
Ownership-Based Owicki-Gries Reasoning
Mikhail Semenyuk
Brijesh Dongol

m.semenyuk@surrey.ac.uk
b.dongol@surrey.ac.uk
University of Surrey
Guildford, Surrey, UK

Abstract
This paper explores the use of ownership as a key auxil-
iary variable within Owicki-Gries framework. We explore
this idea in the context of a ring buffer, developed by Ama-
zon, which is a partial library that only provides methods
for reserving (acquiring) and releasing addresses within the
buffer. A client is required to implement additional function-
ality (including an additional shared queue) to enable full
synchronisation between a writer and a reader. We verify
correctness of the Amazon ring buffer (ARB) and show that
the ARB satisfies both safety and progress. Our proofs are
fully mechanised within the Isabelle/HOL proof assistant.

Keywords: Owicki-Gries, ownership, ring buffer, verifica-
tion, safety, progress
ACM Reference Format:
Mikhail Semenyuk and Brijesh Dongol. 2023. Ownership-Based
Owicki-Gries Reasoning. In The 38th ACM/SIGAPP Symposium on
Applied Computing (SAC ’23), March 27-31, 2023, Tallinn, Estonia.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3555776.
3577636

1 Introduction
Verification of concurrent programs is difficult when re-
sources have to be shared betweenmultiple threads. A simple
system with a single writer and reader pair should execute
without interference, provided that an appropriate synchro-
nisation mechanism, e.g., queuing or access control is in-
troduced. However, naive models of such systems are often
inadequate, and may require extensive fine-tuning before
verification is successful.

The main mechanism we use to address this issue is a sys-
tematic auxiliary encoding of ownership within an Owicki-
Gries framework [24]. We draw analogy here with the fact

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SAC ’23, March 27-31, 2023, Tallinn, Estonia
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9517-5/23/03. . . $15.00
https://doi.org/10.1145/3555776.3577636

that standard Owicki-Gries style verification often utilises
program counters as auxiliary variables, which are already
used systematically, relieving a verifier from spending un-
necessary time modelling and reasoning about control flow.
At a high level, ownership enables one to reason abstractly
over a group of components accessing a shared resource as
opposed to individual components. For example, by only
granting read and write capabilities to a resource when it
is owned, one can assume mutual exclusivity (from other
threads), during periods of ownership. Detailed considera-
tion of inter-thread interaction only needs to be addressed
during periods of ownership transfer.
We aim to demonstrate how use of ownership can aid

verification of an even less rigid program implementation -
a partial library. Unlike complete implementations, partial
libraries can often require more abstraction with respect
to input and output variables (before attempting to define
the invariants), making the task of verification relatively
harder. An example of this is our motivating example [1] (see
Section 3), which is a ring buffer developed at Amazon. The
library only provides methods for acquiring and releasing
addresses within a shared buffer. A client writer is required
to write to the acquired addresses, then transfer the acquired
addresses to the reader using an external mechanism (in
our example we use a queue). A client reader is required
to obtain addresses from this external mechanism, read the
data within these addresses, then release the addresses of
the buffer. On the one hand, this provides flexibility since
the exact implementation of the external mechanism is left
to the client (and may change between different clients).
On the other hand, there is more work left to the client.
In this paper, we focus on demonstrating how adopting an
ownership-based approach can aid formal verification of
safety and progress properties of such programs.

Preliminary ideas for encoding a notion of resources in an
Owicki-Gries system were in fact proposed by Owicki [23],
but without detailed proofs. The idea of using ownership to
track resources has since been extensively used in object-
oriented language semantics [2–4, 10–12, 16, 20, 26] and
separation logic [5, 6, 8, 9, 15, 17, 21, 22, 25, 29–32] (a review
of these works is provided in Section 6). We ask: Is there a
way to utilise the idea of ownership and its transfer using a
more direct, global approach, as suggested by Owicki-Gries,

https://orcid.org/0000-0002-5753-5140
https://orcid.org/0000-0003-0446-3507
https://doi.org/10.1145/3555776.3577636
https://doi.org/10.1145/3555776.3577636
https://doi.org/10.1145/3555776.3577636


SAC ’23, March 27-31, 2023, Tallinn, Estonia

to make both informal and formal arguments shorter while
maintaining strong invariants?
Contributions. This paper contains three contributions.

1. A technique for encoding ownership of shared re-
sources within an Owicki-Gries framework.

2. Application of this framework to verifying safety and
progress properties of a partial implementation. We
show that ownership can be readily extended to cover
any remaining components needed to complete a par-
tial implementation, using a real-world algorithm de-
veloped at Amazon.

3. Mechanisation of the proofs of both safety and progress
using Isabelle/HOL [27].

Overview. In Section 2 we introduce and present a technique
for encoding ownership and ownership transfer within an
Owicki-Gries framework. In Section 3, we present our run-
ning example, the Amazon Ring Buffer, and encode Owner-
ship within the model in Section 4. In Section 5, we present
our proofs of safety and progress, using the ownership mech-
anism and describe our mechanisation effort. Related work,
which includes a brief survey of ownership in programming
languages and verification, is presented in Section 6. Conclu-
sions and future work is given in Section 7.

2 Overview and Initialisation of Ownership
The Owicki and Gries framework [24] extends Hoare logic to
cover shared variable concurrent programs. To achieve this,
they extend reasoning over preconditions (𝑝𝑟𝑒) and postcon-
ditions (𝑝𝑜𝑠𝑡 ) with a notion of interference freedom, which is
a property demonstrated by a program when the steps taken
by either of its processes do not violate the preconditions
of the other processes. Owicki-Gries’ logic is known to be
incomplete without auxiliary variables, which are variables
that record the history of a program’s execution. Typically,
auxiliary variables are used to track program flow (program
counters) as well as monitoring accesses to shared variables
(which we refer to as shared resources) by potentially con-
flicting processes.
We wish to systematise the latter with the idea of own-

ership and ownership transfer. Ownership is an auxiliary
variable, which represents and can be used to track access
rights to a resource. These access rights can vary from read-
only to read and write, depending on the needs of a verifier.
For example, a thread having ownership over an address
can modify and/or read the contents, while being the only
thread allowed to perform these operations. Ownership trans-
fer refers to changing the value of the ownership variable,
e.g. revoking access rights from one owner (represented by
the old ownership value) and granting them to another.

