad’, i, ze, val), ev, cd),
Ast. iv(sto(st)(ad), [acc(st)(ad)]), E, st) 3)

Fig. 1. Definition of P.(iv, st).

Equation 3 establishes the weakest precondition of invariant v and error
predicate E for an external method call executed in state st. Equation 1 ensures
that the address of the currently executing contract is indeed address ad of the
contract to be verified (fixed at the beginning of Sect. 3). Equation 2 requires
that the invariant holds before executing the call. However, note that we require
the invariant to hold on a modified version of the balance. In particular, value
v (which is obtained by evaluating expression val) is deduced from the actual
balance of the contract. This is because the actual call transfers v funds from
the caller to the callee. Thus, to ensure that the invariant holds after the call, we

must ensure that the invariant holds on a balance in which the value is already
deduced.

Pi(pre, post, st). This predicate establishes the weakest precondition for inter-
nal method calls. In Solidity, internal method calls can only invoke inter-
nal methods of the currently executing contract. In the following, we
use Invoke(i,ze) to denote a call to an internal method ¢ with actual
parameters ze. Pi(pre,post,st) can now be defined as in Fig.2, where
load(cp, fp, ve, nev, cd’, sck’, mem’, ev, cd, st) initializes formal parameters fp
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Yev,1,ze, cd.
address(ev) = ad A 4)
(pr,el, cdi, ki,mi, g.
load(False, fp, ze, nev, 0, 0, mem(st), ev, cd, st(gas := ng), ng) =
N((eq, cdy, ki, mi), g)

= pre(Jacc(st)(ad)],sto(st)(ad), er, cdi, ki, ml)) 5)
= wp(stmt(Invoke(i, ze), ev, cd),
Ast. post(i)([acc(st)(ad)],sto(st)(ad)), E, st) (6)

Fig. 2. Definition of P;(pre, post, st).

with actual parameters ze, nev is a fresh environment for the execu-
tion of the method body, and ng is the updated gas value gas(st) —
costs(Invoke(i, ze), ev, cd, st).

Equation 6 establishes the weakest precondition of the method’s postcondi-
tion post (i) and error predicate E for an internal method call executed in state
st. Again, Eq. 4 ensures that the currently executing contract is the one to be
verified (with address ad). Equation 5, however, requires that the method’s pre-
condition holds before the execution of the call. Note that the precondition is a
predicate over 6 parameters: the current contracts balance and private store, as
well as the environment created by loading the actual parameters (environment
el, calldata cdy, stack k;, and memory my).

P (v, st). This predicate establishes the weakest precondition for external trans-
fers. In Solidity, transfer statements can be used to transfer funds from contracts
to accounts. In the following, we use Transfer(ad’, ex) to denote a transfer state-
ment in which

— ad’ is an expression denoting the address of the receiver, and
— ez is an expression denoting the amount to be transferred.

Note that, if the receiving address belongs to a contract, a transfer implic-
itly triggers the execution of a so-called fallback method. Thus, P (iv, st)
can be defined as in Fig.3, where ng is the updated gas value gas(st) —
costs(Transfer(ad’, ex), ev, cd, st).
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/
Vev, ex,ad , cd.

address(ev) = ad A @)
(Vadv, g. expr(ad’, ev, cd, st(gas := ng),ng) = N((V(adv), V(TAddr)), g)
= adv # ad) A 8)

(Vadv,g,v,t,gﬁ adv # ad A
expr(ad’, ev, cd, st(gas := ng), ng) = N((V(adv), V(TAddr)), g) A
expr(ez, ev, cd, stgas := g), g) = N((V(v), V(t)),g")
= iv(sto(st)(ad), [acc(st)(ad)] - [v])) )
= wp(stmt(Transfer(ad’, ez), ev, cd),
Ast. iv(sto(st)(ad), [acc(st)(ad)]), E, st) (10)

Fig. 3. Definition of P (iv, st).

Equation 10 establishes the weakest precondition of invariant v and error
predicate E for a transfer statement executed in state st. Again, Eq. 7 ensures
that the currently executing contract is the one we want to verify (on address
ad). In addition, Eq. 8 requires that the receiving contract is different from the
executing contract (because for self-transfers we have a different rule). Finally,
Eq. 9 requires the invariant to hold before the transfer statement is executed.
Again, we require that the invariant holds on a balance in which the value is
already deduced from the balance of the currently executing contract.

Ps(prey, post, st). This predicate establishes the weakest precondition for inter-
nal transfers. The rule is similar to P, but since control is not passed on to an
external contract we may use pre-/post-conditions instead of an invariant. Thus,
the definition of Py is the same as that of P, (shown in Fig. 3) with the following
changes:

— Eq. 8 is changed to adv = ad.
— In Eq. 9 iv(...) is replaced with pre(sto(st)(ad), [acc(st)(ad)]).
— In Eq. 10 4v(...) is replaced with post ¢ (sto(st)(ad), [acc(st)(ad)]).

Note that we require pre; to hold for the original balance acc(st)(ad) and not
for the modified version as in Eq. 9. This is because an internal transfer does
not modify the current contract’s balance, because the amount is first deduced
from it but then added again.
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Predicate Q. This predicate is defined as follows:

QUi.p, v ps Py st) = Qeliyst) AQi(p, 1, st) A Qs(pyr. Py, st) A Qeelpy. P, st)
It denotes proof obligations for different types of methods.

Qc(iv, st). This predicate denotes proof obligations for external methods; that
is, it tells us what we need to verify to establish the weakest precondition of an
invariant for an external method. It is defined in Fig. 4 where ng is the updated
gas value gas(st’) — costs(External(adez, mid, ze, val), ev, cd, st'), nev is a fresh
environment for the execution of the method body, and transfer(s,r, v, a) is used
to transfer funds of value v from sending address s to receiving address r for
accounts a.

Equation 15 shows the actual statement we need to verify, i.e., that the
weakest precondition of invariant iv and error predicate E for method body
f holds in state st’ with gas ¢”, accounts acc, stack k;, and memory m;. The
statement needs to be verified only for external methods invoked from a context
outside the contract to be verified. Thus, Eq. 11 requires that f is indeed the
body of an external method mid of the contract to be verified (contract) and
Eq. 12 ensures that the method is invoked from outside (i.e. an address different
from the contract to be verified).

To verify Eq. 15 we can assume that the invariant holds for the state in which
f will be executed (Eq. 14). This is because we know that the invariant holds
when control leaves the current contract. Thus, if another contract is to call back
into the current contract the invariant must still hold. Note, however, that the
invariant holds only on a modified balance for contract ad. This is because the
calling contract may send some funds v with the method call which are then
transferred to the receiving contract ad. Thus, since we know that the invariant
holds before transferring the funds, we need to deduce v from the balance of ad
after the transfer.

When verifying Eq. 15 we can also assume that the current level of
gas is less than or equal to the original amount of gas (Eq. 13). This is
an important property because it allows us to use all P predicates from
WP _ EXTERNAL INVOKE TRANSFER, which, according to the rule, can only
be assumed for states with less or equal gas than the original state.
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Vmid, fp, f, ev.
contract(mid) = Method(fp, True, f)1 A (11)
address(ev) # ad (12)

"

- (Vadez, cd, st', ze, val, g, v, t, g, e, cdy, ki, mi, g, acc.
expr(adez, ev, cd, st'(gas := ng),ng) = N((V(ad), V(TAddr)), g) A
expr(val, ev, cd, st'(gas := g), g) = N((V(v), V(£)),g') A
load(True, fp, ze,nev, B, 0,0, ev, cd, st'(gas := ¢, ¢’) =
N((er, cdi, ki,mi), g")

g" < gas(st) A (13)
transfer(address(ev), ad, v, acc(st’ (gas := g”))) = acci A
i(sto(st')(ad), [acc(ad)] - [v]) (14)
= wp(stmt(f, er, cdi), Ast. ww(sto(st)(ad), [acc(st)(ad)]), E,
st'(gas := ¢”, acc := acc, sck := k;, mem := my))) (15)

Fig. 4. Definition of Q. (v, st).

Qi(pre, post, st). This predicate denotes proof obligations for internal methods,
i.e., it tells us what we need to verify to establish the weakest precondition of
a method’s postcondition from its precondition. In Fig. 5 ng is the updated gas
value gas(st’) — costs(Invoke(i, ze), ev, cd, st') and nev is a fresh environment for
the execution of the method body.

Equation 20 states what we need to verify, i.e., that the weakest precondition
of the postcondition post(mid) associated with method mid and error predicate
E for method body f holds in state st’ with gas g, stack k;, and memory m;.
The statement needs to be verified only for internal methods invoked from a
context inside the contract to be verified. Thus, Eq. 16 requires that f is indeed
the body of an internal method mid of the contract to be verified (contract) and
Eq. 17 ensures that the method is invoked from inside (i.e., from address ad).

Again, when verifying Eq. 20, we can assume that the available gas is less or
equal to the original amount of gas (Eq. 18). Moreover, we can also assume that
the methods precondition holds for the environment in which method body f
will be executed (Eq. 19). The statement needs to be verified only for external
methods invoked from a context outside the contract to be verified. Thus, Eq.
11 requires that f is indeed the body of an external method mid of the contract
to be verified (contract) and Eq. 12 ensures that the method is invoked from
outside (i.e., an address different from the contract to be verified).

Qe (v, st). This predicate denotes proof obligations to establish the weakest pre-
condition of an invariant for fallback methods executed as a result of an external
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Vmid, fp, f, ev.
contract(mid) = Method(fp, False, f)1 A (16)
address(ev) = ad 17

== (Vcd, st', i, ze, er, cdy, ki, my, g.
load(False, fp, ze, nev, ), ), mem(st'), ev, cd, st’(gas := ng), ng) =
N((er, cdi, ki,mi),g) A

g < gas(st) A (18)

pre(mid)([acc(st')(ad)| ,sto(st")(ad), er, cdi, ki, my) (19)

= wp(stmt(f, e, cdp), Ast. post(mid)([acc(st)(ad)],sto(st)(ad)), E,
st'(gas := g, sck := k;, mem := mll))) (20)

Fig. 5. Definition of Q;(pre, post, st).

transfer. It is defined in Fig. 6 where ng is the updated gas value gas(st’) — ¢ and
nev is a fresh environment for the execution of the fallback method.

Vev. address(ev) # ad 21
- (Vez, cd, st', adex,v,t,g,4 , acc, c.
expr(adez, ev, cd, st'(gas := ng), ng) = N((V(ad), V(TAddr)), g) A
expr(ex, ev, cd, st'(gas := g, g) = N((V(v), V(£)),g") A

g < gas(st) A (22)
transfer(address(ev), ad, v, acc(st’)) = acci A
iv(sto(st')(ad), [acc(ad)] - [v] ) (23)
= wp(stmt(fb, nev, 0), Ast. iv(sto(st)(ad), [acc(st)(ad)]), E,
st'(gas := ¢, sck := 0, acc := acc, mem := (J))) (24)

Fig. 6. Definition of Qs (v, st).

Equation 24 states what we need to verify, i.e., that the weakest precondition
of the invariant v and error predicate E for our contracts fallback method fb
holds in state st’ with gas ¢’, a fresh stack and memory, and account acc. Since
it only needs to be verified for external transfers, Eq. 21 ensures that the transfer
statement is issued externally.

Again, when verifying Eq. 24, we can assume that the current level of gas
is less than or equal to the original level (Eq. 22). Moreover, we know that the
invariant holds when the transfer occurs. Thus, since the transfer adds v funds
to the balance of contract ad, we can assume that the invariant holds when we
deduce v again.
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Qs (pre £y post ¢, st). This predicate denotes proof obligations for internal transfers,
i.e., it tells us what we need to verify to establish the weakest precondition of the
postcondition of the fallback method from its precondition. Its definition is similar
to that of Qf, with modifications similar to those required for Ps above.

4 Formalization in Isabelle/HOL

The complete calculus is formalized in Isabelle/HOL, and its soundness is
mechanically verified! from our semantics.

4.1 Verification of Soundness

The verification of soundness of our rules is mostly standard, except for rule
WP _EXTERNAL INVOKE TRANSFER. In particular, external method calls and
transfer statements transfer control to another contract. Thus, we must ensure
that other contracts can never change the validity of an invariant. To this end,
we prove the following lemma:

25
26
27
28
29
30

Vst'. address(ev) # ad A
iv(sto(st)(ad), [acc(st)(ad)]) A
stmt(f, ev, cd, st) = N((), st') A
Vst'. gas(st') < gas(st) = Qc(iv,st’) A
Vst'. gas(st') < gas(st) = Qyc(iv, st')
= v(sto(st")(ad), [acc(st")(ad)])

(
(
(
(
(
(

N NI N

With this lemma we verified that an invariant iv for the storage and balance
of contract ad is preserved (Eq. 26 and Eq. 30) by the execution of arbitrary state-
ments f (Eq.27) executed in a different context from that of ad (Eq.25), given
that the external methods (Eq.28) and the fallback method (Eq. 29) of contract
ad preserve the invariant. Equation 28 and Eq. 29 are particularly important here
because f may contain statements that call back to ad and thus execute code
that may potentially impact 7.

Since our semantics is formalized as a deep embedding in Isabelle/HOL, the
statement above can be easily proven by structural induction on f.

4.2 Automation

To support users in applying the calculus for the verification of Solidity smart
contracts we implemented a verification condition generator (VCG). The VCG
automates the use of the calculus and leaves the user with a so-called verification
condition that needs to be discharged to ensure the correctness of the contract.
The VCG is implemented in Isabelle/Eisbach [30] and consists of different meth-
ods to support the verification of different types of statements?.

! Theory Weakest_Precondition.thy from the accompanying artefact [29].
2 Section “Verification Condition Generator” in Weakest_Precondition.thy [29].
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5 Methodology

In the following section, we demonstrate our approach using a simple example. To
this end, consider the contract depicted in Listing 1.1, which stores an unsigned
integer x (and possibly other variables not shown). Moreover, it provides an
internal method int1, which calls an external method ext () of a contract with
address adl and sends 1 ether with it. It also provides another internal method
int2, which calls int1. In addition, it provides an external method ext, which
transfers 1 ether to a contract with address ad2 and another 1 ether to itself.
Finally, it also has a fallback method which does not have a name.

1 contract Example {

2 uint x;

3 e

4 function int1(uint y, ...) internal {
5 e

6 adl.call.value(l ether) (abi.encodeWithSignature("ext()"));
7 ce

8 ¥

9 function int2(int y, ....) internal {
10 R

11 int1(5, ...);

12 R

13 ¥

14 function ext() external {

15 -

16 ad2.transfer (1 ether);

17 e

18 address(this) .transfer(1 ether);

19 e
20 ¥
21 function () external payable {
22 ce
23 }
24 '}

Listing 1.1. A simple example contract.
To verify the contract using our calculus, we first need to specify the following;:

— An invariant: A predicate over the contract’s member variables (including,
for example, x) and the contract’s balance.

— Preconditions for internal methods intl and int2: Predicates over the
method’s formal parameters (including, for example, y), the contract’s mem-
ber variables (including, for example, x), and the contract’s balance.

— Postconditions for internal methods int1 and int2: Predicates over the con-
tract’s member variables and the contract’s balance.

— A precondition and postcondition for the contract’s fallback method: A pred-
icate over the contract’s member variables and the contract’s balance.
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We then need to verify the following:

Executing the body of int1 (Ln. 5 - Ln. 7) in a state in which its precondition
holds, leads to a state in which its postcondition holds.

Executing the body of int2 (Ln. 10 - Ln. 12) in a state in which its precon-
dition holds, leads to a state in which its postcondition holds.

Executing the body of ext (Ln. 15 - Ln. 19) in a state in which the invariant
holds, leads to a state in which the invariant holds again.

Executing the body of the fallback method (Ln. 22) in a state in which its
precondition holds, leads to a state in which its postcondition holds, and
executing the body in a state in which the invariant holds, leads to a state in
which the invariant holds again.

To verify the above proof obligations we can use the rules of the calculus and

the following assumptions:

6

In

If the invariant holds before executing Ln. 6, then it holds also after executing
it.

If the precondition associated with int1 holds before the execution of Ln. 11,
then the corresponding postcondition holds after executing Ln. 11.

If the invariant holds before executing Ln. 16, then it holds also after executing
it.

If the fallback methods precondition holds before the execution of Ln. 18,
then its postcondition holds after executing Ln. 18.

Case Study: Verified Banking

the following, we use our calculus to verify a contract that implements a

simple banking system.

6.1 The Contract

The contract should allow users to deposit funds and later withdraw them. A
possible implementation is provided by the contract shown in Listing 1.2.