Our key observation in this paper is that careful manage-
ment of ownership transfer enables verification of interfer-
ence freedom. A thread must not be allowed to alter the con-
tents of a shared resource, when that resource is currently in

{own𝑎 = None ∧ 𝑓 = 0 ∧ 𝑑 = 0 ∧ 𝑎 = None ∧ 𝑟 = 0}
𝑇1 𝑇2{

own𝑎 = None ∧ 𝑓 = 0 ∧
𝑑 = 0 ∧ 𝑎 = None

}
int a ; own(a) := 𝑇1{
own𝑎 = 𝑇1 ∧ 𝑓 = 0 ∧
𝑑 = 0 ∧ 𝑎 ≠ None

}
a := 42 ;{
own𝑎 = 𝑇1 ∧ 𝑓 = 0 ∧
𝑑 = 0 ∧ 𝑎 = 42

}
f := 1 ; own(a) := None{
𝑇𝑟𝑢𝑒

}

{
𝑄
}

d := f{
𝑄
}

until d = 1
(+ own(a) := 𝑇2){
own𝑎 = 𝑇2 ∧ 𝑎 = 42

}
r := a ;{
𝑟 = 42

}
{𝑟 = 42}

Figure 1. Message passing with ownership

the process of being read or written to by another thread. To
allow for safe (interference-free) behaviour, threads have to
acquire access rights to a resource, before they can perform
reading or modifying operations to it. Changing ownership
over a resource from one thread directly to another can lead
to contradictions. Instead, an intermediate, transient owners,
must be used to avoid direct thread-to-thread ownership
transfer. Transient owners are an auxiliary type of owner-
ship value, which facilitate safe ownership transfer. A thread
should let go of ownership by changing the corresponding
ownership value toNone or any other transient owner, before
another thread can take ownership, changing the ownership
value to itself.

We motivate our ideas with a simple concurrent system
of two threads in Fig. 1, where 𝑇1 and 𝑇2 are two threads,
accessing a shared resource a, and:

𝑄 ≡ (𝑓 = 1 −→ own𝑎 ≠ 𝑇1) ∧ (𝑓 = 0 −→ 𝑑 = 0)
∧ (own𝑎 ≠ 𝑇1 ∧ 𝑎 ≠ None −→ 𝑎 = 42)

Thread 𝑇1 updates a, then notifies 𝑇2 that it has finished
by updating the flag f to 1. Thread 𝑇2 on the other hand
waits for the flag to be set before proceeding to read a. The
desired safety property is that 𝑟 = 42 after both threads have
terminated (as shown in the example).
From the point of view of ownership, while 𝑇1 is in the

process of modifying variable a, we must maintain that it is
the only thread with read and write read-write access to the
variable. Similarly, while 𝑇2 performs r:=a, it should be the
only thread with R+W access. We introduce the ownership
variable own𝑎 to track these access rights to the shared re-
source a. This variable is tracked via pre and post assertions,
coloured blue in the example.

own𝑎 = 𝑦 , where 𝑦 ∈ {𝑇1,𝑇2,None}
To enable ownership transfer we introduce the auxiliary

function own(a):=y (coloured red in the example):

own(a):=y, where 𝑦 ∈ {𝑇1,𝑇2,None}



Ownership-Based Owicki-Gries Reasoning SAC ’23, March 27-31, 2023, Tallinn, Estonia

Thread 𝑇1 initialises a, acquiring ownership over the re-
source from None (a transient owner).𝑇1 “lets go” of its own-
ership over the resource when performing the assignment
operation of flag f, changing the value of the ownership
variable to None. Thread 𝑇2 takes ownership of a once it
is satisfied that d = 1, at which point it can proceed to
safely read the resource. We must observe, that before 𝑇2
performs own(a):= 𝑇2, its precondition demands own𝑎 ≠ 𝑇1.
In order to restrict this operation to be performed during the
state transition of leaving the until loop only, we resort to
decorating the ownership transfer operation with a “+”. We
describe other types of ownership and ownership transfer
in Sections 4.1 and 4.2, respectively.

Observation of the fact, that hand-over of access rights to
a during execution occurs only through transient owners,
can help convince the verifier of interference freedom from
a high-level analysis. The proof outline is given by pre and
post assertions within the example, coloured blue.

3 Amazon’s Ring Buffer
Partial libraries are often used to enable a modular ap-

proach to programming. Verification of these involves ab-
straction of types of input/output variables, ensuring cor-
rect execution (safety). In a concurrent setting, interference-
freedom needs to be defined and verified alongside. Because
of the need for this abstraction (rather than to be given con-
crete input/output variables) the verification process can
be significantly slowed down. An example of such libraries
include writer/reader methods with an external synchroni-
sation method, such as a queue. The input/output spaces for
both of the methods could be loosely defined, yet be intu-
itively trivial to demonstrate correct execution procedures
from a high-level approach.
We motivate our ideas by considering a partial imple-

mentation of a ring buffer [1] developed at Amazon, whose
pseudocode is given in Fig. 3. The full implementation must
enable transfer of data (in a FIFO manner) from a writer to a
reader. However, the library itself only defines the following
methods:

• acquire, which is used to reserve a range of addresses
in the buffer, and
• release, which is used to return reserved addresses
back to the buffer.

The expectation is that the client’s writer thread calls
acquire to reserve addresses, then writes the data within the
acquired addresses of the buffer. It then informs the reader
of the bytes that should be read via a secondary shared FIFO
queue whose precise implementation is left undefined. The
client’s reader thread must dequeue address ranges from the
queue (one at a time and in FIFO order). For each address
range that is dequeued, it must read the associated addresses
of the buffer, then execute the release operation.

1 // Most general writer

2 i := 0;

3 while i < n do
4 val := Data(i);

5 assert size (𝑣𝑎𝑙 ) ≤ 𝑁
6 m.reset();

7 x := B.acquire (\size(val)) ;

8 assert ∀𝑏 ∈ bytes (𝑥 ) . own𝐵 (𝑏 ) =𝑊 ∧ own𝐷 (i) =𝑊
∧ (ℎ𝑊 = 𝑡𝑊 ←→ own𝑇 =𝑊 )

9 if (x != OOM) then
10 B.write(x, val); transfer_ownD(i,B);

data_index(x) := i

11 assert ∀𝑏 ∈ bytes (𝑥 ) . own𝐵 (𝑏 ) =𝑊 ∧ own𝐷 (i) = 𝐵
∧ (ℎ𝑊 = 𝑡𝑊 ←→ own𝑇 =𝑊 )

12 Q.enqueue(x); transfer_ownB(i,W,Q);

pass_ownT(W,Q)

13 assert ∀𝑏 ∈ bytes (𝑥 ) . own𝐵 (𝑏 ) = 𝑄 ∧ own𝐷 (i) = 𝐵
∧ own𝑇 ≠𝑊

14 i+=1

15 else m.backoff (); goto 6;

16
17 // Most general reader

18 j := 0;

19 while true do
20 if !Q.empty() then
21 assert (∀𝑏 ∈ bytes (𝑥 ) . own𝐵 (𝑏 ) = 𝑄 ) ∧ own𝐷 (j) = 𝐵

∧ own𝑇 = 𝑄

22 x := Q.dequeue (); take_ownB(bytes(head(Q)),R);
pass_ownT(Q,R)

23 assert (∀𝑏 ∈ bytes (𝑥 ) . own𝐵 (𝑏 ) = 𝑅) ∧ own𝐷 (j) = 𝐵
∧ own𝑇 = 𝑅

24 val = B.read(x); transfer_ownD(data_index(x), R)