1
2
3
4
5
6
7
8

9
10
11
12
13

contract Bank {
mapping(address => uint256) balances;

function deposit() external payable {
balances [msg.sender] = balances[msg.sender] + msg.value;

}

function withdraw() external {
uint256 bal = balances[msg.sender];
balances[msg.sender] = 0;
msg.sender.transfer(bal);
}
}

Listing 1.2. A simple banking contract.
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The contract has one member variable balances to keep track of all the
balances. Moreover, it provides two methods to deposit and withdraw funds.
When a contract calls deposit with some funds, the funds are transferred to
the Bank contract and the amount is kept in msg.value. Thus, method deposit
simply adds the value to the balance of the calling contract to keep track of how
much each contract contributed to the funds of the banking contract. A contract
can call withdraw to get its funds back. To this end, the banking contract first
sets the caller’s internal balance to 0 (Ln. 10) and then returns the corresponding
funds (Ln. 11). Note that it is important to first update the internal balance
before transferring the money. Thus, the contract is secure against so-called
re-entrancy attacks [4]. However, the question remains whether the contract is
indeed functionally correct or if it is exposed to other vulnerabilities.

6.2 Formalizing the Contract

To answer this question, we first need to formalize the contract in our semantics.
To this end, we need to provide definitions for the parameters of our calculus
described at the beginning of Sect. 3:

“balances” +—  Var(STMap(TAddr, STValue(TUInt(256))))

contract = ¢ “deposit” —  Method([], True, deposit)
“withdraw” +—  Method([], True, withdraw)
fb = Skip

The contract is formalized as a mapping from identifiers to corresponding
members. While “balances” refers to a variable, “deposit” and “withdraw” refer
to external methods with body deposit and withdraw defined as in Listing 1.2.
The contract does not define a fallback method; thus fb is defined as Skip.

6.3 Specification of Properties

The property we want to verify for our contract is that the relationship between
the sum of all stored balances and the internal balance of the contract is preserved
through the execution of each external method.

Thus, we first formalize the following invariant:

iv(bal,s,a) = a—sum(s) > bal A bal > 0 A pos(s)
sum(s) = Z [2]
{(ad,z) | s(ad+“."+“balances”)=z }
pos(s) = Vad,z. s(ad +“7 4 “balances”) =z, = [2] >0
The important part here is the first conjunction in the definition of iv: a —

sum(s) > bal. Here, a represents the funds available to our banking contract
and sum(s) represents the sum of all its stored balances. Thus, the formula
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requires that the difference between these two balances is bound by a certain
value bal.

Now, we can formalize the properties thst we want to verify using the Hoare
triple notation introduced in Sect. 3:

{I} stmt(External(Address(ad),“deposit”, ], val), env, ed) {I}{E}
{I} stmt(External(Address(ad),“withdraw”,[], val), env, cd) {I}{E}

where I((a, , ,s)) = iv(bal,s(ad),[a(ad)]), E(e) = e = GasVe = Err,
and address(env) # ad.

6.4 Verification

As discussed in Sect. 3.2, Solidity implicitly triggers the execution of a so-called
fallback method whenever money is transferred to a contract. In particular, if
another contract calls withdraw, the transfer statement in Ln. 11 of Listing 1.2
triggers the execution of the callee’s fallback method. Thus, as we do not know
all potential contracts that call withdraw, we need to verify the invariant for all
possible implementations.

To evaluate our approach, we verified the above property twice: from its
semantics without using the calculus [28], and using our calculus [29]. Without
the calculus, verifying the above property required ca. 3 250 lines of Isabelle /Isar
code. Using the calculus reduced it to ca. 700 lines.

7 Related Work

Since Solidity is the most popular language for developing smart contracts there
has been growing interest in formalizing its semantics. Bhargavan et al. [10],
for example, provide a semantics of Solidity in F*. Crosara et al. [16] describe
an operational semantics for a subset of Solidity. Hajdu and Jovanovic [21],
provide a formalization of Solidity in terms of a simple SMT-based intermediate
language. In addition, Zakrzewski [44] describes a big-step semantics of a small
subset of Solidity and Yang and Lei [41] describe a formalization of a subset
of Solidity in Coq [37]. Moreover, Jiao et al. [22,23], provide a formalization of
Solidity in K. Finally, Cassez et al. [11] provide an implementation of Solidity
in Dafny. All of these works provide important contributions towards a better
understanding of Solidity. The focus of our work was to provide a framework for
the verification of smart contracts written in Solidity and while it is possible to
verify them directly from the semantics it is often tedious and difficult.
Another line of research has focused on the development of automatic ver-
ification techniques for Solidity programs. For example, Mavridou et al. [31]
provide an approach based on FSolidM [32], in which a Solidity smart contract
is modeled as a state machine to support model checking of common security
properties. In addition, Hajdu and Jovanovic [20] provide solc-verify, a modular
verifier for Solidity smart contracts. Work in this area usually focuses on the
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automatic verification of different aspects of Solidity programs and can not be
used to verify general functional correctness, which is the focus of our work.
Finally, some research has focused on the verification of functional correctness
of Solidity programs. Early work in this area includes TinySol [7] and Feather-
weight Solidity [15], two calculi formalizing some of the core features of Solidity.
More recently, Ahrendt and Bubel described SolidiKeY [1], a formalization of a
subset of Solidity in the KeY tool to verify data integrity for smart contracts.
Similar to our work, research in this area can be used to verify the functional
correctness of Solidity contracts. However, the above works differ from the work
presented in this paper in two main aspects. First, the rules described above are
provided in the form of axioms rather than being derived from a formal semantic,
as is the case with our work. Second, the above works focus on a restricted subset
of Solidity. For example, none of the works consider fixed-size integers, different
types of stores with different semantics for assignments, or external vs. internal
method calls, which are key features of Solidity addressed by our calculus.

8 Conclusion

In this paper, we presented a framework for the verification of Solidity smart
contracts in Isabelle/HOL. To this end, we developed a calculus to reason about
Solidity statements, formalized it in Isabelle, and mechanically verified its sound-
ness. In addition, we developed a verification condition generator that auto-
mates the use of the calculus. To evaluate the approach, we used it to verify a
basic token in Solidity, which showed that the calculus can significantly reduce
the effort to verify Solidity smart contracts compared to a verification from its
semantics.

While our calculus supports most of the important features of Solidity there
are still some more advanced features of the language that are not yet supported.
In particular, the calculus does not yet support inheritance, which seems to be
an important feature for Solidity developers. Moreover, although our case study
demonstrates the feasibility of our approach it is not clear how well it can be
generalized to the verification of other contracts.

To address the above limitations, future work arises in two directions. First,
future work should extend the calculus to support more advanced features of
Solidity, such as inheritance. In addition, future work should also focus on con-
ducting additional case studies in which the calculus is used for the verification
of additional contracts.

Availability. Our formalisation and the evaluation results are available under
BSD license (SPDX-License-Identifier: BSD-2-Clause) [29].
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Abstract. Critical infrastructure systems—for which high reliability
and availability are paramount—must operate securely. Attack trees
(ATs) are hierarchical diagrams that offer a flexible modelling language
used to assess how systems can be attacked. ATs are widely employed
both in industry and academia but—in spite of their popularity—little
work has been done to give practitioners instruments to formulate queries
on ATs in an understandable yet powerful way. In this paper we fill this
gap by presenting ATM, a logic to express quantitative security proper-
ties on ATs. ATM allows for the specification of properties involved with
security metrics that include “cost”, “probability” and “skill” and permits
the formulation of insightful what-if scenarios. To showcase its poten-
tial, we apply ATM to the case study of a CubeSAT, presenting three
different ways in which an attacker can compromise its availability. We
showcase property specification on the corresponding attack tree and we
present theory and algorithms—based on binary decision diagrams—to
check properties and compute metrics of ATM-formulae.

1 Introduction

Critical infrastructure systems—for which high reliability and availability are
paramount—must operate securely. Attack trees (ATs) [54] are a flexible modelling
language used to assess how systems can be attacked. They operate by decompos-
ing the attacker’s goal into intermediate elements and basic attack steps that a
malicious actor can take to reach said objective. ATs are widely employed both in
industry and academia but—in spite of their popularity—little work has been done
to give practitioners instruments to formulate queries on AT's in an understand-
able yet powerful way. In this paper, we fill this gap by presenting a logic to express
quantitative Metrics on ATs (ATM). ATM is a powerful language able to formulate
structural queries on ATs that consider quantitative security properties, or secu-
rity metrics, such as “cost” of an attack, “probability” of getting attacked and “skill”
of a malicious actor. The ability to formulate these queries is essential to provide
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practitioners with an instrument to analyse what-if scenarios and to propel a more
quantitatively-informed decision making process.