25 assert (∀𝑏 ∈ bytes (𝑥 ) . own𝐵 (𝑏 ) = 𝑅) ∧ own𝐷 (j) = 𝑅
∧ own𝑇 = 𝑅

26 B.release(x);

27 assert (∀𝑏 ∈ bytes (𝑥 ) . own𝐵 (𝑏 ) = 𝐵) ∧ own𝐷 (j) = 𝑅
∧ own𝑇 ≠ 𝑅

28 j+=1;

Figure 2. Most general ring buffer client; statements in red
and green are auxiliary statements used to model ownership

The most general client that uses the ring buffer is given
in Fig. 2, where

bytes(𝑥) = [fst (𝑥), fst (𝑥) + snd (𝑥)]
data_index : 𝑛𝑎𝑡 × 𝑛𝑎𝑡 → 𝑛𝑎𝑡

We assume that the writer𝑊 transfers information stored
in a list Data to the reader via the shared ring buffer 𝐵, using
a shared queue 𝑄 . We also assume a timer object m that is
reset at line 6, and performs a backoff at line 10, in which
the object is used to guarantee progress.
The writer continually removes the elements from the

Data list and transfers them to the reader 𝑅 via the shared
buffer. We assert that each element of Data to be transferred
has size at most 𝑁 = B.size() (so that it fits within the
buffer). A writer attempts to acquire the bytes at line 7, which



SAC ’23, March 27-31, 2023, Tallinn, Estonia

1 // code for buffer B of size N

2 def init(x: nat)

3 N, H, T := x, 0, 0

4
5 def acquire(x: nat)

6 tW := T ; hW := H; //𝐴1
7 if (tW == hW) && (x <= N) then

(+ pass_ownT(Q,W)) //𝐴2
8 T, H, offset := 0, x, 0;

set_ownB([0,x],W) //𝐴3
9 elif (tW > hW) && (x < = tW - hW -1) then
10 H,offset := hW + x,hW;

set_ownB([hW,hW+x],W) //𝐴4
11 elif (tW < hW) then
12 if (x < = N - hW) then //𝐴5
13 H,offset := hW + x,hW;

set_ownB([0,x],W) //𝐴6
14 elif (x < tW) then
15 H, offset := x, 0; set_ownB([hW,N],D);

set_ownB([0,x],W) //𝐴7
16 else return OOM //𝐴8
17 else return OOM //𝐴8
18 return (offset , H)

19
20 def release(x: nat × nat)

21 T := x.fst() + x.snd();

22 transfer_ownB(R,B); pass_ownT(R,Q) //𝑅1

Figure 3. Amazon Ring Buffer operations. Statements in red
and green are auxiliary statements used to model ownership;
comments 𝐴1-𝐴8 and 𝑅1 are control labels used in the proof
of progress

either succeeds (i.e., there is enough free space in the buffer
to transfer val), or the acquire returns OOM to indicate that it
is currently out of memory. Since we have already checked
that size(𝑣𝑎𝑙) ≤ 𝑁 , i.e., val does indeed fit in the buffer, the
writer executes m.backoff(), which causes it to wait for the
addresses in the buffer to be released by the reader, before
trying again.
The acquire and release operations of the buffer are

given in Fig. 3. The buffer includes shared variables H and
T, where H either points to the first free space in the buffer
or at index N (see third case in Fig. 4), and T points to the
first element that should be dequeued. The operations are
designed so that H = T iff the queue is empty.

The acquire operation may succeed via one of four con-
figurations (see Fig. 4), corresponding to lines 8, 10, 13 and
15 of the acquire operation in Fig. 3. The first, describes an
acquire over an empty buffer (i.e., via line 8). This resets T
to 0 and reserves the addresses at the start of the buffer. The
second case (via line 10)1 describes an acquire operation
when H has wrapped around (i.e., H < T). In this case, the
1Assuming 𝑅 has not moved T, after𝑊 performed the steps, as described
by lines 6, 7 and 12 in Fig. 3.

0 1 2 3 4 5 6 7

H
T

0 1 2 3 4 5 6 7
X X X X
T H

acquire(4)

via line 8

0 1 2 3 4 5 6 7
X X X X X

H T

0 1 2 3 4 5 6 7
X X X X X X X

H T

acquire(2)

via line 10

0 1 2 3 4 5 6 7
X X X X
T H

0 1 2 3 4 5 6 7
X X X X X
T H

acquire(1)

via line 13

0 1 2 3 4 5 6 7
X X X X
T H

0 1 2 3 4 5 6 7
X X X X X X D

H T

acquire(2)

via line 15

0 1 2 3 4 5 6 7
X X X X
T H

0 1 2 3 4 5 6 7
X X
T H

release((3, 2))

0 1 2 3 4 5 6 7
X X X D D

H T

0 1 2 3 4 5 6 7
X
T H

release((0, 2))

Figure 4. Ring buffer configurations before and after
acquire and release operations, where “X” represents
reserved addresses that may be used and “D” represents
dummy reserved addresses that must not be used (assuming
H = hW and T = tW)

acquire may only reserve T - H −1 addresses; otherwise H
would be equal to tW, making the case indistinguishable from
an empty buffer. The third case (via line 13)1 represents an
acquire operation where H has not wrapped around (i.e.,
T < H) and there is enough space at the end of the buffer.
In this example, we also depict a phenomena where all of
the addresses after T are reserved, and hence H has value N,
which is an index that is outside the buffer. The fourth case
(via line 15)1 is one in which H has not wrapped around in
the pre-state, but does wrap around in the post state since
there are enough free addresses before T, but not after H.
When H wraps around, it effectively “uses up” the addresses
between H in the pre-state and N-1, but does not make these
addresses2 available for use by the writer.
The release operation takes as input a pair containing

the offset address and the number of addresses to be released;
the operation simply moves T to the new index. which is the
sum of the two numbers (see second last case in Fig. 4). The
final case depicts a release operation that “unwraps” the
variables H and T.

There are two standard properties that are of interest for
the most general client Fig. 2 that uses the buffer in Fig. 4.

Safety Data is read by the reader in the order written.
Progress All data that can be written is eventually read.

2These addresses will be referred to as “dummy reservations”



Ownership-Based Owicki-Gries Reasoning SAC ’23, March 27-31, 2023, Tallinn, Estonia

X X X
T H

Buffer

Queue Reader

Writer
Q.enqueue(x)
𝑜𝑤𝑛𝐵 (𝑥) := 𝑄
𝑜𝑤𝑛𝐷 (𝑖) := 𝐵

B.release(x)
𝑜𝑤𝑛𝐵 (𝑥) := 𝐵 i = B.read(x)

x = B.acquire()
𝑜𝑤𝑛𝐵 (𝑥) :=𝑊

B.write(x,i)

x = Q.dequeue()
𝑜𝑤𝑛𝐵 (𝑥) := 𝑅

𝑜𝑤𝑛𝐷 (𝑖) := 𝑅

Figure 5. Ownership transfer in the ring buffer

The main challenge in the verification is the fact that safety
and progress are achieved via separate interacting mecha-
nisms: an arbitrarily sized buffer, whose addresses are re-
served and written to in two different steps, and a queue,
which is used to transfer reserved addresses from the writer
to the reader. In Section 4, we develop a proof strategy based
on ownership that is capable of proving both the safety and
progress properties.