AND OR
Attack Trees. Attack trees (ATs) are hierarchical O
diagrams that represent various ways in which a sys- ~  BAS
tem can be compromised [42,54]. Due to their pop-
ularity, ATs are referred to by many system engi- Fig.1. Nodes in an
neering frameworks, e.g. UMLsec [35] and SysMLsec attack tree.
[3,53], and are supported by industrial tools such as
Isograph’s AttackTree [31]. The root—or top level event (TLE)—of an AT rep-
resents the attacker’s goal, and the leaves represent basic attack steps (BASes):
actions of the attacker that can no longer be refined. Intermediate nodes are
labeled with gates (see Fig. 1) that determine how basic actions of the attacker
can propagate to reach higher-complexity elements in the attack. ATs that do
not capture dynamic behaviours present only OR and AND gates—we call these
static attack trees (SATs)—but many extensions exist to model more elaborate
attacks. To build a solid and modular foundation for our framework, this paper
focuses on SATs. It is important to note that—despite their name—ATSs can be
directed acyclic graphs (DAGs), i.e., graphs in which a node may have multiple
parents. Them being DAGs or tree-structured has consequences on computa-
tions [42].

Ezample 1. Consider the AT in Fig.2 (excerpt from Fig.6). This AT represents
different attacks to get access to the ground station database of a CubeSAT as
admin. The TLE of this sub-tree is represented by the ADA AND-gate. For the
attacker to reach ADA, they have to both gain access—the GA AND-gate —
and escalate privileges—the EP OR-gate. Each of these gates is then refined
by BASes: to gain access, an attacker must perform information gathering and
a successful phishing attack—the IGP BAS—and login to the ground station
database using phished credentials—the LDG BAS. In addition, they have to
either leverage misconfigurations—the LM BAS—or exploit vulnerabilities—the
EV BAS—+to escalate privileges. Note that IGP is represented here as a BAS
but is further refined as an additional sub-tree in Fig. 6.

AcCESs GROUND STATION:

. ADA
Metrics on Attack Trees. ATs Access Ground DB as Admin  ADA
are often studied via quantitative Gain Access GA
Tysi duri hich th Login to DB Ground Station ~ LDG
anatysis, urimg whic t €y are Escalate Privilege EP
assigned a wide range of security Leverage Misconfig. LM

metrics [15,42]. Such metrics are @ @ @ @ El - lg;t;’:iin;;i)ﬂ;fs:hmg g{,
key performance indicators that

formalize how well a system per-

forms in terms of security and are Fig. 2. AT modelling access to ground station
essential when comparing alterna- DB of a CubeSAT (excerpt from Fig. 6).

tives or making trade-offs. Typi-

cal examples of such metrics are the minimal time [5,38,39,43|, minimal cost [4],
or maximal probability [33] of a successful attack (see Table1 for more exam-

ples).
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1.1 Our Approach

A Logic for Attack Trees Metrics (ATM). To perform quantitatively
informed decision making w.r.t. security of systems, practitioners need the abil-
ity to analyse their models in a meaningful and thorough way. As such, they
must be able to formulate meaningful queries and meaningful what-if scenarios.
To cater for this need, this paper presents ATM, a logic for general Metrics on
Attack Trees. ATM is a flexible language used to specify properties that take
metrics such as “cost”, “skill” and “probability” into account directly on ATs.
ATM is structured on four layers: these allow practitioners a) to reason about
successful /unsuccessful attacks; b) to check whether metrics, such as the cost,
are bounded by a given value on single attacks; c) to compute metrics for a class
of attacks and d) to perform quantification.

Attack Trees in Practice. To offer a concrete example, we utilise ATM to
specify some properties on the AT model of a CubeSAT [32,46] from the liter-
ature [22] (see Fig.6). This model exemplifies the effect of a security threat for
the availability of a system by showcasing three ways in which a malicious actor
could attack a CubeSAT: performing a denial of service attack, tampering with
data on the database of the ground station or killing radio communications on
the satellite. Our logic can be used to specify properties on the corresponding
AT and to check whether the system under examination exhibits desired char-
acteristics. Is it necessary to leverage misconfigurations to perform a successful
attack on CubeSAT’s communications? Is there an attack that ensures success-
ful access to the ground station database while keeping the cost under a certain
threshold? Is there an attack that ensures data tampering without exploiting
vulnerabilities in the ground station system? These are some of the properties
that one could specify and check in the framework we present.

Model Checking Algorithms. In addition, we present model checking algo-
rithms to check properties specified with ATM and to efficiently compute metrics
that appear in these properties. In particular, we provide algorithms to a) check
whether an AT and an attack satisfy a formula; b) compute all attacks that sat-
isfy an AT and a formula; ¢) check whether the metric of a formula is bounded
by a user-specified threshold; d) compute the metric value of formulae and e)
check whether a quantified ATM-formula holds true. Building on previous work
in the field [15,42,47,48|, all these algorithms are based on construction and
manipulation of binary decision diagrams (BDDs). This translation to BDDs
constitutes a formal ground to address algorithmic procedures while integrating
novel work presented in this paper with previously introduced frameworks.
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Contributions. To summarize, in this work:

1. We develop ATM, a logic to reason about general metrics on ATs. ATM allows
for the specification of metrics properties that include “cost”, “proability” and
“skill” and for the formulation of insightful what-if scenarios.

2. We showcase ATM by applying it to the case study of a CubeSAT and by
exemplifying properties specification.

3. We propose novel algorithms based on BDDs to perform model checking and
to compute metrics on properties specified using ATM.

1.2 Related Work

Numerous logics describe properties of state transition systems, such as labelled
transition systems (LTSs) and Markov models, e.g., CTL [18], LTL [50], and their
variants for Markov models, PCTL [28] and PLTL [49]. State-transition systems
are usually not written by hand, but are the result of the semantics of high-level
description mechanisms, such as AADL [12], the hardware description language
VHDL [20] or model description languages such as JANI [14] or PRISM [41].
Consequently, these logics are not used to reason about the structure of such
models (e.g. the placement of circuit elements in a VHDL model or the structure
of modules in a PRISM model), but on the temporal behaviour of the underlying
state-transition system. Similarly the majority of related work [9,11,55,56] on
model checking on fault trees (FTs)—the safety counterpart of ATs—exhibits
significant differences: these works perform model checking by referring to states
in the underlying stochastic models, and properties are formulated in terms of
these stochastic logics, not in terms of events in the given FT. In [57], the author
provides a formulation of Pandora, a logic for the qualitative analysis of temporal
FTs. In [27] the authors investigate how fault tree analysis (FTA) results can
be linked to software safety requirements by proposing the same system model
for both. They introduce a duration calculus based on discrete time interval
logic (ITL) [45] to give FTs formal semantics. In [47,48] the authors present
BFL—alogic on FTs that reasons about them in Boolean terms—and PFL—its
probabilistic counterpart. Our work is aligned in intentions to the latter two, as
we develop a logic directly on ATs. However, where they reason on FTs only in
Boolean or probabilistic terms, our work exhibits a broader scope by allowing for
more general queries on an ample class of security metrics. Regarding AT metrics,
a seminal paper by Mauw & Oosdijk [44] shows that metrics can be computed
for static ATs in a bottom-up fashion. Furthermore, [16,34] are among the first
to model and compute the cost and probability of attacks. In [38,39] an attack
is moreover characterised by the time it takes. In the related literature, most
works are on static ATs, with the relevant exception of [5,15,25,33,42] which
include sequential-AND gates. However, for static ATs the algorithmic spectrum
remains broader [42]. Such algorithms range from classical BDD encodings for
probabilities, and extensions to multi-terminal BDDs, to logic-based semantics
that exploit DPLL, including an encoding of SATs as generalised stochastic Petri
nets. Prominent contributions are [10] and [37, Alg. 1]: after computing so-called
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optional and necessary clones, computations are exponential on the number of
shared BAS (ounly). A thorough analysis of the literature on metrics computation
for ATs can be found in [15,42]. These two contributions provide efficient and
general algorithms to compute security metrics on ATs. We choose to adhere to
their perspective on metrics computations as it subsumes and generalizes most
of the already available literature.