4 Augmenting Ownership Information
In this section we describe verification of the Amazon ring
buffer using ownership. The essence of our proof is the obser-
vation that both the safety and progress properties described
in Section 3 refer to the transfer of information from the
writer to the reader. To this end, we think of the writer as
initially owning a list of data to be transferred and for this
data to be owned by the reader at the end of the protocol.
The data must be read by the reader in order.

4.1 Ownership in ARB
An overview of ownership scheme and transfer mechanisms
is given in Fig. 5. We assume a sequence Data of the data to
be transferred from the writer to the reader, and an array
Buffer for the ring buffer. The writer and reader are active
entities that make use of the queue and the buffer as passive
entities. With𝑊 we denote the writer, with 𝑅 the reader,
with 𝐵 the ring buffer and with 𝑄 the queue:

own𝐷 : {0, . . . , size(Data) − 1} −→ {𝑊, 𝐵, 𝑅}
own𝐵 : {0, . . . , size(Buffer) − 1} −→ {𝑊,𝑅, 𝐵,𝑄, 𝐷}
own𝑇 : {𝑊,𝑅,𝑄}

where own𝐷 is a function used to track ownership of the
data in Data that is being transferred, and own𝐵 is a function
used to track ownership of the buffer addresses. The variable
own𝑇 is used to track ownership of the tail pointer.
Initially, own𝐷 (𝑖) = 𝑊 for each 0 ≤ 𝑖 < size(Data), sig-

nifying that the data is owned by the writer. For safety, we
require that own𝐷 (𝑖) = 𝑅 −→ own𝐷 (𝑖 − 1) = 𝑅 for each 𝑖 , to
ensure that that data is transferred to the reader in order.
For progress, we require that on termination, own𝐷 (𝑖) = 𝑅

for each 0 ≤ 𝑖 < size(Data). Ownership of the data is trans-
ferred via the buffer. We model this by setting own𝐷 (𝑖) to 𝐵,
which occurs when the writer issues B.write(x).

We also use ownership to track access rights of the buffer’s
addresses. Initially, own𝐵 (𝑖) = 𝐵 for each 0 ≤ 𝑖 < size(Buffer)
address. Once the writer acquires a span of addresses 𝑥 , these
addresses are effectively owned by𝑊 . The writer then trans-
fers ownership of the addresses to the queue 𝑄 , which acts
as a transient owner. The reader acquires addresses from
𝑄 , and after it has completed processing of the informa-
tion contained within them, ownership of the addresses is
transferred back to the buffer 𝐵 (transient owner), during
B.release(x).
We make use of own𝑇 to help visualising interference in

the tail pointer assignment. The writer𝑊 takes ownership
of the tail pointer from𝑄 , whenever it performs a reset Fig. 3,
line 6, and returns it to 𝑄 once it has successfully enqueued.
The reader takes own𝑇 := 𝑅 when performing Q.dequeue(),
and returns it once it has finished updating the value of T
Fig. 3, line 21.

4.2 Tracking Ownership Transfer
Our proof involves two types of ownership transfer for the
bytes within the buffer. The first type sets ownership to a
given set block of addresses [𝑢, 𝑣] to a given entity 𝑘 :

set_ownB( [𝑢, 𝑣], 𝑘) =
own𝐵 := (_ 𝑗 . if 𝑢 ≤ 𝑗 < 𝑣 then 𝑘 else own𝐵 ( 𝑗))

This function is introduced in the ring buffer operations
Fig. 3 at lines 8, 10, 13 and 15. This abstraction of set_ownB
does not handle setting of ownership in the “wrap-around”
case, and a separate call must be performed, Fig. 3, line 15,
to handle “dummy reservations” Fig. 4, case 4.

Example 4.1. In the augmented program, in Fig. 4 (case
2),𝑊 performs set_ownB([2,4],W) (since it moves H from
index 2 to 4), resulting in a post state satisfying the prop-
erty ∀𝑖 ∈ {2, 3}. own𝐵 (𝑖) = 𝑊 . In the wrap-around case
Fig. 4 (case 4),𝑊 in addition to set_ownB([0,2],W) per-
forms set_ownB([7,8],D) (since it moves H from index 7
to 2), resulting in a post state satisfying:

own𝐵 (7) = 𝐷 ∧ (∀𝑖 ∈ {0, 1}. own𝐵 (𝑖) =𝑊 )

The second type of ownership transfer transfers all 𝑚-
owned buffer addresses to entity 𝑘 :

transfer_ownB(𝑚,𝑘) ≡
own𝐵 := (_ 𝑗 . if own𝐵 ( 𝑗) =𝑚 then 𝑘 else own𝐵 ( 𝑗))

This function is introduced in the client program Fig. 2 at
line 12 and Fig. 3 at line 21.

Example 4.2. To see an application of transfer_ownB(W,Q),
consider Fig. 4 (case 4). After the writer has successfully per-
formed B.acquire(2), we have ∀𝑖 ∈ {0, 1, 7}. own𝐵 (𝑖) =𝑊 .
The next step for𝑊 is to execute Q.enqueue(0,2), which



SAC ’23, March 27-31, 2023, Tallinn, Estonia

by the augmentation described above, also executes own-
ership transfer transfer_ownB(W,Q). This transfers all𝑊 -
owned buffer addresses to 𝑄 , resulting in a state satisfying
∀𝑖 ∈ {0, 1, 7}. own𝐵 (𝑖) = 𝑄 .

Tracking data ownership transfer. Data is transferred
from the writer to the reader one at a time via the buffer
(see Fig. 5). As such, we directly assign to the variable own𝐷
during ownership transfer, i.e., lines 10 and 24 of Fig. 2.

transfer_ownD(𝑖, 𝑘) ≡
own𝐷 := (_ 𝑗 . if 𝑗 = 𝑖 then 𝑘 else own𝐷 ( 𝑗))

Tracking tail pointer ownership transfer. Ownership
over the tail pointer T is transferred via transfer_ownT(m,k):

transfer_ownT(𝑚,𝑘) ≡
own𝑇 := (if own𝑇 =𝑚 then 𝑘 else own𝑇 )

Example 4.3. To see an application of transfer_ownT(_,_),
consider Fig. 4 (case 1). Since both head and tail pointers
are equal during the B.acquire(2) call,𝑊 would perform
transfer_ownT(Q,W) as illustrated in Fig. 2 (line 7). This
would result in own𝑇 = 𝑊 , and “allow”𝑊 to perform the
subsequent assignment of tail pointer to the value 0 (line 8).

5 Verification
We now describe how ownership can be used to encode the
required properties and verify correctness of the ARB. In Sec-
tion 5.1, we describe an encoding of all possible scenarios for
ownership of the bytes in the ring buffer. Then in Sections
5.2 and 5.3, we encode and verify safety and progress, respec-
tively. We discuss our mechanisation effort in Section 5.4.