Structure of the Paper. Section 2 covers background on ATs, Sect. 3 presents
syntax and semantics for ATM, Sect.4 showcases an application of ATM to a
CubeSAT AT, Sect.5 presents model checking algorithms for ATM—formulae
and Sect. 6 concludes the paper and discusses future work.

2 Attack Trees

Definition 1. An attack tree (AT) T is a tuple (N, E,t) where (N, E) is a
rooted directed acyclic graph, and t: N — {OR, AND,BAS} is a function such that
for v € N, it holds that t(v) = BAS if and only if v is a leaf.

Moreover, ch: N — Z(N) gives the set of children of a node and T has a
unique root, denoted Rp. The subindex T is omitted if no ambiguity arises,
e.g. an attack tree T' = (N, ¢, ch) defines a set BAS C N of basic attack steps.
If w € ch(v) then u is called a child of v, and v is a parent of u. We let v =
AND(v1,...,v,) if t(v) = AND and ch(v) = (v1,..., v, ), and analogously for OR,
denoting ch(v) = {v1,...,v,}. Furthermore, we denote the universe of ATs by
J and call T € T tree-structured if for any two nodes u and v none of their
children is shared, else we say that T is DAG-structured. If only AND- and
OR-gates (or their derivatives) are present we say that T is a static attack tree
(SAT). In this paper we focus our attention on SATs and thus use the term
ATs interchangeably to denote them. The semantics of a AT is defined by its
successful attack scenarios, in turn given by its structure function. First, the
notion of attack is defined:

Definition 2. An attack scenario, or shortly an attack, of a static AT T s
a subset of its basic attack steps: A C BASy. We denote by oy = 2BAST the
universe of attacks of T. We omit the subscript when there is no confusion.

The structure function fr(v, A) indicates whether the attack A € & succeeds at
node v € N of T. For Booleans we adopt B = {1,0}.

Definition 3. The structure function fr: N x &/ — B of a static attack tree T
18 given by:

if t(tv) =0R and Ju € ch(v).fr(u,A) =1,
if t(v) =AND and Vu € ch(v).fr(u,A) =1,
if t(v) =BAS and v € A,

otherwise.

fT(U, A) =

O B -
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An attack A is said to reach a node
v if fr(v,A) = 1, ie. it makes
v succeed. If no proper subset of
A reaches v, then A is a mini-
mal attack on v. The set of min-
imal attacks on v is denoted [v].
We define fT(A) = fT(RT,A), and Fig. 3. All minimal attacks for AT T mod-
attacks that reach Ry are called elling access to ground station DB of a Cube-
succesful w.r.t. T. Furthermore, the SAT (excerpt from Fig. 6).

minimal attacks on Rr (i.e. the minimal successful attacks) are called minimal
attacks. ATs are coherent [6], meaning that adding attack steps preserves suc-
cess: if A is successful then so is AU {a} for any a € BAS. Thus, the suite of
successful attacks of an AT is characterised by its minimal attacks.

Given T, the set of

its minimal attacks is

[T] = {IGP, LDG, LM},
{IGP, LDG, EV}}

Definition 4. The semantics of an AT T is its suite of minimal attacks [T7].

Ezample 2. Consider the AT in Fig. 3 representing ways to access the ground
station database of a CubeSAT as admin: its suite of minimal attacks consists
of {{IGP,LDG, LM},{IGP,LDG,EV}}. That is, to mount a minimal attack
a malicious actor needs to gain access performing information gathering and
phishing IGP—a BAS that is further refined in Fig.6—and by logging into
the DB of the ground station; to then either leverage misconfigurations LM
or exploit vulnerabilities EV in the DB software to gain admin privileges. A
non-minimal attack on this AT would include both LM and EV.

2.1 Security Metrics for Attack Trees

Security metrics—such as the minimal time and cost among all attacks—are
essential to perform quantitative analysis of systems and to support more
informed decision making processes. To enable this, i.e. computing security met-
rics, we adopt the well-established semiring framework. Semirings have vast
applicability potential [26] and have been successfully used to construct attribute
domains on ATs [15,30,36,42]. In this paper, we formulate linearly ordered unital
semiring attribute domains where V is the value domain, A is an operator to
combine values of BASes in an attack, V is an operator to combine values of dif-
ferent attacks and < is an order to compare values. These linearly ordered unital
semiring attribute domains provide a convenient way to define an ample class of
metrics including “min cost”, “min time™—both with parallel or sequential attack
steps—*min skill” and “discrete probability”.

Definition 5. A linearly ordered unital semiring attribute domain (simply
attribute domain or LOAD from now on) is a tuple L = (V,V,A,1y,1,,=X)
where:

-V is a set;
~ V,A: VZ =V are commutative, associative binary operations on V ;
— A distributes over V, i.e., t A(yVz)=(xVy A(xVz) foralz,yzeV;
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— V is absorbing w.r.t. A, i.e., vV (x Ay) =z for all z,y € V;
- 1y and 1, are unital elements, i.e., 1y Va =1, Ax =z forallz € V;
— < 18 a linear order on V.

As anticipated, many relevant metrics for security analyses on ATs can be
formulated as attribute domains. Table 1 shows examples, where No, = NU {oo}
includes 0 and oo.

Ezample 3. An example of a LOAD is (N, min, +, 00,0, <). Indeed, min and
+ are commutative, associative operations on N,. The distributive property
amounts to the fact that « 4+ min(y, z) = min(z + y, « + z), while the absorbing
property can be stated as min(z,z + y) = x. The units are given by 1, = 0o
and 14 = 0, and < is a linear order on N,. As we will discuss in Example 4,
this LOAD corresponds to the min cost metric on ATs.

It is important to note
that derived metrics such
as stochastic analyses and

Table 1. AT metrics with attribute domains.

; METRIC 1% v A Iy (1| =2
Pareto frontiers can be rep- - -
resented by semirings. How- ™1 €ost Neo |min |+ |oo|0 |<
ever, they do not fit in min time (sequential) Noo 'min |+ Joo 0 <
this framework not being min time (parallel) |No |min |[max|oco|0 |<
LOADs [42]. Moreover, some  min skill Neo |min max oo|0 |<
meaningful metrics—like the giccrete prob [0,1] | max - 01 <

cost to defend against all
attacks—do fall outside this category [42]. To render this framework functional,
all BASes of ATs are enriched with attributes. More precisely, first an attribu-
tion « assigns a value to each BAS; then a security metric a assigns a value
to each attack scenario; and finally the metric & assigns a value to the set of
minimal attacks. We then refer to LOADs to define AT metrics. Given a LOAD
(V,V,A,1y,1,,=) we assign to each BAS a an attribute value a(a) € V. The
operators V, A are then used to define a metric value for T as follows:

Definition 6. Let T be an AT and let L = (V,V, A, 1y,1,,=<) be a LOAD.

1. An attribution on T with values in L is a map a: BASr — V;
2. Given such «, define the metric value of an attack A by

acA
8. Given such «, define the metric value of T' by
ar =\ ad) =\ A o)
Ae[T] A€[T] a€A

Example 4. Consider L from Example 3 representing the metric min cost, and
let T be the AT in Fig.4. To each BAS we attach a cost value, given by the
attribution o : BASy — V given by {IGP— 15,LDG — 2, LM +— 7, EV +— 9}.



212 S. M. Nicoletti et al.

As in Example 2, T has two minimal attacks, Ay = {IGP, LDG, LM} and Ay =
{IGP, LDG, EV}. Since A = 4, We have a(A;) = a(IGP)+ a(LDG) + a(LM) =
15+ 2 + 7 = 24; this is the cost an attacker needs to spend to perform attack
A,. Similarly one finds @(As) = 15+ 2 + 9 = 26. We then calculate &(T') =
min(a(A;),a@(As)) = 24. Indeed, the minimal cost incurred by an attacker to
succesfully attack the system is by performing the cheapest minimal attack,
which is A;.

When computing mul-
tiple metrics on a

given AT, one can

resort to multiple

LOADs and coher-

ently chosen attribu-

tions over its BASes.

We thus define such

a tree as follows:

Given T and an attribution over BASes
a: {IGP+ 15,LDG +> 2,LM +— 7,EV - 9},

then min cost for T is calculated as follows:

#(T) = @({IGP,LDG, LM}) v @({IGP, LDG, EV})
= a({IGP A LDG A LM}) v a({IGP A LDG A EV})
= min(15+2+7,15+2+9) = min(24,26) = 24.

Fig. 4. Computing min cost for T: AT for accessing a ground
station DB of a CubeSAT (excerpt from Fig.6).

Definition 7. An attributed AT is a tuple T = (T,.%,a) where: 1. T is an
attack tree; 2. £ = {Ly,...,L;} is a set of LOADs; 8. a = {a;}\_, is a set of
attributions on T, where each «; takes values in L;.

Although in this paper we calculate metrics by considering all minimal attacks—
coherently with [15,42]—one could also simply consider all successful attacks.
For metrics obtained from LOADs this does not make a difference: for example,
the successful attack with minimal cost will always be a minimal attack, since
adding BASes can only increase the cost. Therefore, in the calculation of min
cost we may as well take the minimum over all successful attacks, rather than
just minimal attacks.

3 A Logic for at General Metrics

3.1 Syntax of ATM

Below, we present ATM, a logic for general Metrics on Attack Trees. ATM shares
the objective of developing a language directly on tree-shaped models with [47,
48]. However, it extends the scope of these works to the security domain and
allows for property specification that consider a large class of security metrics.
The syntax of ATM is structured on four layers. The first layer, ¢, reasons about
the status of elements in an AT. Atomic formulae e represent BASes and IEs in
an AT and they can be combined with usual Boolean connectives. Furthermore,
we can forcefully set the value of an element in a layer 1 formula to either 0 or
1 with ¢[e — 0] and ¢le — 1]. With MA(¢) we can check whether an attack is
a minimal attack, i.e., a minimal attack successful for a given ¢. Layer two and
three reason about metrics. Layer 2 formulae allow the user to check whether a
given metric on a ¢ formula is bounded by m (M (¢) <k m) and to forcefully
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set the attribution of a given e € 1 to an appropriate value v (¢[e KA v]).
Boolean connectives are also allowed. Layer 3 formulae also allow the setting of
attributions but simply return the value of a calculated metric (Vi (¢)). Note
that for the layer 1, layer 2 and layer 3 formulae we usually assign values with
— to e € BAS. We can however assign values to IEs if 1. e is a module [21], i.e.,
all paths between descendants of e and the rest of the AT pass through e 2. and
none of the descendants of e are present in the formula. If so, we prune that
(sub-)AT and treat occurring IEs as BASes. Finally, layer 4 formulae allow us to
perform quantification over layer 1 and layer 2 formulae. Given a set of LOADs
¥ ={Ly,...,L;} with Ly € £ and m € V}, the syntax is defined as follows:

i=e| ¢ | $A | dler 0] | dle— 1] | MA(6)
b= = | YA | My(@) <pm | dle s V]

& == Vi(@) | €l v]
vyiu=—y | I(SAY) | V(P AY)

Syntactic Sugar. We define the following derived operators, where formulae 6
are either layer 1 or layer 2 formulae.
01 \/HQZZ:ﬂ(_\(gl /\_\92) 0, 45 05 = _\((91 @92)
01 = Oy ::= —‘(91 A —‘02) MD(¢) n= MA(—|¢)
01 < 0y ::= (91 = 92) AN (02 = 91)

where MD(¢) checks whether A is a minimal defence w.r.t. ¢, i.e., a set that
guarantees that ¢ is not reached.

3.2 Semantics of ATM

The semantics for our logic reflect objects needed to evaluate the four syntactical
layers. For the first layer of ATM, formulae are evaluated on an attack A and on
a tree T. Atomic formulae e are satisfied by A and T if the structure function in
Definition 3 returns 1 with A and e as input. Formally:

A TEe iff fr(e,A)=1

A, TE—¢ iff A, TH ¢

ATEONY A TE@¢and A, TE ¢

A, TE ¢le; — 0] iff A, TE ¢ with A’ ={a],...,al,} where
a; =0 and a} = a; for j #1i

A, TE ¢le; — 1] iff A/, TE ¢ with A’ = {d},...,a],} where
a; =1 and a} = a; for j #1i

ATEMA(G) iff de ]

With [¢] - we denote the minimal satisfaction set of attacks for ¢, i.e., the set
of minimal attacks that satisfy ¢ given T. We define [¢]r as follows: [¢], = {4 |
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A TE¢NPA C AA, T ¢}. Tt is important to note that—with semantics
defined as we did—we allow for fairly granular reasoning over ATs. In particular,
we can evaluate whether an attack compromises a particular sub-AT without
reaching the TLE. Semantics for the second and third layer require attributed
trees (see Definition 7). We can then define semantics for the second layer:

A,T|:ﬁz/) iﬁ’A,T[#z/J

ATEYAY iff A,T =4 and A, T =1/
AT EM(9) <pm i A, TEAE(4) < m

ATEYe Sy iff A T(afarla) & v]) E o

For an attack 4 and an attributed tree T to satisfy M (¢$) <k m, both the attack
A and the tree T must satisfy the inner layer 1 formula and the security metric
calculated on the attack must respect the given threshold. We let X; be the set
of layer 1 formulae and we define a ¢-security metric to attribute a value to a
layer 1 formula:

Definition 8. A ¢-security metric is a function &' : X; — V defined as follows:

@)= YV A o)

A€(o]r acA

Note that in Definition 8 some occurrences can lead to the application of the
& function to the empty set, i.e., when [¢], = @. To account for this, we
resort to 1y and 1, for V and A (see Definition 5). Assuming the case in which
a'(¢) = a(2), we fix that &' (¢) = 1y; likewise for @ and 1,. Furthermore, with
a': X; — Vi we denote a ¢-security metric whose domain and attribution are
obtained appropriately from the k-est LOAD Lj, € .£. We then let aay(a;) X, V]
be the attribution on the element a; € A via oy to an arbitrary value v, chosen
appropriately from the domain Vi of Li. Consequently, we define semantics for
the third layer. Let Valt: X3 — Vj define an evaluation function of layer three
formulae in X3:

Valt(Vi(¢)) = d™(¢)
Valr(Ele; > v]) = Va|T(a[a,€(ai)iw])<£)

Finally, we can define semantics for the fourth layer containing quantifiers:

TE- iff T =
TEIoAY) it 3A. A TE ¢and AT ¢
TEV(pAY) ffVA.ATE ¢and AT ¢
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4 Case Study: Attacking a CubeSAT

o/t // “‘~
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\

¢ Lo in
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\ 9 0 '\\\\\U‘, *'lr/‘

Fig. 5. Representation of orbiting CubeSATs.

CubeSATs are a type of nanosatellite typically used for academic and educational
purposes [46]: they are usually built in units (or “U”) of 10cm x 10cm x 10cm
and can be combined to form larger satellites. They are relatively inexpensive to
design, build, and launch compared to traditional, larger satellites and they are
a popular choice among students, universities, technology pioneers, and crowd-
sourced initiatives [32]. To give a sense of the importance of CubeSATS in our
orbital ecosystem, we provide a representation of orbiting CubeSATs as of March
2023 in Fig. 5 and an animation in [23]. A total of 153 elements are plotted on
the Earth, following data provided by the online database Celestrack [17]. The
size of each sphere is exaggerated for visual purposes—a diameter of 500km
for each element—and satellites are propagated using the Simplified General
Perturbations 4 (SGP4) orbit propagator [29]. As CubeSATs are one of the
platforms achieving more consensus in the context of the "New Space” [19,32], it
is fundamental that security risks on these systems are not overlooked. To cater
for this need, we showcase how ATM can be applied to specify useful properties
on CubeSATs.
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Fig. 6. An AT representing ways to attack a CubeSAT.

Table 2. Abbreviations for the AT in Fig. 6.