5.1 Ownership Scenarios
One of the main challenges to verification of systems with
elements of arbitrary size is defining an appropriate state
space to reason about state transitions in the context of
Owicki-Gries pre and post conditions. Monitoring ownership
transfer allows reasoning about a finite number of partitions
of such elements, significantly reducing the complexity of
limiting the state space. The Amazon ring buffer boasts an
arbitrarily sized means of information transfer in the form
of a buffer. Moreover, this partial library had to be verified
against an arbitrarily sized “input” set of Data. As such, it
is a good candidate for demonstrating verification using
ownership transfer in action.

One of the properties we needed to verify was whether the
means of information transfer, the buffer, could see illegal
memory access. This ranged from overwriting of written
Data, which had not yet been read, to retrieval of Data, to
which the reader had not been granted access via the queuing
mechanism.

Transfer of ownership within this verification of the Ama-
zon ring buffer occurs as a result of actions by𝑊 and 𝑅.
Guaranteeing interference freedom between𝑊 and 𝑅, from

. . . . . . . . . . . . . . .

0 𝑎 𝑏 𝑐 𝑑
T H

B R Q W B

. . . . . . . . . . . . . . . . . . . . .

0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓
H T

R Q W B R Q D

Figure 6. case_1 (top) and case_2 (bottom)

the point of view of the Buffer addresses, entails demonstrat-
ing that ownership transfer over the addresses follows Fig. 5.
The writer, once it has performed Q.enqueue(x) should
not be able to B.acquire() addresses, unless they have
been released via B.release(x) (or have not been yet used
from the start). Similarly, the reader, once it has performed
Q.dequeue() should only be able to B.read(x) the addresses
it has dequeued.

In a linear, “non-ring”, buffer simply utilising the pointers
head and tail to describe the possible scenarios with respect
to Data (written, queued or read) would be enough to ensure
the desired outcome. However, since there is no restriction of
𝑇 ≤ 𝐻 , we used ownership to separate the cases into 𝑐𝑎𝑠𝑒_1
and 𝑐𝑎𝑠𝑒_2:

𝑐𝑎𝑠𝑒_1 : 𝑇 ≤ 𝐻
𝑐𝑎𝑠𝑒_2 : 𝐻 < 𝑇

both of which can be described by Fig. 6. The code is provided
within the mechanised proof [27]. The figures represent all
possible scenarios for the ownership of Buffer addresses.
We use letters 𝑎, 𝑏, 𝑐 , 𝑑 , 𝑒 and 𝑓 to denote addresses which
serve as boundaries, distinguishing addresses owned by en-
tities across the whole buffer. We use these cases to describe
the buffer, depending on which steps the threads are about
to execute or have executed. Addresses coloured green are
currently being read from, and are owned by the reader. Simi-
larly, red describes addresses owned by the writer. Addresses
coloured yellow and blue are owned by the transient own-
ers, 𝑄 and 𝐵. Grey is reserved for the dummy reservations -
addresses reserved, but not written to.

Aside from a few further restrictions (with respect to other
auxiliary and non-auxiliary variables), the biggest constraint
on the diagrams is that the following relationship must be
preserved: 0 ≤ 𝑎 ≤ 𝑏 ≤ . . . . Looking specifically at 𝑐𝑎𝑠𝑒_2,
an example further restriction could be that if𝑎 > 0, implying
that 𝑅 has ownership over some Buffer addresses between 0
and 𝑎, then 𝑑 = 𝑒 , implying that ∀𝑖 . 𝑖 ≥ 𝑎 −→ own𝐵 (𝑖) ≠ 𝑅.
Performing ownership transfer, as shown in Fig. 5, must
ensure that the state of the buffer can be described by the
two cases in the post state.



Ownership-Based Owicki-Gries Reasoning SAC ’23, March 27-31, 2023, Tallinn, Estonia

𝑊 𝑊 𝑊 ... 𝑊 𝑊 𝑊 𝑊

count𝑅 , count𝑊

Initial state for own𝐷

𝑅 𝑅 𝐵 ... 𝐵 𝑊 𝑊 𝑊

count𝑅 count𝑊

own𝐷 during processing

𝑅 𝑅 𝑅 ... 𝑅 𝑅 𝑅 𝑅

count𝑅 , count𝑊

Final state of own𝐷

Figure 7. Transitions showing ownership of Data

5.2 Verifying Safety
The other main property that our system must satisfy is the
correct (in order) transfer of ownership of data from the
writer to the reader. As we have seen in Fig. 5, the system
uses a buffer as an endpoint to facilitate ownership transfer.
This property our system must satisfy is therefore cap-

tured by the following simple invariant, recalling that count𝑅
tracks the index of the data to be read and count𝑊 tracks the
index of the Data to be written.
Safety = ∀𝑖 ∈ {0, . . . , size(Data) − 1}.

if 𝑖 < count𝑅 then own𝐷 (𝑖) = 𝑅
elseif count𝑅 ≤ 𝑖 < count𝑊 then own𝐷 (𝑖) = 𝐵
else own𝐷 (𝑖) =𝑊

Since count𝑅 and count𝑊 are both initially 0, we have that
initially own𝐷 (𝑖) =𝑊 for all 𝑖 ∈ {0, . . . , size(Data) − 1}. The
writer sets own𝐷 (count𝑊 ) to 𝐵 and increments count𝑊 by
1, once it performs B.write(x,i) call, whereas, the reader
sets own𝐷 (count𝑅) to 𝑅 and increments count𝑅 by 1, when
it performs the B.read(x) call. This process is depicted in
Fig. 7. This ensures that data is transferred from the writer
to the reader in order. In particular, the external queue that
is used for synchronisation of addresses (Fig. 2) must guaran-
tee FIFO transfer of data. Note that a necessary supporting
invariant:

count𝑅 ≤ count𝑊 ≤ size(Data) (1)
must be introduced, in order to ensure 𝑅 would not read data
ahead of its successful Q.enqueue() by𝑊 . To synchronise
this with the state of the queue Q, we introduce two further
auxiliary variables, numEnqs and numDeqs, which are incre-
mented upon successful Q.enqueue(x) and Q.dequeue()
calls, respectively.

Relating ownership to non-auxiliary variables. In or-
der to describe the system in terms of different levels of
ownership, we must relate all non-auxiliary components to

own𝐵 and own𝐷 . The abstraction, and subsequent mechanisa-
tion, preserves the second line of the main invariant through
a supporting invariant, as given below:

size(𝑄) = numEnqs − numDeqs (2)

Because transfer of own𝐷 occurs during B operations,
preservation of the relationship between numEnqs, numDeqs,
count𝑊 , count𝑅 and size(𝑄) ensures the second line of the
main invariant. Note, that the discrepancy between numEnqs
and count𝑊 occurs only after the transition of B.write(x,i).
Similarly, count𝑅 differs from numEnqs only immediately af-
ter a successful Q.dequeue() call. As such, special caution
must be taken when relating size(𝑄) to count𝑊 and count𝑅 .

Once𝑊 has finished reserving and writing into addresses
from the Buffer, post the initial acquire step, variable 𝐻 is
bound to satisfy𝐻 > 0. This is characterised by the following
supporting invariant:

count𝑊 > count𝑅 −→ 𝐻 > 0 (3)
count𝑊 = count𝑅 ∧ 𝑝𝑐𝑅 ≠ 𝑖𝑑𝑙𝑒 −→ 𝐻 > 0 (4)

where 𝑝𝑐𝑅 is the program counter for the reader.

Observing Buffer ownership. Observing Buffer owner-
ship is sufficient to describe, and maintain during execution,
the states of all buffer addresses, provided ownership prop-
erties are satisfied w.r.t 𝑐𝑎𝑠𝑒_1 and 𝑐𝑎𝑠𝑒_2. If an address is
owned by 𝑄 or 𝐵, we can guarantee that its respective own𝐵
value would not change, unless either𝑊 or 𝑅 performed an
acquire or release.

The definitions of set_ownB() and trans_ownB() along-
side other minor invariants, which guaranteed that variables
(such as 𝐻 and 𝑇 ) would abide by an upper bound of 𝑁 ,
were enough to describe the idea of dummy reservations and
transfer the reliance on observation of variables 𝐻 and 𝑇
explicitly to allow a more intuitive approach (specifically
during informal reasoning stage) - asking, e.g. whether 𝐵
owns enough of addresses for𝑊 to take ownership, or 𝑄
holds ownership tokens for 𝑅 to take. An example of infor-
mal reasoning is given as follows: if 𝑄 has elements in it,
the information contained in described addresses will not be
overwritten, because𝑊 is restricted from taking ownership
of addresses from 𝑄 .

We formalise the general proof of the scenarios presented
in [27] using the definitions of buffer ownership transfer
functions and the following supporting invariants, assuming
𝑥𝑅 is the local reader variable that is set at line 4 of Fig. 2:

𝑄 ≠ 𝑒𝑚𝑝𝑡𝑦 −→
∀𝑗 ∈ dom(𝑄). fst (𝑄 ( 𝑗)) + snd (𝑄 ( 𝑗)) ≤ size(Buffer) (5)
𝑝𝑐𝑅 ≠ 𝑖𝑑𝑙𝑒𝑅 −→ fst (𝑥𝑅) + snd (𝑥𝑅) ≤ size(Buffer) (6)

which dictate that all retrieved by 𝑅, and held by 𝑄 , entries
preserve the property of boundness.
Besides these, a number of smaller (less interesting) in-

variants are necessary for bookkeeping purposes, e.g., 0 ≤



SAC ’23, March 27-31, 2023, Tallinn, Estonia

𝑖𝑑𝑙𝑒𝑊

𝐴1

𝐴2

𝐴3, 𝐴4 𝐴5

𝐴6, 𝐴7 𝐴8

OK OOM Finished

𝑅1

𝑖𝑑𝑙𝑒𝑅

Figure 8. Orders over 𝑝𝑐𝑊 and 𝑝𝑐𝑅 ; dashed arrows are tran-
sitions that restart the loops

𝐻,𝑇 ≤ size(Buffer), which ensures that 𝐻 and 𝑇 are within
their expected bounds. Details of these invariants may be
found in our Isabelle mechanisation.

5.3 Verifying Progress
The main progress property that the ring buffer must guaran-
tee is that all data is eventually transferred from the writer to
the reader. Such a property is easily expressed in our model
using ownership. In particular, we show that it is always
possible to reach a state satisfying Progress𝑚𝑖𝑛 such that fol-
lowing holds:

Progress𝑚𝑖𝑛 −→ ∀𝑖 ∈ dom(Data). own𝐷 (𝑖) = 𝑅
One of the ways of observing the above, as suggested by
Section 5.2, is to consider count𝑊 and count𝑅 as a method
of representing own𝐷 . Data ownership for Progress𝑚𝑖𝑛 is sat-
isfied when count𝑅 = count𝑊 = size(Data), which implies
that𝑊 has enqueued all desired data, and 𝑅 has dequeued
the last possible entry from 𝑄 . This idea forms the basis for
using a well-founded order [13, 14] that includes count𝑊
and count𝑅 as parameters. We also have to be able to claim
progress occurs, when either𝑊 or 𝑅 executes a line of code
without incrementing their respective data counters. To en-
able this, the well-founded order we use includes information
on the program counter values of each thread.
In Fig. 8, labels 𝐴𝑖 correspond to different labels within

B.acquire(x), see Fig. 3. Thus, the order given in Fig. 8
represents the lexicographical order:

idle𝑊 > 𝐴1 > 𝐴2 > {𝐴3, 𝐴4, 𝐴5} > · · · > Finished

Note, that the OK state includes state transitions of the op-
erations described by both B.write() and Q.enqueue(). A
similar relabelling and order can be shown for 𝑅, resulting
in the following associated hierarchy, as described in Fig. 8:
𝑅1 > 𝑖𝑑𝑙𝑒𝑅 .

Note, that transitions by𝑊 from state OOM to 𝑖𝑑𝑙𝑒𝑊 do
not increment count𝑊 . To resolve this issue, we introduced a
variable 𝑡𝑟𝑖𝑒𝑠 which helps demonstrate the desired effect of

monotonic decrease in Progress. See [27] for a more detailed
explanation. The state transition induced by B.write(x,i)
is encapsulated inOK. In order to distinguish the states before
and after thewrite operation, we resort to tracking remaining
writes, which is trivially writesLeft = size(Data) − numEnqs.
We make use of this variable within the Progress variant.

Overall, we use a lexicographical order over the following
tuple for a state 𝑠:

Progress(𝑠) = (2𝑛 − 𝑠 .count𝑊 − 𝑠 .count𝑅,
writesLeft, 𝐾 − 𝑠 .tries, 𝑠 .𝑝𝑐𝑅, 𝑠 .𝑝𝑐𝑊 )

where 𝐾 is a the upper bound3 on the maximum number
of retries via OOM, and 𝑛 = size(Data) is the number of
elements to be transferred4. The Progress tuple utilises lex-
icographical order implying highest rank of the left-most
value.

We show that Progress is strictly monotonically decreas-
ing for each state transition, implying that any step taken
towards completion should guarantee a decrease in rank.
Since Progress defines a global order over all processes, we
are not required to introduce any additional fairness assump-
tions (e.g., strong / weak fairness) on the processes. Of course,
since we prove progress under minimal fairness assumptions,
the proof also holds in the presence of a strongly or weakly
fair scheduler.

The minimal value for Progress can now be formally writ-
ten as:

Progress𝑚𝑖𝑛 (𝑠) = (0, 0, 0, idle𝑅, Finished𝑊 )

The minimal value for Progress is only obtainable when
count𝑅 = 𝑛∧𝑝𝑐𝑅 = 𝑖𝑑𝑙𝑒𝑅 (the reader has read the lastData en-
try, and performed B.release(x)). Note that Progress𝑚𝑖𝑛 (𝑠)
implies 𝑠 .count𝑅 = 𝑛, which by Safety guarantees our re-
quired progress property, i.e.,

∀𝑖 ∈ dom(Data). own𝐷 (𝑖) = 𝑅.