CuBESAT TLE: INFO GATHERING -+ PHISH: ! DAtA TAMPERING:

Disrupt CubeSAT Operations DCOp | Info Gathering & Phishing IGP | Tamper Data from CubeSAT TDC
DoS ATTACK: Collect Information CIn | Tamper with Data TD
Denial of Service DoS Shodan Sh Login to DB as Admin LDB
Access CubeSAT UI AUI NMAP Nm | Modify Database Entries MDE
Locate Interfaces LI Scrape Credentials SC KiLL CommMms oN CUBESAT:

Login with Phished Creds PhC Access GROUND STATION: Kill Radio on CubeSAT KR
Disrupt Service DS Access Ground DB as Admin ADA | Recon. and Weaponization RaW
Change Config. Settings ChC Gain Access GA | Create Malicious App CMA
Delete Items on CubeSAT DIC Login to DB Ground Station LDG | Exploit Ex
Steal User Credentials SuC Escalate Privilege EP Upload Malware to Server UMS
Craft Malicious Email CME | Leverage Misconfig. LM Command for Upload BV
Send as Legit User SLU Exploit Vulnerabilties EV SAT Gets & Exec. Malware CEM

In Fig.6, an AT represents three possible ways in which an attacker could
compromise the availability of a CubeSAT. The scenario and the original ATs are
taken from [22] and then slightly adapted to model a unique cohesive AT. The
TLE in Fig.6 represents the disruption of CubeSAT’s operations—the DCOp
OR-gate. This gate is detailed by three children: DoS—the imdigo TLE of a
sub-tree on the left presenting a denial of service attack—TDC—the violet
TLE of the central sub-tree detailing a data tampering attack—and KR—the
yellow TLE of the sub-tree on the right that presents an attack killing commu-
nications on the CubeSAT. For a denial of service to happen, the attacker must
perform information gathering and a successful phishing attack—detailed by the
red /GP AND-gate—and use gathered intel to access the CubeSAT UI and dis-
rupt the service. On the other hand, to perform a data tampering attack, one
must access the ground control database as admin—detailed by the greem ADA
AND-gate—then modify database entries and tamper with data. Finally, to kill
communications on the CubeSAT an attacker must perform reconnaissance and
weaponization, crafting a malicious app, and also conduct the exploit uploading
the malware on the CubeSAT via the ground station: executing this code on
the satellite would cause communications to go offline. Due to the increasing
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complexity of these three different attacks, the AT in Fig. 6 presents several sub-
trees that are shared. The red sub-tree for information gathering and phishing
is shared by the denial of service attack and by the sub-tree that models getting
access to the database on the ground station. Furthermore, this greem sub-
tree is itself shared between the tampering data attack and the more complex
malware-based communication killing attack.

Properties. ATM allows us to specify some properties on the AT in Fig.6. As
per semantics, properties 2 and 3 are evaluated w.r.t. a given attack. 1) What
are all minimal attacks to achieve denial of service? [DoS]r; 2) Are the cost
of data-tampering and info gathering and phishing respectively lower than 20
and at most 57 Cost(TDC) < 20 A Cost(IGP) < 5; 3) Are the probability of
successfully attacking the TLE and the parallel time of attack lower than 0.05
and 45 respectively? Prob(DCOp) < 0.05 A ParTime(DCOp) < 45; 4) What is
the min skill an attacker has to have to kill communications on the CubeSAT,
assuming that one needs skill of 20 to perform info gathering and phishing?
Skill(KR)[IGP — 20]; 5) Is there an attack that ensures data tampering without
exploiting vulnerabilities in the ground station system? I(TDC[EV ~ 0]); 6)
Is it necessary to leverage misconfigurations to perform a successful attack on
CubeSAT’s communications? V(KR = LM); 7) Is there an attack that ensures
successful access to the ground station DB while keeping the cost under 207
3 (Cost(ADA) < 20); 8) Do accessing the CubeSAT UI and disrupting service
always imply that successful attacks to the TLE are strictly cheaper than 35 and
strictly faster than 60 (when parallelized)? Y((AUI A DS) = (Cost(DCOp) <
35 A ParTime(DCOp) < 60)) (Table 2).

5 Model Checking Algoritms

In this section we present model checking algorithms for ATM. As noted in [47,
48], some scenarios, especially in the Boolean domain, are trivial: e.g., checking
if A, T = ¢ holds is trivial if ¢ is a formula that does not contain a MA or MD
operator. In that case, we can simply substitute the values of A in the atoms of
¢ and see if the Boolean expression evaluates to true. Non trivial scenarios arise
if ¢ contains a MA or MD operator or if ATs are not tree-shaped. These require
computations based on BDDs, introduced in Sect. 5.1: a coherent choice with
the landscape of algorithms for FT logics [47,48] and AT computation [15,42].
In this section we build upon these results and present algorithms to: 1) Obtain
BDDs from layer 1 formulae taking the structure of a given tree T into account
(Sect. 5.2); 2) a) Check whether an attack A and a tree T satisfy a layer 1
formula and b) compute all the satisfying attacks A for a given tree T and layer
1 formula (Sect. 5.3); 3) Check whether an attack A and an attributed tree T
satisfy a layer 2 formula (Sect. 5.4); 4) Compute the metric value of a given layer
3 formula (Sect. 5.5); 5) Check whether an attributed tree T satisfies a layer 4
formula (Sect. 5.6).
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5.1 Binary Decision Diagrams (BDDs)

BDDs are directed acyclic graphs (DAGs) that compactly represent Boolean
functions [2] by reducing redundancy. Depending on variable’s ordering, BDD’s
size can grow linearly in the number of variables and at worst exponentially. In
practice, BDDs are heavily used, including in AT analysis [15,42] and in their
safety counterpart, FTs [7,47,48,52|. Formally, a BDD is a rooted DAG By that
represents a Boolean function f: B™ — B over variables Vars = {z;}?_;. Each
nonleaf w has two outgoing arrows, labeled 0 and 1, and a label Lab(w) € Vars;
furthermore, each leaf has a label 0 or 1. Given a b in B", the BDD is used to
compute f(b) as follows: starting from the top, upon arriving at a node w with
Lab(w) = x;, one takes the 0-edge if b; = 0 and the 1-edge if b, = 1. The label
of the leaf one ends up in, is then equal to f(b). A function f can be represented
by multiple BDDs, but has a unique reduced ordered representative, or ROBDD
[8,13], where the x; occur in ascending order, and the BDD is reduced as much as
possible by removing irrelevant nodes and merging duplicates. This is formally
defined below; we let Low(w) (resp. High(w)) be the endpoint of w’s 0-edge
(resp. 1-edge) and let Rp be the BDD root.

Definition 9. Let Vars be a set. A (RO)BDD owver Vars is a tuple B = (W, H,
Lab,u) where (W, H) is a rooted directed acyclic graph, and Lab: W — Vars U
{0,1},u: H — {0,1} are maps such that: 1. Every nonleaf w has exactly two
outgoing edges h,h' with u(h) # u(h'), and Lab(w) € Vars; 2. Every leaf w has
Lab(w) € {0,1}. 3. Vars are equipped with a total order, By is thus defined over
a pair {Vars, <); 4. the variable of a node is of lower order than its children, that
is: Yw € Wy,. Lab(w) < Lab(Low(w)), Lab(High(w)); 5. the children of nonleaf
nodes are distinct nodes; 6. nodes are uniquely determined by their label, low

child and high child.

5.2 BDDs from ATs and Layer 1 Formulae

The first step to enable further computations is to obtain BDDs from layer
1 formulae taking the structure of a given tree T into account (for related
procedures on FT logics see [47,48]). Following, operations between BDDs
are represented by bold operands e.g., A, V. Where convenient notation-
ally, we write B? for Br(¢), i.e., the BDD B of ¢, given T. Given a set of
variables Vars = {x;}}'_; existential quantification can be defined as follows:
Jzx. B = RESTRICT(B, z,0) V RESTRICT(B, z,1) and 3Vars. B = Jx;.Jxs. ...
3z, B. Furthermore, we define a set of primed variables Vars' = {z}}" ; and let
B%[Vars A~ Vars'] be the BDD B2 in which every variable z; € Vars is renamed
to its primed 2} € Vars'. Finally we let Vars' C Vars = (N2, = z)AV: 7}
# x;). Algorithms to conduct typical BDD operations—such as RESTRICT—can
be found in [2,8].
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Definition 10. The translation function of an AT T is a function fr: E — BDD
that takes as input an element e € E.

B(e) if e € BAS
fr(e) = Ve’ech(e)fT(el> if e € IE and t(e) = OR
Aoconcefr(€) if e € IE and t(e) = AND

where B(e) is a BDD with a single node w with Low(w) = 0 and High(w) = 1.

Algorithm 1 computes B?ﬁ following semantics for layer 1 formulae:

Algorithm 1. Compute B?« from T and ¢

1: Input: AT T, formula ¢

2: Output: BDD B?