5.4 Mechanisation
The ring buffer has been modelled, and safety and progress
properties (described in Sections 5.2 and 5.3) have been ver-
ified in Isabelle/HOL [27]. The program is modelled as a
transition system, where control flow is tracked using pro-
gram counters, and explicit auxiliary variables are used to
encode ownership.

The safety proof proceeds via standard Owicki-Gries rea-
soning, which involves checking local correctness and inter-
ference freedom (global correctness) of each assertion. The
progress proof involves checking whether each transition
does indeed reduce the value of lexicographic order or not.

3If a retry only occurs when the reader moves 𝑇 , we can use 𝐾 =

size (Buffer ) as an upper bound on the variable tries.
4There can be at most 𝑛 number of writes and 𝑛 number of reads performed
by𝑊 and 𝑅, due to the size of the list Data



Ownership-Based Owicki-Gries Reasoning SAC ’23, March 27-31, 2023, Tallinn, Estonia

Once the required invariants and orders were encoded,
the Isabelle proofs themselves were relatively straightfor-
ward. The strategy used was primarily splitting into cases for
each line of code, followed by application of Isabelle’s built
in sledgehammer tool, which was able to solve the proof
obligations that were generated.

6 Related Work
Notions of ownership are well-studied within programming
languages and verification communities. Within the object-
oriented literature, ownership is used to model encapsulation
and information flowwithin the class hierarchy [2, 11]. These
models are often supported by type systems [10, 26] to en-
able ownership tracking during compile time (see also [12]).
Ownership is widely used in Concurrent Separation Logic
and Rely Guarantee reasoning to aid in abstracting states,
while maintaining the expressive nature of used variants [7].

In verification, ownership is primarily used to track avail-
ability of objects for use by other objects. Jacobs et al. [3, 20]
implement verification of ownership based systems using
ownership notation. Dietl and Müller [16] successfully ex-
tended use of ownership in Java Modelling Language envi-
ronment. Boyapati et al. [4] implement an ownership type
system to enforce a systematic approach to handling verifi-
cation against deadlocks and data races in Java, recognising
that ownership can help preserve variants of sub-objects, by
focusing on hierarchical object ownership.
The idea of ownership has seen prominent use within

concurrent separation logic [5, 6, 8, 9, 22, 25, 30], including
variants that allow threads themselves to be owned [21].
Ownership has been used to aid in rely-guarantee reason-
ing [15], and works that combine rely-guarantee reasoning
with separation logic [17, 29, 31, 32], with ownership being
an integral part of verification. These logics have been ap-
plied to verifying a number of complex algorithms [28, 33]
such as the flat combining paradigm [19]. However, separa-
tion logics are often specialised towards verifying particular
examples; our aim is to incorporate ownership-based reason-
ing into an Owicki-Gries framework with a view to obtaining
a more general solution.
The closest related works to ours is that of Haecki et

al. [18], who use ownership to aid reasoning about correct
address reservation in descriptor rings, using the Intel i82599
descriptor ring as the main example. They only reason about
ownership at a single level (i.e., the addresses within the
buffer), unlike our methods, which consider Data ownership
and Buffer address ownership separately. As far as we are
aware, full details of their verification techniques have not
yet been released, and it will be interesting to compare their
methods with ours once these details become available.

7 Conclusion and Future Work
This paper explores the idea of generalising an auxiliary
variable, used in tracking thread access to a shared variable,
to facilitate reasoning about concurrent programs both pen
and paper, and using a theorem proving environment.

This paper analyses the proposed ring buffer structure by
Amazon, and verifies the correctness and progress of paral-
lel execution using a novel, ownership based, approach to
access control, queuing and logical consequences [27]. The
main reasons for choosing this problem, although could be
pegged on its “Real World Problem” status, are the mech-
anism for synchronisation and the rules of the buffer. The
existence of Queue could ensure interference-free parallel
execution of Reads andWrites, however simple Owicki-Gries
style informal arguments would quickly require much more
than “simple” analysis to prove correctness and interference
freedom. The extensive list of rules for acquiring/releasing
Buffer bytes seemed like an interesting challenge for an
ownership-based approach.

Acknowledgments
The authors thank Nathan Chong (Amazon) for introduc-
ing us to the ring buffer problem and for comments on an
earlier version of this paper. This work is supported by EP-
SRC grants EP/V038915/1, EP/R032556/1 and EP/R025134/2;
VeTSS; and ARC Grant DP190102142.

References
[1] [n. d.]. Amazon ring buffer source code. https://github.com/awslabs/

aws-c-common/blob/master/source/ring_buffer.c Accessed Oct-2019.
[2] Anindya Banerjee and David A. Naumann. 2005. Ownership con-

finement ensures representation independence for object-oriented
programs. J. ACM 52, 6 (2005), 894–960.

[3] Michael Barnett, Robert DeLine, Manuel Fähndrich, K. RustanM. Leino,
and Wolfram Schulte. 2004. Verification of Object-Oriented Programs
with Invariants. J. Object Technol. 3, 6 (2004), 27–56.

[4] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. 2002. Own-
ership Types for Safe Programming: Preventing Data Races and Dead-
locks. SIGPLAN Not. 37, 11 (Nov. 2002), 211–230. https://doi.org/10.
1145/583854.582440

[5] Stephen Brookes. 2004. A Semantics for Concurrent Separation Logic.
In CONCUR 2004 - Concurrency Theory, Philippa Gardner and Nobuko
Yoshida (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 16–34.

[6] Stephen Brookes. 2010. Fairness, Resources, and Separation. Electr.
Notes Theor. Comput. Sci. 265 (2010), 177–195.

[7] Stephen Brookes. 2011. A Revisionist History of Concurrent Separation
Logic. Electr. Notes Theor. Comput. Sci. 276 (09 2011), 5–28. https:
//doi.org/10.1016/j.entcs.2011.09.013

[8] Stephen D. Brookes. 2006. Variables as Resource for Shared-Memory
Programs: Semantics and Soundness. In MFPS (Electronic Notes in The-
oretical Computer Science, Vol. 158), Stephen D. Brookes and Michael W.
Mislove (Eds.). Elsevier, 123–150.

[9] C. Calcagno, P. W. O’Hearn, and H. Yang. 2007. Local Action and
Abstract Separation Logic. In 22nd Annual IEEE Symposium on Logic
in Computer Science (LICS 2007). 366–378.

[10] David Clarke. 2001. Object Ownership and Containment. Technical
Report.

https://github.com/awslabs/aws-c-common/blob/master/source/ring_buffer.c
https://github.com/awslabs/aws-c-common/blob/master/source/ring_buffer.c
https://doi.org/10.1145/583854.582440
https://doi.org/10.1145/583854.582440
https://doi.org/10.1016/j.entcs.2011.09.013
https://doi.org/10.1016/j.entcs.2011.09.013


SAC ’23, March 27-31, 2023, Tallinn, Estonia

[11] Dave Clarke, Sophia Drossopoulou, Peter Müller, James Noble, and
Tobias Wrigstad. 2008. Aliasing, Confinement, and Ownership in
Object-Oriented Programming. In ECOOP (LNCS, Vol. 5475), Patrick
Eugster (Ed.). Springer, 30–41.