3: Method:

4: if ¢ = e then return fp(e)

5: else if ¢ = —¢’ then return = (Algorithm 1(T, ¢'))

6: else if ¢ = ¢’ A ¢” then return Algorithm 1(T, ¢')ANAlgorithm1(T, ")
7: else if ¢ = ¢'[e; — 0] then return RESTRICT(Algorithm 1(T,¢'),z;,0)
8: else if ¢ = ¢'[e; — 1] then return REsTRICT(Algorithm 1(T, ¢'), x;, 1)
9: else
10: return Algorithm 1(T,¢')A(=3Vars'.(Vars' C Vars)A
11: Algorithm 1(T, ¢')[Vars r~ Vars'])
12: end if

5.3 Model Checking Layer 1 Formulae

Is an Attack Successful w.r.t. ¢? Algorithm 2 checks whether A, T = ¢,
given an attack A and a tree T. First, the BDD Bgﬁ for ¢ given T is constructed
via Algorithm 1. Then, the algorithm walks the BDD path representing values
of BASes in A. If it ends up in the terminal 0, then A, T}~ ¢, otherwise—if the
terminal node is 1—A, T |= ¢.

Algorithm 2. Check if A, T E ¢

Input: attack A, attack tree T, formula ¢
Output: true iff A, T = ¢; false otherwise.
Method:
BY — Algorithm 1(T, ¢); w; = Ro
while w; ¢ W; do: ’
if a; € A =0 then w;, = Low(w;)
else if a; € A =1 then w; = High(w;)
end if
end while




220 S. M. Nicoletti et al.

10: if Lab(w;) = 0 then return false
11: else

12: return true

13: end if

All Successful Attacks w.r.t. ¢. Our ability to construct a BDD B;ﬁ for layer
1 formulae granted by Algorithm 1 allows us to compute all attacks A such that
A, T = ¢. Algorithm 3 performs this computation by applying the ALLSAT [2]
algorithm to B?: ALLSAT walks down the BDD and stores the paths that lead
to the terminal node 1. These paths then represent satisfying attacks for ¢ given
T. Note that Algorithm 3 can be used to compute all the minimal attacks of a
given ¢ by simply calling it on MA(¢).

5.4 Model Checking Layer 2 Formulae

Algorithm 4 presented in this
subsection checks if a layer 2
formula is satisfied, given an
attack A and an attributed
tree T. Boolean connectives
are resolved as usual via case
distinction. To check whether
A, T = Mi(¢) <k m, first the
BDD Bé,é for the inner layer 1
formula is constructed and Algorithm 2 is emplyed to assess whether A, T |= ¢.
If that is not the case, we return false. Otherwise, we compute the metric value
for the given attack following the interpretation of A taken from the k—est LOSG
Ly, of our attributed tree T. We store this value in metr_val, and we return the
result of the comparison with <; m. To handle the case in which we set evidence
for a specific atom e; in a layer 2 formula, we simply call the algorithm again
and we make sure that the attribution oy, of the corresponding a; is mapped to
the chosen value v.

Algorithm 3. Compute all 4 s.t. A, T ¢
: Input: AT T, formula ¢
Output: {A | A, T = ¢}
Method:

BY — Algorithm 1(T, ¢); w; = R
{A] A, TE ¢} — ALLSAT(w;)
return {A | A, T = ¢}

2

Algorithm 4. Check if A, T ¢

Input: attack A, attributed AT T, formula 1)
Output: true iff A, T |=; false otherwise.
Method:
if ¥ = )’ then return not Algorithm 4(A,T,’)
else if ¢y = ¢/ A ¢ then return Algorithm 4(A,T,v’) and Algorithm
A(A,T, ")
else if ¢ = My (¢) < m then
if Algorithm 2(A, T, ¢) returns true then

metr_val = A\, ax(a)
acA
return metr_val <X m
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10: else

11: return false

12: end if

13: else

14: return Algorithm 4(A, T(aok(a;) LA v]), ")
15: end if

5.5 Compute Metrics for Layer 3 Formulae

This subsection show-

cases an algorithm Algorithm 5. Compute metric for {-formula

to compute a met- 1: Input: attribu.ted ATT, formula &

. 2: Output: metric value for £.
ric value for a spec-

ified £-f la. If 3: Method:
ified &-formula. IE &y 5e ey () then
equals  Vi(¢), one 5: (W, H, Lab, u) — Algorithm 1(T, ¢)
approach would be . Wiode — W
to directly use the 7. while Wioqo # @ do
formula of Definition  §8: Take w € Wiodo without children in Wiodo
8. However, directly 9: if Lab(w) = 0 then v(w) « 1y
finding all minimal 10: else if Lab(w) = 1 then v(w) « 1,
attacks on ¢ is com- 11 else '
putationally expen- 12: v(.w)Hv(Low(w))V(v(Hzgh(w))Aa(Lab(w)))
sive [42]. Instead, we 13: end if

: 14: Wtodo — Wtodo \ {U}}
calculate metrics by 15: end while return v(R )
applying the BDD- ‘ W H, Lab,u
16: else

based method from .
[42]. This method 17: return Algorithm 5(T (a[o(as) — v]), &)

exploits the fact that 18 end if

paths from the root

to 1 in a BDD encode succesful attacks, and 1-labeled edges on such a path
represent the BAS of these attacks. Assigning weight a(Lab(w)) to an edge
(w, High(w)), the metric value can then be computed by a variant of the short-
est path algorithm for DAGs. Note that the method in [42] is defined only for

¢ = e, but the result readily generalizes. If £ = ¢'[e; A v], the algorithm is called
again on & and the attribution a4 on the corresponding a; is set to v.

5.6 Model Checking Layer 4 Formulae

We present an algorithm to check whether an attributed tree T satisfies a layer
4 formula. The non-trivial cases of Algorithm 6 check whether T = 3(¢p A1)) and
T = V(¢AY). In the former case, for each attack A4; in the set of satisfying attacks
for o — {A| A, T |E ¢} «— Algorithm 3(T, »)—we check whether A;, T = 4. If
we find a fitting A;, we return it alongside true. Otherwise, we return false. In
the latter case, for each A; in the set of all attacks for T o717 we check whether
either A;, T £ ¢ or A;, T £ ¢. If we find a counterexample A;, we return it
alongside false. Otherwise, we return true.
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Algorithm 6. Check if T =«

1: Input: set of all attacks /7, attributed ATT, formula

2: Output: true iff T |= 7; false otherwise; (counter)example 4;.

3: Method:

4: if ¥ = =/ then return not Algorithm6(A,T,~’)

5: else if v = 3(¢ A ¢)) then

6: for A; € {A| A, T|= ¢} — Algorithm 3(T, ¢) do

7 if Algorithm4(A;, T,4) returns true then return true, A;
8: end if

9: end for

10: return false

11: else if v = V(¢ A ¢)) then
12: for A; € /1 do

13: if Algorithm 2(A;,T,¢) returns false V Algorithm 4(A;,T 1)) returns false then
14: return false, A;

15: end if

16: end for

17: return true

18: end if

6 Conclusions

We presented ATM, a logic for general metrics on ATs that enables the con-
struction of complex queries and insightful what-if scenarios. We showcased its
usefulness with an application of ATM to the case study of a CubeSAT. Spec-
ified properties can then be checked and metrics computed via model checking
algorithms that we presented. Our work opens several relevant perspectives for
future research. First, it would be interesting to extend ATM to consider timed
behaviours: this would allow to further extend quantitative analysis capabilities.
This step could be achieved by extending ATM to dynamic AT's that consider the
sequential nature of attack steps. To handle dynamic gates in dynamic ATs it
would be very natural to have a logic that can express temporal properties, mov-
ing more in the direction of LTL [50] or CTL [18] or their timed variants TLTL
[51] and TCTL [1]. Another notable extension of ATM could express and cal-
culate Pareto fronts between metrics [42]. Moreover, it is foreseeable to extend
the proposed framework to safety-security variants of ATs and FTs, e.g., to
attack-fault trees (AFTs) [40], and to graphs that consider more general safety-
security risks, in the sense of probability x impact [24]. Lastly, implementing this
logic could further propel usability of ATM by providing hands-on feedback from
domain experts acquainted with threat modelling and vulnerability analysis.

Acknowledgements. The authors would like to thank Dr. Juan A. Fraire(0000-0001-
9816-6989) (Inria, CONICET and Saarland University) for the insightful discussions
about routing in space and for propagating and visualizing orbiting CubeSATs, result-
ing in Fig. 5 and in the animation in [23].
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