[12] David G. Clarke, James Noble, and John M. Potter. 2001. Simple Owner-
ship Types for Object Containment. In ECOOP 2001 — Object-Oriented
Programming, Jørgen Lindskov Knudsen (Ed.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 53–76.

[13] Robert Colvin and Brijesh Dongol. 2007. Verifying Lock-Freedom
Using Well-Founded Orders. In Theoretical Aspects of Computing -
ICTAC 2007, 4th International Colloquium, Macau, China, September
26-28, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4711),
Cliff B. Jones, Zhiming Liu, and Jim Woodcock (Eds.). Springer, 124–
138. https://doi.org/10.1007/978-3-540-75292-9_9

[14] Robert Colvin and Brijesh Dongol. 2009. A general technique for
proving lock-freedom. Sci. Comput. Program. 74, 3 (2009), 143–165.
https://doi.org/10.1016/j.scico.2008.09.013

[15] Pedro Da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.
2015. Steps in Modular Specifications for Concurrent Modules (Invited
Tutorial Paper). Electronic Notes in Theoretical Computer Science 319
(12 2015), 3–18. https://doi.org/10.1016/j.entcs.2015.12.002

[16] Werner Dietl and Peter Müller. 2005. Universes: Lightweight Own-
ership for JML. JOURNAL OF OBJECT TECHNOLOGY 4, 8 (2005),
5–32.

[17] Xinyu Feng. 2009. Local Rely-Guarantee Reasoning. In Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Savannah, GA, USA) (POPL ’09). Association
for Computing Machinery, New York, NY, USA, 315–327. https://doi.
org/10.1145/1480881.1480922

[18] Roni Haecki, Lukas Humbel, Reto Achermann, David Cock, Daniel
Schwyn, and Timothy Roscoe. 2019. CleanQ: a lightweight, uniform,
formally specified interface for intra-machine data transfer. ArXiv
abs/1911.08773 (2019).

[19] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat
Combining and the Synchronization-Parallelism Tradeoff. In Proceed-
ings of the Twenty-Second Annual ACM Symposium on Parallelism in
Algorithms and Architectures (Thira, Santorini, Greece) (SPAA ’10).
Association for Computing Machinery, New York, NY, USA, 355–364.
https://doi.org/10.1145/1810479.1810540

[20] Bart Jacobs, Frank Piessens, K. Rustan M. Leino, and Wolfram Schulte.
2005. Safe Concurrency for Aggregate Objects with Invariants. In SEFM,
Bernhard K. Aichernig and Bernhard Beckert (Eds.). IEEE Computer
Society, 137–147.

[21] Duy-Khanh Le, Wei-Ngan Chin, and Yong Meng Teo. 2015. Threads
as Resource for Concurrency Verification. In PEPM (Mumbai, India)
(PEPM ’15). ACM, New York, NY, USA, 73–84. https://doi.org/10.1145/

2678015.2682540
[22] Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning.

In CONCUR 2004 - Concurrency Theory, Philippa Gardner and Nobuko
Yoshida (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 49–67.

[23] Susan S. Owicki. 1978. Verifying parallel programs with resource
allocation. In Mathematical Studies of Information Processing, Proceed-
ings of the International Conference, Kyoto, Japan, August 23-26, 1978
(Lecture Notes in Computer Science, Vol. 75), Edward K. Blum, Manfred
Paul, and Satoru Takasu (Eds.). Springer, 151–164.

[24] S. S. Owicki and D. Gries. 1976. An Axiomatic Proof Technique for
Parallel Programs I. Acta Informatica 6 (1976), 319–340.

[25] M. Parkinson, R. Bornat, and C. Calcagno. 2006. Variables as Resource
in Hoare Logics. In 21st Annual IEEE Symposium on Logic in Computer
Science (LICS’06). 137–146.

[26] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. 2006.
Generic ownership for generic Java. In OOPSLA, Peri L. Tarr and
William R. Cook (Eds.). ACM, 311–324.

[27] M. Semenyuk and B. Dongol. 2022. Isabelle/HOL files for “Ownership-
Based Owicki-Gries Reasoning”. https://doi.org/10.6084/m9.figshare.
21762992.

[28] Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying Refine-
ment and Hoare-Style Reasoning in a Logic for Higher-Order Concur-
rency. In ICFP (Boston, Massachusetts, USA) (ICFP ’13). ACM, New
York, NY, USA, 377–390. https://doi.org/10.1145/2500365.2500600

[29] Viktor Vafeiadis. 2008. Modular fine-grained concurrency verification.
Technical Report UCAM-CL-TR-726. University of Cambridge, Com-
puter Laboratory. https://www.cl.cam.ac.uk/techreports/UCAM-CL-
TR-726.pdf

[30] Viktor Vafeiadis. 2011. Concurrent separation logic and operational
semantics. Electronic Notes in Theoretical Computer Science 276 (2011),
335–351.

[31] Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro.
2006. Proving Correctness of Highly-Concurrent Linearisable Objects.
In Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (New York, New York, USA)
(PPoPP ’06). Association for Computing Machinery, New York, NY,
USA, 129–136. https://doi.org/10.1145/1122971.1122992

[32] Viktor Vafeiadis and Matthew Parkinson. 2007. A Marriage of Re-
ly/Guarantee and Separation Logic. In CONCUR 2007 – Concurrency
Theory, Luís Caires and Vasco T. Vasconcelos (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 256–271.

[33] Shuling Wang and Xu Wang. 2012. Proving Simpson’s Four-Slot Al-
gorithm Using Ownership Transfer. In VERIFY-2010. 6th International
Verification Workshop (EPiC Series in Computing, Vol. 3), Markus Ader-
hold, Serge Autexier, and Heiko Mantel (Eds.). EasyChair, 126–140.
https://doi.org/10.29007/l2sp

https://doi.org/10.1007/978-3-540-75292-9_9
https://doi.org/10.1016/j.scico.2008.09.013
https://doi.org/10.1016/j.entcs.2015.12.002
https://doi.org/10.1145/1480881.1480922
https://doi.org/10.1145/1480881.1480922
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1145/2678015.2682540
https://doi.org/10.1145/2678015.2682540
https://doi.org/10.6084/m9.figshare.21762992
https://doi.org/10.6084/m9.figshare.21762992
https://doi.org/10.1145/2500365.2500600
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-726.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-726.pdf
https://doi.org/10.1145/1122971.1122992
https://doi.org/10.29007/l2sp

	Abstract
	1 Introduction
	2 Overview and Initialisation of Ownership
	3 Amazon's Ring Buffer
	4 Augmenting Ownership Information
	4.1 Ownership in ARB
	4.2 Tracking Ownership Transfer

	5 Verification
	5.1 Ownership Scenarios
	5.2 Verifying Safety
	5.3 Verifying Progress
	5.4 Mechanisation

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

